10.07.2014 Views

Epotec - electrical and electronic applications - Aditya Birla Chemicals

Epotec - electrical and electronic applications - Aditya Birla Chemicals

Epotec - electrical and electronic applications - Aditya Birla Chemicals

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Electrical <strong>and</strong> Electronic<br />

<strong>Epotec</strong> ® Epoxy Systems<br />

®


Transcending the conventional barriers of business<br />

to send out a message that “We Care”<br />

The <strong>Aditya</strong> <strong>Birla</strong> Group<br />

A US $29.2 billion corporation, the <strong>Aditya</strong> <strong>Birla</strong><br />

Group is in the League of Fortune 500. It is<br />

anchored by an extraordinary force of 130,000<br />

employees, belonging to 30 different nationalities.<br />

In India, the Group has been adjudged “The Best<br />

Employer in India <strong>and</strong> among the top 20 in Asia” by<br />

the Hewitt-Economic Times <strong>and</strong> Wall Street Journal<br />

Study 2007. Over 60 per cent of its revenues flow<br />

from its overseas operations.<br />

The Group operates in 25 countries - India, UK,<br />

Germany, Hungary, Brazil, Italy, France,<br />

Luxembourg, Switzerl<strong>and</strong>, Australia, USA, Canada,<br />

Egypt, China, Thail<strong>and</strong>, Laos, Indonesia,<br />

Philippines, Dubai, Singapore, Myanmar,<br />

Bangladesh, Vietnam, Malaysia <strong>and</strong> Korea.<br />

A Global Perspective<br />

A metals powerhouse, among the world’s most<br />

cost-efficient aluminium <strong>and</strong> copper producers.<br />

Hindalco-Novelis is the largest aluminium rolling<br />

company. It is one of the 3 biggest producers of<br />

primary aluminium in Asia, with the largest single<br />

location copper smelter.<br />

No. 1 in viscose staple fibre.<br />

The 4 th largest producer of insulators.<br />

The 4 th largest producer of carbon black.<br />

The 11 th largest cement producer globally, the 7 th<br />

largest in Asia <strong>and</strong> the 2 nd largest in India.<br />

Among the world’s top 15 BPO companies <strong>and</strong><br />

among India’s top 4.<br />

Among the best energy efficient fertilizer plants.<br />

In India<br />

A premier br<strong>and</strong>ed garments player.<br />

The 2 nd largest player in viscose filament yarn.<br />

The 2 nd largest in the Chlor-alkali sector.<br />

Among the top 5 mobile telephony companies.<br />

A leading player in Life Insurance <strong>and</strong> Asset<br />

Management.<br />

Among the top 3 super-market chains in the Retail<br />

business.<br />

Beyond Business<br />

The <strong>Aditya</strong> <strong>Birla</strong> Group is working in 3,700 villages,<br />

reaching out to 7 million people annually through<br />

the <strong>Aditya</strong> <strong>Birla</strong> Centre for Community Initiatives <strong>and</strong><br />

Rural Development, spearheaded by Mrs.<br />

Rajashree <strong>Birla</strong>. The Group’s functions span 42<br />

schools <strong>and</strong> 18 hospitals, furthering its focus on<br />

health care, education, sustainable livelihood,<br />

infrastructure <strong>and</strong> social causes.<br />

For more information visit www.adityabirla.com<br />

2<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic


Our Company acts as a solution provider, formulating specialized<br />

Epoxy systems for your specific performance needs.<br />

<strong>Aditya</strong> <strong>Birla</strong> <strong>Chemicals</strong>, Epoxy Division<br />

Thai Epoxy <strong>and</strong> Allied Products Company Limited<br />

(Thai Epoxy), has recently been transformed to the<br />

Epoxy Division of <strong>Aditya</strong> <strong>Birla</strong> <strong>Chemicals</strong> (Thail<strong>and</strong>)<br />

Limited. It is part of the <strong>Aditya</strong> <strong>Birla</strong> Group of<br />

Companies. Being the pioneer manufacturer of<br />

epoxy resins in the ASEAN region, the Company<br />

constitutes its success on its Specialized Epoxy<br />

Systems <strong>and</strong> its complete in-house Research <strong>and</strong><br />

