11.07.2014 Views

Nanoscale Optical Properties ( ) ( )

Nanoscale Optical Properties ( ) ( )

Nanoscale Optical Properties ( ) ( )

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nanoscale</strong> <strong>Optical</strong> <strong>Properties</strong><br />

When we studied chemical synthesis of nanoparticles, we briefly<br />

discussed nanoscale optical properties:<br />

(1) Semiconductor nanoparticles: Quantum confinement led to<br />

an increase in the energy of optical absorption and emission.<br />

(2) Semiconductor nanowires: Anisotropic structure led to<br />

polarization dependence of optical properties.<br />

P. Mulvaney, et al., MRS Bulletin, 26, 1009 (2001).<br />

Department of Materials Science and Engineering, Northwestern University<br />

(3) Metal nanoparticles: Absorption and scattering of light was<br />

size dependent, leading to color changes in colloidal<br />

solutions.<br />

Department of Materials Science and Engineering, Northwestern University<br />

Localized Surface Plasmon Resonance (LSPR):<br />

collective excitation of the conduction electrons<br />

Nuclear framework<br />

of particle<br />

E-field<br />

Metal<br />

sphere<br />

Size-Dependent Extinction Spectra<br />

Mie theory (1908):<br />

2 3 3/2<br />

24π Na ε ⎡<br />

m<br />

ε ⎤<br />

i<br />

E ( λ ) =<br />

⎢<br />

2<br />

⎥<br />

2<br />

λ ln(10) ⎢⎣( ε<br />

r+ χε<br />

m)<br />

+ ε<br />

i ⎥⎦<br />

Charge cloud of<br />

conduction electrons<br />

e - cloud<br />

Plasmon excitation influences the absorption and<br />

scattering of light from the surfaces of metals.<br />

ε m<br />

ε r , ε i<br />

a<br />

E(λ) = Extinction spectrum = absorption + scattering<br />

χ = shape factor (2 for sphere, > 2 for spheroid)<br />

ε m = external dielectric constant<br />

ε r = real metal dielectric constant<br />

ε i = imaginary metal dielectric constant<br />

Courtesy of Professor Richard Van Duyne<br />

Department of Materials Science and Engineering, Northwestern University<br />

Courtesy of Professor Richard Van Duyne<br />

Department of Materials Science and Engineering, Northwestern University<br />

Size-Tunable Surface Plasmon Resonances<br />

Size-Tunable Surface Plasmon Resonances<br />

Normalized Extinction<br />

120 150 150 95 120 145 145 145 width<br />

42 70 62 48 46 59 55 50 height<br />

shape<br />

426 446 497 565 638 720 747 782 λ<br />

max<br />

Ag/mica<br />

400 500 600 700 800 900<br />

Wavelength (nm)<br />

T. R. Jensen, et al., J. Phys. Chem. B, 104, 10549 (2000).<br />

Department of Materials Science and Engineering, Northwestern University<br />

Calculated Electric Field:<br />

20 nm diameter Ag Sphere in vacuum<br />

Polarization<br />

Propagation<br />

Shape Dependence<br />

Department of Materials Science and Engineering, Northwestern University<br />

48<br />

42<br />

36<br />

30<br />

24<br />

18<br />

12<br />

6<br />

0<br />

Calculated Electric Field:<br />

100 nm Ag Triangle in vacuum<br />

Courtesy of Professor George Schatz<br />

1


Nanosphere Lithography<br />

Nanosphere Lithography Size and Spacing Control<br />

J. C. Hulteen, et al., J. Vac. Sci. Technol. A, 13, 1553 (1995).<br />

Department of Materials Science and Engineering, Northwestern University<br />

ip<br />

d ip<br />

d = 1/<br />

( )<br />

D<br />

3 D = 0.577 D<br />

D = 542 nm<br />

a = 126 nm ; d ip = 313 nm<br />

Examples:<br />

3⎛<br />

1 ⎞<br />

a = 3-1- D<br />

2<br />

⎜ ⎟<br />

⎝ 3 ⎠<br />

= 0.233D<br />

D = 400 nm<br />

a = 93 nm ; d ip = 231 nm<br />

Department of Materials Science and Engineering, Northwestern University<br />

a<br />

Nanosphere Lithography: Single Layer Mask<br />

Surface Confined AFM<br />

Released TEM<br />

95<br />

nm<br />

D = 542 nm<br />

a = 126 nm ; d ip = 313 nm<br />

D = 400 nm<br />

a = 93 nm ; d ip = 231 nm<br />

Department of Materials Science and Engineering, Northwestern University<br />

Department of Materials Science and Engineering, Northwestern University<br />

Size-Tunable Ag Nanoparticle Arrays<br />

SL<br />

DL<br />

D<br />

A<br />

A<br />

315 nm<br />

155 nm<br />

540 nm<br />

110 nm<br />

18 nm<br />

18 nm<br />

B<br />

B<br />

231 nm<br />

121 nm<br />

399 nm<br />

97 nm<br />

18 nm<br />

18 nm<br />

542 nm 401 nm 266 nm 165 nm<br />

Department of Materials Science and Engineering, Northwestern University<br />

C<br />

C<br />

153 nm<br />

78 nm<br />

267 nm<br />

64 nm<br />

18 nm<br />

18 nm<br />

D<br />

D<br />

93 nm<br />

42 nm<br />

