11.07.2014 Views

II. Electron microscopy: TEM and SEM (PDF) - NCLT

II. Electron microscopy: TEM and SEM (PDF) - NCLT

II. Electron microscopy: TEM and SEM (PDF) - NCLT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

What can electrons do?<br />

Jian-Guo Zheng<br />

Materials Science & Engineering<br />

EPIC/NUANCE Center<br />

Northwestern University<br />

2220 Campus Drive, 1156 Cook Hall<br />

Evanston, IL 60208-3108, USA<br />

Phone: (847) 491-7807, Fax: (847) 491-7820<br />

E-mail: j-zheng3@northwestern.edu<br />

<strong>NCLT</strong>: June-Aug. 2006


What can electrons do?<br />

outline<br />

I. Introduction<br />

<strong>II</strong>. <strong>Electron</strong> <strong>microscopy</strong>: <strong>TEM</strong> <strong>and</strong> <strong>SEM</strong><br />

<strong>II</strong>I. Seeing with electrons: imaging<br />

IV. More than images<br />

V. Challenges <strong>and</strong> opportunities<br />

<strong>NCLT</strong>: June-Aug. 2006


<strong>II</strong> <strong>Electron</strong> <strong>microscopy</strong><br />

<strong>II</strong>.1 What are electron microscopes?<br />

<strong>II</strong>.2 Scanning electron microscope<br />

<strong>II</strong>.3 Transmission electron microscope<br />

<strong>NCLT</strong>: June-Aug. 2006


<strong>II</strong>.1 What are electron<br />

microscopes?<br />

• Definition<br />

• First (transmission) electron microscope<br />

• The brief history of electron <strong>microscopy</strong><br />

• Modern <strong>TEM</strong>s <strong>and</strong> <strong>SEM</strong>s<br />

• Major components of electron<br />

microscopes<br />

• <strong>Electron</strong> gun<br />

• <strong>Electron</strong> lens<br />

<strong>NCLT</strong>: June-Aug. 2006


<strong>II</strong>.1 What are electron<br />

microscopes?<br />

<strong>Electron</strong><br />

Microscopes are<br />

scientific<br />

instruments that<br />

use a beam of<br />

highly energetic<br />

electrons to<br />

examine objects<br />

on a very fine<br />

scale.<br />

<strong>Electron</strong> microscopes:<br />

scanning electron microscope (<strong>SEM</strong>) <strong>and</strong><br />

transmission electron microscope (<strong>TEM</strong>)<br />

e-beam<br />

Signals to <strong>SEM</strong><br />

Top<br />

Bottom<br />

specimen<br />

Signals to <strong>TEM</strong><br />

<strong>NCLT</strong>: June-Aug. 2006


1 st (Transmission) <strong>Electron</strong> Microscope<br />

1931 Max Knoll <strong>and</strong> Ernst Ruska built the first <strong>TEM</strong><br />

1986 Nobel prize for E.Ruska (together with G. Binning <strong>and</strong><br />

H. Rohrer, who developed the Scanning Tunneling Microscope)<br />

<strong>NCLT</strong>: June-Aug. 2006


Some Milestones in<br />

the History of <strong>Electron</strong> Microscopy<br />

1897 Discovery of the electron by J.J. Thompson<br />

1924 P. De Broglie: particle/wave dualism, magnetic<br />

coil/electron beam-glass/light<br />

1927 Hans Busch: <strong>Electron</strong> beams can be focused in an<br />

inhomogeneous magnetic field. <strong>Electron</strong> lens relation/ glass lens<br />