Application Development Center. Sustainability has<br />

also been achieved through its group-wide unique<br />

World Class Manufacturing (WCM) strategy for<br />

enterprise excellence.<br />

Located within the prestigious Map Tha Phut<br />

Industrial Estate at Rayong Province in Thail<strong>and</strong>, the<br />

Company started commercial production in 1992<br />

with technology from Tohto Kasei Company Limited,<br />

Japan’s largest producer of epoxy resins. The<br />

Company is currently accredited <strong>and</strong> certified with<br />

ISO 9001:2000 <strong>and</strong> ISO 14001 in recognition of its<br />

quality <strong>and</strong> environment management systems.<br />

The Company offers a wide range of epoxies <strong>and</strong><br />

modifiers that vary in chemical structure, molecular<br />

weight, viscosity <strong>and</strong> functionality. All products are<br />

marketed under the trade name of <strong>Epotec</strong> ® ,<br />

including liquid, solid, solutions, blends <strong>and</strong> other<br />

multifunctional epoxy resins. Epoxy Resin, a<br />

performance polymer, is a versatile resin which<br />

finds application in adhesives, civil engineering,<br />

composites, casting <strong>and</strong> encapsulation of <strong>electrical</strong><br />

components, <strong>and</strong> coatings including protective,<br />

marine, floor, powder, can <strong>and</strong> coil.<br />

The Company stretches its business arms in all six<br />

continents of the globe.<br />

Certified ISO 9001:2000 by<br />

Certified ISO 14001 by<br />

008 008<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic<br />

3


®<br />

Electrical <strong>and</strong> Electronic<br />

This booklet highlights the <strong>Epotec</strong> ® range<br />

of Epoxy Systems for Electrical <strong>and</strong><br />

Electronic Applications. These systems<br />

find end-use in the following components:<br />

Electrical Components<br />

Current Transformer<br />

Power Transformer<br />

Instrument Transformer<br />

Switchgear Component<br />

Insulators<br />

Bushing<br />

Electronic Components<br />

Power Semi-conductor<br />

Capacitors<br />

Inductive Components<br />

Ignition Coils<br />

Filter Circuits<br />

Proximity Switches<br />

Modules<br />

Relays<br />

Connectors<br />

Sensors<br />

Switch Mode Transformers<br />

From the beginning of the <strong>electrical</strong> <strong>and</strong> <strong>electronic</strong><br />

industry, critical circuit components have been<br />

coated, buried or otherwise encased in dielectric<br />

materials to isolate them from adverse<br />

environmental <strong>and</strong> operational effects such as<br />

oxygen, moisture, temperature, <strong>electrical</strong> flashers,<br />

current leakage, salt spay, radiation, solvent,<br />

chemicals, micro-organisms, mechanical shock<br />

<strong>and</strong> vibrations. The first materials used for this<br />

purpose were waxes <strong>and</strong> asphalted polymer.<br />

Although these substances are still used to some<br />

extent, synthetic polymers, such as epoxy resins,<br />

are now most widely used in <strong>electrical</strong><br />

encapsulation.<br />

The benefits <strong>and</strong> importance of epoxy resins have<br />

been recognized after World War II by the <strong>electrical</strong><br />

<strong>and</strong> <strong>electronic</strong> industries as a self-supporting<br />

insulating material. Our Company, since its<br />

inception, has given prime importance to this<br />

segment. As a result of intensive development work<br />

in close cooperation with our customers, our<br />

Company has compiled its present broad range of<br />

resins, curing agents <strong>and</strong> resin systems available to<br />

meet the wide variety of requirements stipulated in<br />

national <strong>and</strong> international st<strong>and</strong>ards.<br />

Our goal is to continue our focus on quality <strong>and</strong><br />

innovation thereby partnering the <strong>electrical</strong> <strong>and</strong><br />

<strong>electronic</strong> industry in their technical progress. It is<br />

part of our philosophy not only to safeguard high<br />

<strong>and</strong> consistent product quality, but also to support<br />

our customers with information <strong>and</strong> technical<br />

service when using our products. This intent is<br />

borne out of our activities including, our willingness<br />

to supply processing information literature <strong>and</strong><br />

other solutions to technical problems. Development<br />

of tailored systems for specific customer<br />

requirements is also part of our philosophy.<br />

Up-to-date Research & Development facility <strong>and</strong><br />

the services of an Application Development Center<br />

are available for product development <strong>and</strong> technical<br />

support to our customers.<br />

4<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic


Formulation<br />

<strong>Epotec</strong> ® Epoxy Systems offer ready to use<br />

formulated products, however, users may select<br />

appropriate filler, diluents, plasticizers, modifiers,<br />

<strong>and</strong> pigments according to their choice.<br />

Fillers are an important part of the formulation <strong>and</strong><br />

mixed about 2 to 3 times of epoxy resin. Due to<br />

high loading, fillers become an important<br />

component for <strong>electrical</strong> <strong>and</strong> <strong>electronic</strong><br />

manufacturers.<br />

Several common fillers are used to achieve the<br />

desired end properties. Single or combinations of<br />

fillers can be used with or without treatment. Fillers<br />

treated by silanes provide excellent wetting, low mix<br />

viscosity, strong bonding with matrix, <strong>and</strong> prevent<br />

sedimentation during long storage.<br />

Fillers modify the properties of the mix resulting<br />

in the following benefits:<br />

Reduced cost.<br />

Increased abrasion resistance.<br />

Increased rigidity <strong>and</strong> impact strength.<br />

Reduced shrinkage <strong>and</strong> water absorption.<br />

Increased heat deflection temperature.<br />

Modified <strong>electrical</strong> <strong>and</strong> thermal properties.<br />

