08.07.2014 Views

A novel cis-chelated Pd(II)–NHC complex for catalyzing Suzuki and ...

A novel cis-chelated Pd(II)–NHC complex for catalyzing Suzuki and ...

A novel cis-chelated Pd(II)–NHC complex for catalyzing Suzuki and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Tetrahedron 61 (2005) 11225–11229<br />

A <strong>novel</strong> <strong>cis</strong>-<strong>chelated</strong> <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong> <strong>for</strong> <strong>catalyzing</strong> <strong>Suzuki</strong><br />

<strong>and</strong> Heck-type cross-coupling reactions<br />

Qin Xu, a Wei-Liang Duan, b Zhi-Yu Lei, a Zhi-Bin Zhu a <strong>and</strong> Min Shi a, *<br />

a East China University of Science <strong>and</strong> Technology, 130 MeiLong Lu, Shanghai 200237, China<br />

b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,<br />

354 Fenglin Lu, Shanghai 200032, China<br />

Received 22 July 2005; revised 1 September 2005; accepted 5 September 2005<br />

Available online 23 September 2005<br />

Abstract—A <strong>novel</strong> <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong>, which has a ‘normal’ <strong>cis</strong>-chelating, bidentate structure is fairly effective in <strong>Suzuki</strong> <strong>and</strong> Heck-type<br />

cross-coupling reaction to give the products in good to excellent yields in most cases.<br />

q 2005 Elsevier Ltd. All rights reserved.<br />

1. Introduction<br />

In 1968, Öfele <strong>and</strong> Wanzlick concurrently prepared the first<br />

described metal <strong>complex</strong>es of N-heterocyclic carbenes<br />

(NHC). 1 However, these reports received little attention<br />

until Arduengo <strong>II</strong>I synthesized stable free carbenes. 2<br />

Herrmann’s group further exp<strong>and</strong>ed this field by preparing<br />

numerous NHCs <strong>and</strong> their metal <strong>complex</strong>es, <strong>and</strong> applying<br />

these <strong>complex</strong>es in homogeneous catalysis. 3 Recently,<br />

numerous papers concerning this topic have appeared, <strong>and</strong> Scheme 1. Preparation of a <strong>novel</strong> <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong>.<br />

<strong>complex</strong>es of NHCs have been applied as catalysts in a<br />

broad range of reactions. Significantly, a number of <strong>Pd</strong>– either under reflux in THF or by treatment with a base such<br />

NHC <strong>complex</strong>es have emerged as effective catalysts <strong>for</strong> a as potassium tert-butoxide in THF af<strong>for</strong>ds the desired<br />

variety of coupling reaction. 4,5<br />

<strong>complex</strong> 2 in 77 <strong>and</strong> 70% yields, respectively. Its crystal<br />

structure was determined by X-ray diffraction (Fig. 1). 7,8<br />

Previously, we reported the synthesis of a <strong>novel</strong> axially<br />

chiral Rh(<strong>II</strong>I)<strong>–NHC</strong> <strong>complex</strong> derived from binaphthyl-2,2 0 - Structural features. The single crystals of this <strong>complex</strong><br />

diamine (BINAM) <strong>and</strong> its application in the enantioselective<br />

hydrosilylation of methyl ketones. 5 In this paper, from dichloromethane/petroleum ether 1:2 solution. This is<br />

suitable <strong>for</strong> X-ray crystal structure analysis were grown<br />

we wish to report the synthesis of a <strong>novel</strong> <strong>cis</strong>-chelating, a NHC <strong>cis</strong>-chelating, bidentate <strong>Pd</strong>(<strong>II</strong>) <strong>complex</strong>. The bite<br />

<strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong> <strong>and</strong> the application in the <strong>Suzuki</strong> <strong>and</strong> angle of C–<strong>Pd</strong>–C is slightly more than 908 (94.48). The bond<br />

Heck-type cross-coupling reaction. 6<br />

length of C–<strong>Pd</strong> is 1.981(10)–1.982(9) Å, which is slightly<br />

contracted in comparison to those in the Herrmann’s<br />

diiodide <strong>complex</strong>es. 3e,f The bond length of the <strong>Pd</strong>–I bond<br />

2. Results <strong>and</strong> discussion<br />

trans to the carbene is 2.6617(10)–2.6658(10) Å <strong>and</strong> the bite<br />

angle of <strong>Pd</strong>–I–<strong>Pd</strong> is slightly more than 908 [94.87(4)8],<br />