1931 Max Knoll <strong>and</strong> Ernst Ruska built the first <strong>TEM</strong><br />

1938 Scanning transmission electron microscope (M. von<br />

Ardenne)<br />

1939 First commercial <strong>TEM</strong> by Siemens (Ruska, von Borries)<br />

1943 <strong>Electron</strong> energy-loss spectroscopy EELS (J. Hillier)<br />

~1940 Basic theoretical work on electron optics <strong>and</strong> electron<br />

lenses (W. Glaser, O. Scherzer), Cs/Cc<br />

1951 X-ray spectroscopy<br />

<strong>NCLT</strong>:<br />

(R. Castaing)<br />

June-Aug. 2006


Some Milestones in<br />

the History of <strong>Electron</strong> Microscopy<br />

1956 First lattice image (J. Menter)<br />

1957 Multi-slice method (J. Cowley, A. Moodie)<br />

1964 First commercial <strong>SEM</strong> by Cambridge Instruments<br />

(Charles Oatley)<br />

~1970 HR<strong>TEM</strong> microscopes with a resolution better than 4 Å<br />

1986 Nobel prize for E.Ruska (together with G. Binning <strong>and</strong> H.<br />

Rohrer, who developed the Scanning Tunneling Microscope)<br />

1990: Aberration corrector design<br />

1998: first Cs-corrected transmission electron microscope<br />

2004: Cc/Cs corrected commercial electron microscope (JEOL,<br />

FEI, LEO…)<br />

<strong>NCLT</strong>: June-Aug. 2006


Modern <strong>TEM</strong>s<br />

High voltage <strong>TEM</strong><br />

JEOL 4000EX<br />

VG HB603<br />

JEM-2200FS<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Tecnai G2 F20 ST-twin


Modern <strong>SEM</strong>s<br />

Hitachi 4800<br />

LEO 1550<br />

FEI Quanta 600F<br />

JEOL 7700F<br />

1 st commercial<br />

AC-<strong>SEM</strong><br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Strata 400<br />

FEI dual<br />

Beam<br />

(<strong>SEM</strong>/FIB)


Major components<br />

of electron microscopes<br />

• <strong>Electron</strong> source<br />

Light Source<br />

<strong>Electron</strong><br />

source<br />

• Illumination system<br />

• Specimen stage<br />

Condenser<br />

lens<br />

specimen<br />

Objective<br />

lens<br />

specimen<br />

lens<br />

Beam deflector<br />

• Imaging systems<br />

Projector<br />

lens<br />

Image<br />

on screen<br />

detector<br />

• Attachments<br />

Light<br />

Microscope<br />

<strong>TEM</strong><br />

<strong>SEM</strong><br />

EDS, EELS…<br />

Diagram from: http://www.mih.unibas.ch/Booklet/Lecture/Chapter1/Fig.1-6.gif<br />

<strong>NCLT</strong>: June-Aug. 2006


<strong>Electron</strong> Gun<br />

<strong>Electron</strong>s can be emitted<br />

from a filament (emitter or<br />

cathode) by gaining<br />

additional energy from heat<br />

or electric field.<br />

Commonly used emitters:<br />

Tungsten wire<br />

LaB6 filament<br />

Field emitter.<br />

Thermionic emission<br />

Field emission<br />

The common properties of<br />

the emitters are low work<br />

function, high melting point,<br />

<strong>and</strong> high mechanical<br />

strength<br />

W wire<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

LaB6<br />

Field emitter


A comparison of electron sources<br />

<strong>NCLT</strong>: June-Aug. 2006


Electromagnetic Lens<br />

An electromagnetic lens can manipulate electron trajectory to form either a small<br />

electron probe (condenser) or an enlarged image of a specimen.<br />

If the image rotation is ignored, the behavior of the electromagnetic lens can be<br />

described by the formula used for optical lens: 1/f=1/p+1/q<br />

The focal length of the lens (f) can be changed by the electric current supplied to<br />

the lens (f α 1/(NI) 2 )<br />

Object<br />

Lens<br />

Image<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Picture from: http://www.matter.org.uk/tem/lenses/thin_lens_optics.htm