Reduced flammability.<br />

Reduced flexural <strong>and</strong> tensile strength.<br />

Selection of Fillers<br />

Silica quartz<br />

Alumina trihydrate (ATH)<br />

Alumina<br />

Mica<br />

Calcium carbonate<br />

Hollow glass sphere<br />

Carbon black<br />

Metallic powder<br />

Common Properties<br />

High <strong>electrical</strong> properties.<br />

Fire retardant <strong>applications</strong>.<br />

Excellent abrasion resistance.<br />

High thermal resistance<br />

Common filler, high surface area <strong>and</strong> resin absorption.<br />

Light weight <strong>and</strong> good surface finish.<br />

High thermal stability <strong>and</strong> semi-conducting properties.<br />

Modification of <strong>electrical</strong> <strong>and</strong> thermal properties.<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic<br />

5


®<br />

Processes & Applications<br />

<strong>Epotec</strong> ® Epoxy Systems are best known for casting<br />

into molds, cavities, cores <strong>and</strong> patterns. They are<br />

also extensively used for encapsulation<br />

(encapsulation <strong>and</strong> embedment are frequently used<br />

inter-changeably), impregnation <strong>and</strong> protection of<br />

<strong>electrical</strong> <strong>and</strong> <strong>electronic</strong> assemblies <strong>and</strong><br />

components. Usually low-pressure-reacted resins<br />

are utilized <strong>and</strong> curing is performed at room<br />

temperature to elevated temperature, up to 200°C.<br />

Room temperature curing <strong>Epotec</strong> ® Systems are<br />

preferred for low voltage, small components, while<br />

heat-cured <strong>Epotec</strong> ® Systems offer extremely high<br />

physical, thermal <strong>and</strong> chemical resistance. As such,<br />

heat-cured <strong>Epotec</strong> ® Systems are used for medium<br />

<strong>and</strong> high voltage <strong>applications</strong>.<br />

There are few common process techniques for use<br />

of <strong>Epotec</strong> ® Epoxy Resins in <strong>electrical</strong> <strong>and</strong> <strong>electronic</strong><br />

components.<br />

Pottings<br />

Potting is a variation of casting in which the<br />

prefabricated mold, a thin shell of metal or plastic,<br />

becomes an integral part of the finished product.<br />

The resin is fluid enough to flow around the<br />

components being embedded <strong>and</strong> fills all voids,<br />

including the container. Potting is used frequently to<br />

reduce weight, avoid breakdown <strong>and</strong> prevent failure<br />

due to moisture <strong>and</strong> vibration in components.<br />

Encapsulation<br />

Encapsulation is a method of providing a protective<br />

coating on the inside of coils, closed-packed<br />

<strong>electronic</strong> assemblies <strong>and</strong> wire bundles. For<br />

saturation of components it is essential to select<br />

<strong>Epotec</strong> ® Resins of high flow <strong>and</strong> high wetting<br />

properties. The components finally are surrounded<br />

by a thin film of resin. Components encapsulated in<br />

this manner maintain high <strong>electrical</strong> insulation,<br />

excellent environmental protection against heat,<br />

moisture <strong>and</strong> chemicals, <strong>and</strong> also protect<br />

micro<strong>electronic</strong> assemblies with their fine interconnection.<br />

Impregnation<br />

Encapsulation is more of a coating process which<br />

allows minimum penetration of resin into compact<br />

assemblies, whereas impregnation is a process<br />

specifically designed to ensure that the liquid resin<br />

has completely entered into interstices of assembly<br />

prior to curing. Some transformer <strong>and</strong> <strong>electronic</strong><br />

equipment manufacture requires both encapsulation<br />

<strong>and</strong> impregnation.<br />

6<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic


Castings<br />

In this technique, a mold is prepared to give the proper dimensions to the finished part. The molds are designed<br />

to provide minimum internal stresses as the resin shrinks during curing. The resin, curing agent <strong>and</strong> fillers are<br />

mixed <strong>and</strong> poured slowly into the mold, preferably in a vacuum to avoid air entrapment. The entire assembly is<br />

then cured either at room temperature, by its own exothermic heat or in an oven. The part is then released from<br />