163 nm<br />

30 nm<br />

10 nm<br />

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen,<br />

R. P. Van Duyne, J. Phys. Chem. B, 3854-3863 (1999).<br />

6 nm<br />

Advantages of Nanosphere Lithography<br />

• Massively Parallel: 10 10 nanostructures cm -2<br />

• Simple, inexpensive: < $1 / sample<br />

• High throughput: ~ 10 samples/day/person<br />

• Materials and substrate general<br />

• Minimum feature size is ~ 20 nm<br />

• 1 nm control of nanogaps<br />

• Precision control of nanoparticle size<br />

Department of Materials Science and Engineering, Northwestern University<br />

2


-1<br />

-1<br />

Disadvantages of Nanosphere Lithography<br />

No Arbitrary Patterns<br />

No independent control<br />

of in-plane size and spacing<br />

0.1 – 1% Defects from<br />

Nanosphere Polydispersity<br />

Line Defects<br />

Point Defects<br />

Polycrystalline<br />

Domains<br />

Department of Materials Science and Engineering, Northwestern University<br />

Localized Surface Plasmon Resonance<br />

Spectroscopy of Ag Nanoparticle Array<br />

Extinction<br />

λ max = 586 nm<br />

0.35 ev<br />

400 600<br />

Wavelength (nm)<br />

uv-vis Extinction<br />

PPA<br />

I 0<br />

I<br />

AFM image<br />

2.3 µ m<br />

a = 117 nm<br />

d<br />

ip<br />

= 230 nm<br />

b = 59 nm<br />

d<br />

tt<br />

= 91 nm<br />

Department of Materials Science and Engineering, Northwestern University<br />

800<br />

Jensen, T. R.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 1999, 2394-2401.<br />

Near and Mid-Infrared LSPR Spectra<br />

Extinction<br />

Extinction<br />

Wavelength (nm)<br />

600 800 1000 2000<br />

λ max=8888.8 cm -1<br />

max = 8889 cm -1 λ -1<br />

max = 2110 cm -1<br />

0.04 au<br />

16,000 12,000 8,000<br />

-1<br />

Wavenumber (cm )<br />

Wavelength (nm)<br />

600 800 1000 2000<br />

λλ max=7331 -1<br />

max = 7331 cm -1<br />

0.023 au<br />

16,000 12,000 8,000<br />

-1<br />

Wavenumber (cm )<br />

397 nm<br />

559 nm<br />

243 nm<br />

28 nm<br />

323 nm<br />

23 nm<br />

T. R. Jensen, et al., J. Phys. Chem. B, 104, 10549 (2000).<br />

Department of Materials Science and Engineering, Northwestern University<br />

A<br />

B<br />

Extinction<br />

Extinction<br />

3000<br />

3000<br />

Wavelength (nm)<br />

4000 6000 10,000<br />

0.1 au<br />

2000<br />

Wavenumber (cm )<br />

Wavelength (nm)<br />

4000 6000 10,000<br />

0.1 au<br />

λλ max = cm -1<br />

max = 1655 cm -1<br />

2000<br />

Wavenumber (cm )<br />

1000<br />

1000<br />

1555 nm<br />

1390 nm<br />

65 nm<br />

897 nm<br />

830 nm<br />

50 nm<br />

C<br />

D<br />

Extinction Efficiency<br />

Theory vs. Experiment : Effect of Substrate<br />

28 nm height PPA<br />

12<br />

0.28<br />

8<br />

4<br />

DDA<br />

no substrate<br />

DDA<br />

with substrate<br />

Ag<br />

mica<br />

0<br />

0.12<br />

400 500 600 700 800 900<br />

Wavelength (nm)<br />

Department of Materials Science and Engineering, Northwestern University<br />

0.24<br />

0.20<br />

0.16<br />

Measured Extinction<br />

New Stuctural Motifs for Nanosphere Lithography<br />

Angle Resolved Nanosphere Lithography<br />

Department of Materials Science and Engineering, Northwestern University<br />

C. L. Haynes, R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001).<br />

Department of Materials Science and Engineering, Northwestern University<br />

3


E-field Intensity<br />

E-field Intensity<br />

Angle Resolved Nanosphere Lithography<br />

LSPR (nm) vs. Interparticle Spacing (d )<br />

λ max<br />

tt<br />

680<br />

Weak Interparticle Coupling<br />

1 nm spacing<br />

is achievable<br />

experimentally<br />

LSPR (nm)<br />

λ max<br />

640<br />

600<br />

LSPR<br />

λ λ max max = 574 nm<br />

Theory:<br />

DDA<br />

Independent Nanoparticles<br />

AFM<br />

d<br />

tt<br />

= 114 nm<br />

C. L. Haynes, R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001).<br />

Department of Materials Science and Engineering, Northwestern University<br />

560<br />

0 40 80 120<br />

Interparticle Spacing, d tt (nm)<br />

T. R. Jensen, G. C. Schatz, R. P. Van Duyne, J. Phys. Chem. B, 103, 2394-2401 (1999).<br />

Department of Materials Science and Engineering, Northwestern University<br />

Electric Field Enhancement<br />

E<br />

k<br />

852 nm<br />

E<br />

k<br />

57,000<br />

653 nm<br />

2700<br />

Department of Materials Science and Engineering, Northwestern University<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!