<strong>II</strong>.2 Scanning electron microscope<br />

• Signals <strong>and</strong> functions of a normal <strong>SEM</strong><br />

• How does <strong>SEM</strong> work?<br />

• Optimizing <strong>SEM</strong> Image<br />

• Interaction volume <strong>and</strong> resolution<br />

• Stigmatism <strong>and</strong> Resolution<br />

• Depth of Field<br />

• Secondary electron image- Topography<br />

• Backscattered electron image: Z-contrast<br />

• X-ray Energy Dispersive Spectroscopy (EDS) in<br />

<strong>SEM</strong><br />

• What else can we do in the <strong>SEM</strong>?<br />

<strong>NCLT</strong>: June-Aug. 2006


Signals <strong>and</strong> functions of a<br />

normal <strong>SEM</strong><br />

Secondary electrons<br />

Backscattered <strong>Electron</strong>s<br />

X-rays<br />

<strong>NCLT</strong>: June-Aug. 2006


How does <strong>SEM</strong> work?<br />

A <strong>SEM</strong> image is built up point by point, which is similar to TV, <strong>and</strong> the<br />

intensity of each pixel is proportional to the signal intensity.<br />

<strong>Electron</strong> gun generates an electron<br />

beam; (Condenser <strong>and</strong> objective)<br />

lens focuses the beam onto a<br />

sample; The beam deflector<br />

controls the beam scan onto the<br />

sample; At each point where the<br />

beam hits the sample,<br />

backscattered <strong>and</strong> secondary<br />

electrons are ejected from the<br />

specimen; Detectors collect these<br />

electrons, <strong>and</strong> convert them into a<br />

signal that is sent to a video screen.<br />

<strong>SEM</strong> Diagram<br />

<strong>Electron</strong><br />

gun<br />

Condenser<br />

lens<br />

Bean<br />

deflector<br />

Objective<br />

lens<br />

Specimen<br />

stage<br />

Detector<br />

<strong>NCLT</strong>: June-Aug. 2006


Scanning electron microscope<br />

Forming an<br />

electron probe<br />

source<br />

size do<br />

CL<br />

Beam scanning, beam/specimen<br />

Interaction <strong>and</strong> signal detection<br />

Beam scan<br />

Detector<br />

OL<br />

S<br />

specimen<br />

Signals<br />

Secondary electrons<br />

Backscattered electrons<br />

X-ray<br />

CL<br />

<strong>NCLT</strong>: Modified June-Aug. from: H:\2006research\nclt\<strong>SEM</strong>\<strong>SEM</strong>01.htm


Optimizing <strong>SEM</strong> Image<br />

•High resolution (ability to differentiate between small features on<br />

the surface: small probe diameter<br />

•Large depth of field (Ability for an image to be in focus over<br />

large changes in surface topography): a low convergence angle<br />

•High quality (ability to see details without interference from noise<br />

signal): high beam current<br />

An optimized <strong>SEM</strong> image is obtained through a control of the electron<br />

beam, that is, probe diameter, probe current <strong>and</strong> convergence angle,<br />

involving electron gun, condenser lens, objective aperture, <strong>and</strong><br />

working distance. A high resolution high quality image with a large<br />

depth of field is made by a beam with a high current <strong>and</strong> a low probe<br />

diameter <strong>and</strong> a low convergence angle. As the probe current is<br />

increased, both probe diameter <strong>and</strong> convergence angle increase. This<br />

is not desirable for imaging, so the parameters must be controlled in a<br />

way to produce the best mix of image quality, resolution, <strong>and</strong> depth of<br />

field depending on the features of interest on the sample itself.<br />

<strong>NCLT</strong>: June-Aug. 2006


Interaction volume <strong>and</strong> resolution<br />

The Scanning <strong>Electron</strong> Microscope (<strong>SEM</strong>) was developed mainly because of<br />

the limitations of optical <strong>microscopy</strong> (low resolution <strong>and</strong> poor depth of field).<br />