the mold. Castings technique is divided into the following subcategories:<br />

7<br />

4<br />

5<br />

6<br />

Vacuum Casting<br />

In this process, epoxy compound, including resin,<br />

curing agent <strong>and</strong> filler, are poured under gravity into<br />

steel molds under vacuum. Partially cured<br />

components are demolded <strong>and</strong> post curing is<br />

performed in oven.<br />

3 3 3<br />

7<br />

1 Autoclave<br />

2<br />

2 Static Mixer / Buffer Tank<br />

3 Dosing Pump<br />

4 Resin Tank<br />

8<br />

1<br />

5 Flexibilizer / Accelerator Tank<br />

6 Curing Agent Tank<br />

7 Vacuum Plant<br />

8 Control Panel<br />

6<br />

6<br />

4 5<br />

3 3<br />

Automation Pressure Gelation (APG) or Liquid<br />

Injection Molding (LIM)<br />

In this process, the liquid epoxy compound,<br />

premixed with fillers <strong>and</strong> additives, is directly<br />

pumped into a split mold which is v-mounted on a<br />

clamping machine. Only gelling step is allowed in<br />

the mold <strong>and</strong> final curing of component is<br />

performed in separate oven. This method allows to<br />

compensate for chemical shrinkage <strong>and</strong> is used<br />

extensively for mass production of insulating<br />

components for <strong>electrical</strong> industries.<br />

7 1<br />

1<br />

2 2<br />

1 APG Clamping Unit<br />

2 Static Mixer<br />

3 Dosing Unit<br />

4 Resin Mixing Tank<br />

5 Curing Agent Mixing Tank<br />

6 Vacuum Plant<br />

7 Control Panel<br />

NOTE: The above diagrams only demonstrate a simple representation<br />

of the associated processes. This is only for a purpose of reference,<br />

<strong>and</strong> may not be accurate in terms of details <strong>and</strong> scaling.<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic<br />

7


®<br />

Typical Properties of <strong>Epotec</strong> ® Epoxy Systems for Electrical <strong>and</strong> Electronic Applications<br />

TABLE 1.0 Electrical <strong>and</strong> Electronic Applications<br />

EPOTEC ® SYSTEMS<br />

UNIT<br />

Resin<br />

100 pbw 1<br />

YDC 6001<br />

YDC 6002<br />

YDC 6004<br />

YDC 6015<br />

YDC 6003<br />

YDC 6003<br />

YDC 6030<br />

YDC 6006<br />

YDH 184<br />

YDH 184<br />

YDH 184M1<br />

YDC 6020i<br />

YDC 6029<br />

YDC 6018<br />

Curing Agent<br />

pbw 1<br />

TH 7656 / 30<br />

TH 7656 / 30<br />

TH 7657 / 100<br />

TH 7652 P1 / 80<br />

TH 7658 / 80<br />

TH 7662 / 80<br />

TH 7670 / 82<br />

TH 7269 / 9 - 10<br />

TH 7351 / 90<br />

TH 7356 / 90<br />

TH 7356P / 80<br />

TH 7652i / 32<br />

TH 7668 / 30<br />

TH 8251 / 18<br />

Accelerator<br />

pbw 1<br />

-<br />

-<br />

TA 7852 / 1<br />

-<br />

-<br />

-<br />

TA 7854 / 0.5 - 2<br />

-<br />

TA 7851 / 0.5 - 3<br />

TA 7851 / 0.5 - 2<br />

-<br />

TA 7851 / 1.5<br />

-<br />

-<br />

Flexibilizer<br />

pbw 1<br />

-<br />

-<br />

TP 01 / 10<br />

TP 01 / 0 - 8<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

Filler (silica flour 300 mesh)<br />

pbw 1<br />

200<br />

200<br />

400<br />

320 - 350<br />

270<br />

270<br />

270<br />

150<br />

300<br />

270<br />

270<br />

Prefilled<br />

Prefilled<br />

Prefilled<br />

Filler loading (pbw 1 filler)<br />

%<br />

61<br />

61<br />

65<br />

65<br />

60<br />

60<br />

60<br />

58<br />

61<br />

61<br />

61<br />

-<br />

-<br />

-<br />

Curing condition<br />

Hot Cure<br />

Hot Cure<br />

Hot Cure<br />

Hot Cure<br />

Hot Cure<br />

Hot Cure<br />

Hot Cure<br />

Ambient Cure<br />

Hot Cure<br />

Hot Cure<br />

Hot Cure<br />

Hot Cure<br />

Hot Cure<br />

Ambient Cure<br />

Processing technique<br />

CVC<br />

CVC<br />

CVC<br />

CVC, PG, APG<br />

CVC, PG, APG<br />

CVC, PG, APG<br />

CVC, APG<br />

CVC<br />

CVC, PG, APG<br />

CVC, PG, APG<br />

CVC, PG, APG<br />

CVC<br />

CVC<br />

CVC<br />

Processing temperature<br />

˚C<br />

120 - 140<br />

120 - 140<br />

Ambient - 80<br />

Ambient - 80<br />

Ambient - 80<br />

Ambient - 80<br />

60 - 80<br />

Ambient<br />

40 - 80<br />

40 - 80<br />

40 - 80<br />

60 - 80<br />

60 - 80<br />

RT<br />

Initial viscosity of mix<br />

mPa s/˚C<br />

1,900 / 120<br />

500 / 140<br />

-<br />

-<br />

4,000 / 120<br />

2,500 / 140<br />

-<br />

-<br />

1,500 / 80<br />

-<br />

-<br />

-<br />

10,000 / 60<br />

1,500 / 80<br />

-<br />

-<br />

40,000 / 40<br />

1,000 / 80<br />

-<br />

-<br />

70,000 / 40<br />

1,500 / 80<br />

-<br />

-<br />

1,700 / 60<br />

-<br />

-<br />

-<br />

8,500 / 25<br />

-<br />

-<br />

-<br />

1,000 / 80<br />

-<br />

-<br />

-<br />

100 / 80<br />

-<br />

-<br />

-<br />

6,400 / 25<br />

3,000 / 40<br />

700 / 60<br />

-<br />

700 - 900 / 25<br />

-<br />

-<br />

-<br />

2,500 - 3,500 / 25<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

Pot life of mix (< 5kg)<br />

h/˚C<br />

6 / 120<br />

1 / 120<br />

14 / 40<br />

24 - 48 / 25<br />

15 / 40<br />

15 / 40<br />

24 - 48 / 25<br />

0.5 / 25<br />

1 / 80<br />

4 / 60<br />

4 / 60<br />

24 - 36 / 25<br />

24 - 36 / 25<br />

0.5 / 25<br />

-<br />

0.5 / 140<br />

1.5 / 80<br />

-<br />

2 / 80<br />

2 / 80<br />

-<br />

(100g mix)<br />

-<br />

1 / 80<br />

1 / 80<br />

-<br />

-<br />

-<br />

Gel time<br />

min/˚C<br />

780 / 110<br />

330 / 130<br />

150 / 150<br />

160 / 120<br />

60 / 140<br />

-<br />

100 / 80<br />

35 / 100<br />

15 / 120<br />

20 / 120<br />

-<br />

-<br />

285 / 80<br />

14 / 120<br />

8 / 140<br />

270 / 80<br />

15 / 120<br />

8 / 140<br />

80 - 90 / 120<br />

25 - 30 / 140<br />

-<br />

-<br />

-<br />

-<br />

4 / 140<br />

3 / 150<br />

2 / 160<br />

4 / 140<br />

3 / 150<br />

2 / 160<br />

11 / 120<br />

5 / 140<br />

-<br />

40 / 80<br />

4 / 120<br />

-<br />

115 - 150 / 80<br />

30 - 40 / 100<br />

-<br />

-<br />

-<br />

-<br />

Minimum cure time<br />

h/˚C<br />

16 / 140<br />

14 / 140<br />

3 / 120<br />

10 / 140<br />

6 / 80 + 10 / 130<br />

6 / 80 + 10 / 130<br />

6 / 80 + 10 / 130<br />

6 / 80<br />

6 / 80 + 10 / 140<br />

6 / 80 + 10 / 140<br />

6 / 80 + 10 / 140<br />

4 / 80 + 2 / 130<br />

4 / 80 + 2 / 130<br />

24 / RT<br />

Minimum postcure time<br />

h/˚C<br />

-<br />

-<br />

-<br />

-<br />

6 / 140<br />

6 / 140<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

NOTE: CVC - Conventional Vacuum Casting, PG - Pressure Gelation, APG - Automatic Pressure Gelation<br />