<strong>SEM</strong> resolution is<br />

dependent on the<br />

interaction volume resulted<br />

from the interaction<br />

between incident electrons<br />

<strong>and</strong> specimen. The<br />

interaction volume is<br />

associated with the beam<br />

size/shape, electron<br />

energy <strong>and</strong> specimen<br />

material.<br />

Please note: Small beam<br />

size may improve the<br />

resolution, but decrease<br />

the signal to noise ratio,<br />

that is, image quality or<br />

sensitivity.<br />

Resolution: Size/Shape of Interaction Volume<br />

Sensitivity: Signal/Noise Ratio<br />

It is necessary to make a balance between the<br />

resolution <strong>and</strong> sensitivity<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Interaction<br />

volume<br />

Diagram from: H:\2006research\nclt\<strong>SEM</strong>\<strong>SEM</strong>01.htm


Stigmatism <strong>and</strong> Resolution<br />

The shape of electron beam<br />

affects <strong>SEM</strong> image<br />

resolution: when the beam is<br />

round, or without stigmatism,<br />

the image shows small<br />

features (high resolution) as<br />

seen in Fig. a; when the<br />

beam is not round, or with<br />

stigmatism, the image<br />

details become vague (lower<br />

resolution) as seen in Fig. b.<br />

without stigmatism<br />

a<br />

1 µm<br />

c<br />

with stigmatism<br />

b<br />

1 µm<br />

d<br />

When the image has<br />

stigmatism, changing beam<br />

focus may result in elongated<br />

feature: Figs. c <strong>and</strong> d were<br />

recorded when the beam<br />

were under <strong>and</strong> over focus,<br />

respectively.<br />

1 µm<br />

1 µm<br />

Under focus<br />

Over focus<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Picture from: H:\2006research\nclt\<strong>SEM</strong>\<strong>SEM</strong>01.htm


Depth of Field<br />

The Scanning <strong>Electron</strong> Microscope (<strong>SEM</strong>) was developed mainly because of<br />

the limitations of optical <strong>microscopy</strong> (low resolution <strong>and</strong> poor depth of field).<br />

<strong>SEM</strong> image taken with secondary electrons (left) shows topographical features<br />

clearly. As compared with corresponding optical micrograph (right), the <strong>SEM</strong><br />

image shows three-dimensional appearance of the specimen image which is a<br />

direct result of the large depth of field (DOF) of the <strong>SEM</strong>, the biggest<br />

advantage.<br />

<strong>SEM</strong><br />

OM<br />

<strong>NCLT</strong>: June-Aug. 2006


Depth of field<br />

Depth of field (D) varies with the<br />

objective aperture size, working<br />

distance <strong>and</strong> magnification, <strong>and</strong> is<br />

given by the following expression:<br />

Depth of field (D)<br />

1<br />

D ∝ αM<br />

Where M is the magnification <strong>and</strong> α<br />

is the divergence angle which can<br />

be calculated from the aperture<br />

radius (RAp) <strong>and</strong> working distance<br />

(DW):<br />

α = R Ap<br />

D W<br />

<strong>SEM</strong>: small α<br />

Optical microscope: large α<br />

Depth of field (D) is the height over<br />

which the sample can be clearly<br />

focused.<br />

<strong>NCLT</strong>: June-Aug. 2006


Secondary electron image-<br />

Topography<br />

SE contrast mechanism: Edge effect<br />

SE image of Al2O3/Ni<br />

Secondary electrons escape from sample areas close to the surface. The edge effect takes<br />

place when many electrons escape from areas with sharp edges or peaks to be deflected by<br />

the Faraday Cage (B). Some electrons escape from areas without sharp edges (A <strong>and</strong> C). Few<br />

secondary electrons are detected when generated secondary electrons are only deflected<br />

partially by the Faraday Cage due to the location on the sample they are generated (A).<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Picture: Courtesy of Prof. T. Sekino, ISIR, Osaka Univ.<br />

Diagram from: H:\2006research\nclt\<strong>SEM</strong>\<strong>SEM</strong>01.htm


Backscattered electron images:<br />

Z-contrast<br />

In BSE image, the signal is dependent on atomic number<br />

In BSE image, Ni precipitates is much brighter than Al2O3; as<br />

comparison, In SE image, Ni <strong>and</strong> Al2O3 have similar contrast<br />