1 Part by weight (pbw)<br />

PROPERTIES OF CASTING<br />

METHOD<br />

UNIT<br />

Tensile strength<br />

ISO 527<br />

N/mm 2<br />

85 - 95<br />

80 - 100<br />

70 - 80<br />

75 - 85<br />

70 - 80<br />

75 - 85<br />

75 - 85<br />

35 - 45<br />

90 - 100<br />

90 - 100<br />

70 - 90<br />

40 - 60<br />

30 - 50<br />

5 - 10<br />

Elongation at break<br />

ISO 527<br />

%<br />

1.1 - 1.5<br />

1.0 - 1.5<br />

0.8 - 1.2<br />

1.1 - 1.3<br />

1.0 - 1.5<br />

1 - 2<br />

1 - 2<br />

2 - 4<br />

1.7 - 1.9<br />

1.7 - 1.9<br />

1.3 - 1.5<br />

-<br />

-<br />

1.5<br />

Flexural strength<br />

ISO 178<br />

N/mm 2<br />

135 - 145<br />

130 - 150<br />

115 - 125<br />

135 - 155<br />

110 - 130<br />

110 - 120<br />

110 - 140<br />

90 - 100<br />

150 - 165<br />

150 - 165<br />

150 - 170<br />

70 - 90<br />

70 - 90<br />

15 - 20<br />

Impact strength<br />

ISO / R 179<br />

kJ/mm 2<br />

15 - 22<br />

15 - 22<br />

10 - 15<br />

-<br />

7 - 10<br />

11 - 13<br />

10 - 15<br />

7 - 10<br />

8 - 9<br />

8 - 9<br />

-<br />

8 - 11<br />

8-11<br />

-<br />

Elastic modulus in tension<br />

ISO / R 527<br />

N/mm 2<br />

10,000 - 11,000<br />

12,000 - 14,000<br />

12,000 - 14,000<br />

-<br />

9,000 - 11,000<br />

9,000 - 11,000<br />

10,000 - 12,000<br />

15,500 - 16,000<br />

10,000 - 11,000<br />

10,000 - 11,000<br />

10,500 - 12,000<br />

-<br />

-<br />

1400 - 1800<br />

Deflection temperature (HDT)<br />

ISO / R 75<br />

˚C<br />

110 - 120<br />

110 - 120<br />

80 - 90<br />

100 - 110<br />

105 - 120<br />

95 - 105<br />

80 - 90<br />

65 - 70<br />

95 - 105<br />

95 - 110<br />

72 - 80<br />

75 - 85<br />

85 - 95<br />

55 - 65<br />

Glass transition point<br />

DSC<br />

˚C<br />

115<br />

115<br />

90 - 100<br />

100 - 110<br />

110 - 125<br />

100 - 110<br />

85 - 95<br />

55 - 65<br />

100 - 110<br />

100 - 110<br />

75 - 80<br />

75 - 90<br />

90 - 105<br />

60 - 70<br />

Water absorption 1 (23˚C / 10 days)<br />

ISO / R 62<br />

% w/w<br />

0.15 - 0.25<br />

0.15 - 0.25<br />

0.1 - 0.2<br />

-<br />

0.10 - 0.15<br />

0.1 - 0.2<br />

0.1 - 0.2<br />

0.4<br />

0.1 - 0.2<br />

0.1 - 0.2<br />

0.1 - 0.2<br />

< 0.15<br />

< 0.15<br />

0.2 - 0.4 (24 hrs)<br />

Tan d at 50 Hz (23˚C)<br />

IEC 60250<br />

%<br />

1.5<br />

2 - 3<br />

2 - 3<br />

2 - 3<br />

2.5<br />

3<br />

2 - 3<br />

0.32 - 0.37<br />

2<br />

2<br />

2<br />

2 - 3<br />

2 - 3<br />

1 - 2<br />

Arc resistance<br />

ASTM D-495<br />

sec<br />

180 - 190<br />

185 - 190<br />

185 - 195<br />

180 - 190<br />

182 - 186<br />

182 - 186<br />

180 - 190<br />

180<br />

185 - 190<br />

185 - 190<br />

185 - 190<br />

180 - 190<br />

180 - 190<br />

-<br />

Tracking resistance (CTI)<br />

IEC 60112<br />

V<br />

> 400<br />

> 400<br />

> 600<br />

> 600<br />

> 600<br />

> 600<br />

> 600<br />

400<br />

> 600<br />

> 600<br />

> 600<br />

> 600<br />

> 600<br />

> 600<br />

Electrical strength 2 (23˚C / 50 Hz)<br />

IEC 60243 - 1<br />

kV/mm<br />

22 - 24<br />

22 - 25<br />

18 - 22<br />

17 - 21<br />

18 - 20<br />

18 - 20<br />

18 - 22<br />

18 - 22<br />

19 - 21<br />

19 - 22<br />

6 - 10<br />

17 - 20<br />

> 20<br />

6 - 8<br />

1 60 x 10 x 4 mm test specimens, 2 20 seconds value for 2 mm sheet<br />

8<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic<br />

10


Important Considerations for <strong>Epotec</strong> ® Resins<br />

The epoxy casting resins, generally, are liquids at processing temperature when combined with the curing<br />

agents. The mixture is cured at room or elevated temperature to the thermoset state. There are a number of<br />

common considerations involved in achieving good, solid, crack-free, bubble-free castings. These include:<br />

Exotherm<br />

Exotherm is the increase in temperature of<br />

compound above the cure temperature due to<br />

energies released as the epoxy group reacts. For<br />

fast resins it is quite possible for the center of a<br />

casting to generate bubbling due to vapor pressure,<br />

<strong>and</strong> which lead to char <strong>and</strong> explodes in extreme<br />

conditions.<br />

Reactivity<br />

Reactivity of epoxy resins while curing ideally obeys<br />

Arrhenius’ law which in effect states “For every 10°C<br />

rise in temperature, the reaction rate doubles”.<br />

Hence, if a compound will gel in 30 minutes at room<br />

temperature of 25°C then if warmed to 35°C, it will<br />

gel in approximately 15 minutes; at 45°C, in 7½<br />

minutes. Thus when heat is used as a means of<br />

achieving low viscosity, reactivity becomes an<br />

opposing factor.<br />

Shrinkage<br />

Shrinkage is the reduction in volume or in linear<br />

dimensions observed during cure. Shrinkage<br />

induces stresses which can damage pressure<br />

sensitive inserts or which can lead to crack under<br />

thermal cycling.<br />

Thermal Expansion<br />

Thermal expansion characteristics are the function<br />

of epoxy resin, curing agent, modifiers, <strong>and</strong> fillers<br />

present in formulation. In general, the more highly<br />

flexibilized the compound, the higher the expansion<br />

rate; the more highly filled the lower the expansion<br />

rate. Ideally the expansion rate of the resin should<br />

be matched to those of the inserts present or should<br />

provide an intermediate value in the case of different<br />

expansion rate of the inserts.<br />

Thermal Shock<br />

Thermal shock is a severe problem with rigid epoxy<br />

resin system. The problem is magnified when higher<br />

temperature operation is required, in so far as many<br />

flexible systems are inherently unsuited for<br />

this service because of relatively poor thermal<br />

stability. To obtain satisfactory thermal shock<br />

resistance for severe thermal cycling, sophistication<br />

in the formulation is required. Initial stresses caused<br />

by shrinkage <strong>and</strong> cure temperature should be<br />

minimized. Reversible stresses caused by the<br />

expansion characteristics of the compound should<br />

be reduced to the level of practical.<br />

Thermal Stability<br />

Thermal stability indicates the ability of the resin to<br />

serve at elevated temperature <strong>and</strong> maintain<br />

minimum specified properties. With elevated<br />

temperature aging there is generally a progressive<br />

loss of strength <strong>and</strong> an overall reduction in<br />

properties. Often there is progressive embrittlement<br />

because of loss of volatile fragments <strong>and</strong> increased<br />

cross-linking. As temperature is further increased<br />

surface charing will occur, followed by cracking <strong>and</strong><br />

decomposition.<br />

Vapor Pressure<br />

The temperature at which the vapor pressure<br />

equals the surrounding or atmospheric pressure,<br />

the boundary between the gas <strong>and</strong> liquid<br />

disappears <strong>and</strong> the substance boils. If epoxy<br />

compound becomes too hot, this may lead to<br />

generation of gas bubbles trapped in the cured<br />

structure.<br />

Viscosity<br />

The viscosity of resin controls the quantity of filler<br />

<strong>and</strong> determines the viscosity of formulated<br />

compound. In order to assist removal of air bubbles<br />

from compound <strong>and</strong> to obtain a desired, void-free<br />

structure, it is often desirable to have low viscosity<br />

at processing temperature.<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic<br />