Backscattered electron (BSE) image Secondary electron (SE) image<br />

BSE<br />

SE<br />

Al2O3/Ni composite<br />

Courtesy of Prof. T. Sekino, ISIR, Osaka Univ.<br />

<strong>NCLT</strong>: June-Aug. 2006


X-ray Energy Dispersive<br />

Spectroscopy (EDS) in <strong>SEM</strong><br />

RGB<br />

EDS spectrum: Characteristic X-ray peaks on continuum bk<br />

http://www.geosci.ipfw.edu/cgi-bin/sem/techinfo.cgi?choice=xmap<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

EDS elemental maps


What else can we do in the <strong>SEM</strong>?<br />

•High Resolution <strong>SEM</strong><br />

•Low kV imaging<br />

•S<strong>TEM</strong><br />

•Stereo<strong>microscopy</strong><br />

•Voltage contrast<br />

•Magnetic field contrast<br />

•Crystallographic contrast<br />

•<strong>Electron</strong> channeling diffraction<br />

•<strong>Electron</strong> backscattered diffraction (EBSD)<br />

•Cathodluminiscence (CL)<br />

•E-beam lithography<br />

<strong>NCLT</strong>: June-Aug. 2006


<strong>II</strong>.3 Transmission <strong>Electron</strong><br />

Microscopy (<strong>TEM</strong>)<br />

• Signals <strong>and</strong> Functions of Modern <strong>TEM</strong>s<br />

• An example: ASTAR <strong>TEM</strong> @ EPIC<br />

• Basic <strong>TEM</strong> diagram<br />

• Illumination system<br />

• Imaging system<br />

• Basic <strong>TEM</strong>: Image <strong>and</strong> Diffraction<br />

• <strong>TEM</strong> Imaging: mass-thickness contrast, diffraction contrast, phase contrast<br />

• <strong>TEM</strong> diffraction: SAED & CBED<br />

• X-ray Energy Dispersive Spectroscopy (EDS)<br />

• <strong>Electron</strong> Energy Loss Spectroscopy (EELS)<br />

• Energy-filtered <strong>TEM</strong><br />

• EF<strong>TEM</strong> spectrum imaging<br />

• Scanning Transmission <strong>Electron</strong> Microscopy (S<strong>TEM</strong>): BF/ADF<br />

• S<strong>TEM</strong>: HAADF Z-contrast<br />

• S<strong>TEM</strong>: EDS <strong>and</strong> EELS<br />

• Other <strong>TEM</strong> techniques<br />

<strong>NCLT</strong>: June-Aug. 2006


Signals <strong>and</strong> Functions of<br />

Modern <strong>TEM</strong>s<br />

Incident electrons<br />

X-ray<br />

specimen<br />

Imaging<br />

Diffraction<br />

Inelastically<br />

scattered<br />

electrons<br />

Transmitted<br />

electrons<br />

Elastically<br />

scattered<br />

electrons<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Spectroscopy<br />