11


Glossary<br />

Arc Resistance<br />

The ability of a material to resist the<br />

action of high voltage <strong>electrical</strong>s are<br />

usually stated in terms of the time<br />

required to render the material<br />

<strong>electrical</strong>ly conductive. Failure of the<br />

specimen may be caused by<br />

heating to inc<strong>and</strong>escence, burning,<br />

tracking or carbonization of the<br />

surface.<br />

Coefficient of Thermal Expansion<br />

The fractional change in length (or<br />

sometimes in volume, when<br />

specified) of a material for a unit<br />

change in temperature.<br />

Deflection Temperature under<br />

Load<br />

The temperature at which a simple<br />

beam has deflected a given amount<br />

under load (formerly called heat<br />

distortion temperature). This is the<br />

temperature at which a specimen<br />

deflects 0.010 inches at a load of 66<br />

or 264 psi.<br />

Dielectric Constant (Permittivity)<br />

That property of a dielectric which<br />

determines the electrostatic energy<br />

stored per unit volume for unit<br />

potential.<br />

The ratio of the capacity of<br />

condenser having a diele.ctric<br />

material between the plates to that<br />

of the same condenser when the<br />

dielectric is replaced by vacuum.<br />

Also known as specific inductive<br />

capacity, it is expressed as:<br />

Partial Discharge (PD)<br />

Partial discharge is a phenomenon<br />

which occurs on or inside the test<br />

body when an alternative voltage of<br />

a critical level is set up or<br />

exceeded. It can be explained by<br />

the gaseous gaps (very fine pores,<br />

irregularities). The effect of internal<br />

partial discharges are particularity<br />

damaging <strong>and</strong> may shorten the<br />

service life of the insulation.<br />

Thermal Conductivity<br />

The measure of the ability of a<br />

material to conduct heat. For a<br />

homogenous material it is the ideal<br />

rate of heat flow, under steady<br />

conditions, through unit area, per<br />

unit temperature gradient in the<br />

direction perpendicular to the area.<br />

Thermal Shock<br />

The stress-producing phenomenon<br />

resulting from a sudden<br />

temperature drop.<br />

Thermal Stability<br />

The resistance to permanent<br />

change in properties caused solely<br />

by heat.<br />

Tracking Resistance<br />

Resistance of solid insulation<br />

materials against combined effect<br />

of <strong>electrical</strong> stress <strong>and</strong> electrolytic<br />

contamination. This is also known<br />

as comparative tracking index.<br />

E =<br />

Cp<br />

Co<br />

=<br />

Q<br />

CoV<br />

Dissipation Factor<br />

The ratio of the power loss in a<br />

dielectric material to the total power<br />

transmitted through the dielectric.<br />

Glass Transition Temperature (Tg)<br />

The temperature at which the<br />

amorphous polymer changes from a<br />

glass-like brittle state to rubbery<br />

state.<br />

12<br />

<strong>Epotec</strong> ® Epoxy Systems | Electrical <strong>and</strong> Electronic


®<br />

Disclaimer<br />

This brochure is designed to provide you with information to the <strong>Epotec</strong> ® range of Products referred to, <strong>and</strong> should be read in<br />

conjunction with the latest Technical Data Sheets (TDS) <strong>and</strong> Material Safety Data Sheets (MSDS), <strong>and</strong> may not be construed<br />

as legally binding. Nothing contained herein constitutes an offer for the sale of any product. The Company makes no<br />

warranties, either expressed or implied, with respect to its product or the results of its use, or with respect to any information<br />

provided by the Company.<br />

Because of changes in conditions <strong>and</strong> circumstances the Company reserves the right, subject to all applicable laws, at any<br />

time, at its discretion, <strong>and</strong> without notice, to discontinue or change the specifications <strong>and</strong> the prices of their products, <strong>and</strong> to<br />

either permanently or temporarily withdraw any such products from the market without incurring any liability to any prospective<br />

purchaser or purchaser. It is the sole responsibility of the user to test our products for suitability in the intended use. Always<br />

consult an authorized <strong>Epotec</strong> ® representative for the latest information with respect to specifications, prices, <strong>and</strong> availability.<br />

Material Safety, H<strong>and</strong>ling <strong>and</strong> Storage Conditions<br />

Due to variety of materials used in epoxy systems, please consult <strong>Epotec</strong> ® Technical Data Sheets (TDS) <strong>and</strong> Material Safety<br />

Data Sheets (MSDS). TDS <strong>and</strong> MSDS are available for all <strong>Epotec</strong> ® products upon request. Alternatively, visit www.epotec.info<br />

for detailed material safety, h<strong>and</strong>ling, <strong>and</strong> storage conditions.


02<br />

Epoxy Division<br />

<strong>Aditya</strong> <strong>Birla</strong> <strong>Chemicals</strong> (Thail<strong>and</strong>) Limited<br />

Electrical <strong>and</strong> Electronic<br />

<strong>Epotec</strong> ® Epoxy Systems<br />

®<br />

Electrical<br />

<strong>and</strong> Electronic<br />

<strong>Epotec</strong> ® Epoxy Systems<br />

www.epotec.info<br />

www.adityabirlachemicals.com<br />

Bangkok Office<br />

888/160-161, 16th Floor, Mahatun Plaza Building,<br />

Ploenchit Road, Bangkok 10330, Thail<strong>and</strong>.<br />

Tel. (66 2) 253 5031-3<br />

Fax. (66 2) 253 5030<br />

Email. info@epotec.info<br />

Rayong Plant<br />

Map Tha Phut Industrial Estate, No. 2, I-5 Road,<br />

A. Muang, Rayong 21150, Thail<strong>and</strong>.<br />

Tel. (66 38) 685 233-4<br />

Fax. (66 38) 683 982<br />

The Company endeavors to ensure all information is correct at the time of printing.<br />

Information in this document ‘<strong>Epotec</strong>® Epoxy Systems - Electrical <strong>and</strong> Electronic’ is subject<br />

to change without notice.<br />

© Copyright 2010. <strong>Aditya</strong> <strong>Birla</strong> <strong>Chemicals</strong> (Thail<strong>and</strong>) Limited. <strong>Epotec</strong>® is a registered<br />

trademark of <strong>Aditya</strong> <strong>Birla</strong> <strong>Chemicals</strong> (Thail<strong>and</strong>) Limited. All trademarks, trade names, service<br />

marks <strong>and</strong> logos referenced herein belong to their respective companies. All rights reserved.<br />

02-0410

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!