Spectrum imaging


For example: ASTAR <strong>TEM</strong> @ EPIC Northwestern University:<br />

Analytical Scanning Transmission Atomic Resolution<br />

JEOL 2100F (S)<strong>TEM</strong><br />

High Voltage: 200kV,<br />

Gun: Schottky FEG emitter<br />

Pole piece: Ultra high resolution<br />

Stages: Double tilt, Single tilt<br />

Camera: Film/TV rate CCD/Slow<br />

scan CCD<br />

Attachments: Oxford EDS,<br />

GIFTridiem, BF/ADF/HAADF<br />

S<strong>TEM</strong><br />

Functions: BF/DF, HR<strong>TEM</strong>,<br />

S<strong>TEM</strong>, CBED, Nanodiffraction,<br />

PEELS, EDS, EF<strong>TEM</strong>, Z-Contrast<br />

Imaging<br />

Lattice resolution: 0.1 nm<br />

Point resolution: 0.19 nm<br />

S<strong>TEM</strong> spot: 0.136 nm<br />

Sub-nano-analysis: 0.2 nm-0.5 nm<br />

Cs=0.5 mm<br />

Cc=1.1mm<br />

Sample tilt: 25°<br />

Environment is important to achieve high<br />

performance !<br />

<strong>NCLT</strong>: June-Aug. 2006


Basic <strong>TEM</strong> diagram<br />

Gun<br />

Illumination system<br />

Specimen<br />

Imaging system<br />

CL<br />

CA<br />

SP<br />

OL(OA)<br />

SA<br />

IL<br />

PL<br />

S<br />

<strong>NCLT</strong>: June-Aug. 2006


Illumination system<br />

Gun<br />

crossover<br />

Condenser<br />

Lens 1<br />

Condenser<br />

Lens 2<br />

Upper<br />

Objective<br />

Lens<br />

Specimen<br />

Parallel beam<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Convergent beam


Imaging system<br />

Specimen<br />

Diffraction pattern<br />

Image<br />

Intermediate<br />

Lens<br />

Projector<br />

Screen<br />

Diffraction<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Image


Basic <strong>TEM</strong>:<br />

Image <strong>and</strong> Diffraction<br />

Thin specimen


<strong>TEM</strong> Imaging: Mass-thickness<br />

BF <strong>TEM</strong><br />

image of<br />

silica:<br />

Thickness<br />

contrast<br />

<strong>TEM</strong> Contrast<br />

mechanisms:<br />

Amorphous material<br />

SiO2<br />

•Mass-thickness<br />

•Diffraction contrast<br />

•Phase contrast<br />

Thickness map: EELS<br />

<strong>NCLT</strong>: June-Aug. 2006


BF <strong>TEM</strong><br />

YBaCuO stacking faults<br />

<strong>TEM</strong> Imaging:<br />

Diffraction Contrast<br />

Defects<br />

Phase<br />

Strain fields<br />

g<br />

DF <strong>TEM</strong><br />

TiAl lamellar structure<br />

BF image<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

DF image


High Resolution <strong>TEM</strong><br />

Growth twin in SnO2<br />

<strong>TEM</strong> imaging:<br />

Phase contrast<br />

Interference pattern of<br />

diffraction beams<br />

•Crystal structure<br />

•Defect<br />

Journal of Applied Physics,<br />

79 (10): 7688-7694 May 15 1996<br />

<strong>NCLT</strong>: June-Aug. 2006


Diffraction: SAED<br />

Selected Area <strong>Electron</strong> Diffraction<br />

--crystal structure, orientation relationship<br />

SAED<br />

SAED pattern: CdO/MgO<br />

BF <strong>TEM</strong><br />

g=200<br />

Parallel<br />

electron<br />

beam<br />

CdO Film<br />

Cubic/cubic<br />

MgO substrate<br />

__<br />

200 nm<br />

J. Am. Chem. Soc., Vol 126 (27), 8477-8492, 2004<br />

<strong>NCLT</strong>: June-Aug. 2006


Diffraction: CBED<br />

Crystal symmetry<br />

precipitate<br />

Point group<br />

Convergent beam<br />

sample<br />

Phil. Mag. A, 80 (2): 493-500 Feb 2000<br />

<strong>NCLT</strong>: June-Aug. 2006


Spectroscopy <strong>and</strong><br />

Spectrum Imaging<br />

•EDS<br />

• EELS<br />

<strong>NCLT</strong>: June-Aug. 2006


X-ray Energy Dispersive<br />

Spectroscopy (EDS)<br />

EDS:<br />

•Composition information<br />

•Easy to operate the system<br />

•Convenient to identify<br />

elements<br />

•Good for elements with<br />

higher atomic number<br />

•Complementary to EELS<br />

•Low background<br />

For S<strong>TEM</strong>:<br />

•High spatial resolution<br />

•Low signal (counts)<br />

•FEG gun needed<br />

Operation modes:<br />

•Spot<br />

•Line scan<br />

•mapping<br />

<strong>Electron</strong> probe<br />

X-ray<br />

Thin sample<br />

a<br />

b<br />

ADF S<strong>TEM</strong> image<br />

<strong>NCLT</strong>: (I nm probe) June-Aug. 2006<br />

EDS spectra from a) ZnO tetrapod<br />

<strong>and</strong> b) CuO particles. Ni signal is<br />

from Ni supporting grid.<br />

O<br />

O<br />

Zn<br />

Cu<br />

Ni<br />

Ni<br />

Cu<br />

Zn<br />

Zn<br />

Cu<br />

a<br />

b


<strong>Electron</strong> Energy Loss<br />

Spectroscopy<br />

•EELS signals reflect elemental concentration<br />

•EELS adds another dimension for generating <strong>TEM</strong><br />

image contrast<br />

•EELS signal can be used to rapidly identify <strong>and</strong> map<br />

elements <strong>and</strong> phases<br />

•EELS isolates pure elastic signal for quantitative<br />

imaging <strong>and</strong> diffraction<br />

•EELS provides information about electronic<br />

structure <strong>and</strong> properties<br />

What does an EELS spectrum look like?<br />

Two types of Energy Filter<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Diagram of EELS<br />

Courtesy:Dr. Mike Kundmann, Gatan


PEELS spectra from ZnO tetrapod <strong>and</strong> CuO particles<br />

•<strong>TEM</strong><br />

•S<strong>TEM</strong><br />

ZnO<br />

CuO<br />

O-K edge<br />

Zn L23 edge<br />

1020 eV<br />

O-K edge<br />

Cu L23 edge<br />

931 eV<br />

<strong>NCLT</strong>: June-Aug. 2006


Energy-filtered <strong>TEM</strong>: elemental-specific imaging<br />

EELS elemental map: three-window method<br />

Pre-edge 1 Pre-edge 2 Post-edge<br />

Cu-L23<br />

Cupper Map<br />

<strong>NCLT</strong>: June-Aug. 2006


EF<strong>TEM</strong> spectrum imaging<br />

•3D data set is built up image by image<br />

ZnO-CuO<br />

Cu-L edge<br />

Zn-L edge<br />

<strong>NCLT</strong>: June-Aug. 2006


Scanning Transmission <strong>Electron</strong><br />

Microscopy (S<strong>TEM</strong>)<br />

S<strong>TEM</strong>: BF/ADF<br />

S<strong>TEM</strong> diagram<br />

Au/Ag nanoparticles<br />

BF S<strong>TEM</strong><br />

ADF S<strong>TEM</strong><br />

Annular Dark<br />

field detector<br />

Bright field<br />

detector<br />

Compare with <strong>TEM</strong>:<br />

-BF: Similar<br />

-DF: More efficient<br />

Detector ring/ aperture (<strong>TEM</strong>)<br />

<strong>NCLT</strong>: June-Aug. 2006<br />

Advanced Materials, 12 (9): 640-643, May 3 2000


S<strong>TEM</strong>: HAADF Z-contrast<br />

-Actual atomic position<br />

-Contrast changing with Z<br />

-Small probe for analysis<br />

Ge/Si<br />

Si Dumb-Bell<br />

0.136 nm<br />

S<strong>TEM</strong> of Si [110]<br />

Advantage: HAADF S<strong>TEM</strong> image vs. HR<strong>TEM</strong><br />

<strong>NCLT</strong>: June-Aug. 2006


S<strong>TEM</strong>: EDS <strong>and</strong> EELS<br />

Spectrum: spot, line, area<br />

Spectrum imaging<br />

<strong>NCLT</strong>: June-Aug. 2006


Other <strong>TEM</strong> techniques<br />

• Lorentz <strong>microscopy</strong><br />

• Reflection electron <strong>microscopy</strong><br />

• <strong>Electron</strong> holography<br />

•Cryo-<strong>TEM</strong><br />

• In-situ <strong>TEM</strong><br />

• <strong>TEM</strong> tomography<br />

•…<br />

<strong>NCLT</strong>: June-Aug. 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!