The synthesis of the <strong>novel</strong> <strong>cis</strong>-<strong>chelated</strong>, <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong><br />

which is resulted from the different steric effects of the<br />

<strong>complex</strong> 2 is shown in Scheme 1. Reaction of dibenzimidazolium<br />

iodide (NHC precursor) 1 5 terminal iodine atom <strong>and</strong> the NHC lig<strong>and</strong>.<br />

with <strong>Pd</strong>(OAc) 2<br />

Keywords: <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong>; <strong>Suzuki</strong>–Miyaura cross-coupling<br />

reaction; Heck reaction.<br />

* Corresponding author. Fax: C86 21 64166128;<br />

e-mail: mshi@pub.sioc.ac.cn<br />

0040–4020/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.tet.2005.09.010<br />

The use of 2 as a catalyst <strong>for</strong> <strong>Suzuki</strong> cross-coupling<br />

reactions was examined where both solvent <strong>and</strong> base effects<br />

were carefully examined in the reaction of phenylboronic<br />

acid with bromobenzene under ambient atmosphere. The


11226<br />

Q. Xu et al. / Tetrahedron 61 (2005) 11225–11229<br />

with Cs 2 CO 3 gave 3a in 98% yield after 24 h (Table 2, entry<br />

1). Thus, DMA is the solvent of choice <strong>and</strong> Cs 2 CO 3 is the<br />

preferred base <strong>for</strong> this reaction. Using these optimized<br />

reaction conditions, the <strong>Suzuki</strong> cross-coupling reactions of a<br />

variety of aryl halides, including aryl bromides, aryl<br />

chlorides <strong>and</strong> iodobenzene, with phenylboronic acid were<br />

examined. The results are summarized in Table 3. As can be<br />

seen, aryl bromides <strong>and</strong> iodobenzene af<strong>for</strong>ded coupling<br />

products 3 in 75–99% yield under ambient atmosphere<br />

(Table 3, entries 1–6 <strong>and</strong> 9). Aryl chlorides af<strong>for</strong>ded<br />

moderate yields of the coupling products 3 (Table 3, entries<br />

7 <strong>and</strong> 8). Under argon atmosphere, the isolated yields of 3a<br />

<strong>and</strong> 3d from chlorobenzene <strong>and</strong> 4-chloroacetophenone with<br />

phenylboronic acid could reach 54 <strong>and</strong> 80%, respectively<br />

(Table 3, entries 7 <strong>and</strong> 8). This is because aryl chlorides<br />

involved in a slower oxidative addition with <strong>Pd</strong>(0)–carbene<br />

<strong>complex</strong> might be more reactive under argon atmosphere,<br />

which increases the probability to have a <strong>Pd</strong>(0) <strong>complex</strong><br />

rather than an unreactive <strong>Pd</strong>(<strong>II</strong>) <strong>complex</strong>.<br />

Table 3. <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong> 2 catalyzed <strong>Suzuki</strong> coupling reaction<br />

between phenylbronic acid (1.2 mmol) <strong>and</strong> arylhalides (1.0 mmol) under<br />

optimized conditions<br />

Figure 1. The ORTEP draw of <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong> 2.<br />

results are summarized in Tables 1 <strong>and</strong> 2, respectively. We<br />

found that using Cs 2 CO 3 as the base in N,N-dimethylacetamide<br />

(DMA) or THF at 80 8C gave the coupled product<br />

3a in 66 <strong>and</strong> 70% yield, respectively (Table 1, entries 6 <strong>and</strong><br />

8). Increasing the reaction temperature to 100 8C in DMA<br />

Table 1. <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong> 2 catalyzed <strong>Suzuki</strong> coupling reaction<br />

between phenylboronic acid (1.2 mmol) with bromobenzene (1.0 mmol) in<br />

various solvents<br />

Entry Solvent Time (h) Yield (%) 3a a<br />

1 1,4-Dioxane 24 40<br />

2 DMSO 24 14<br />

3 DMF 24 36<br />

4 CH 2 ClCH 2 Cl 24 22<br />

5 DME 24 65<br />

6 DMA 24 66<br />

7 CH 3 CN 24 40<br />

8 THF 24 70<br />

a Isolated yields.<br />

Entry X R Time (h) Yield (%) 3 a<br />

1 Br o-Me 24 3b, 95<br />

2 Br p-Me 24 3c, 75<br />

3 Br p-COMe 24 3d, 90<br />

4 Br p-OMe 24 3e, 86<br />

5 Br o-Cl 24 3f, 95<br />

6 Br 3,5-Me,Me 24 3g, 89<br />

7 Cl H 24 3a, 40 (54) b<br />

8 Cl p-COMe 24 3d, 45 (80) b<br />

9 I H 24 3a, 99<br />

a Isolated yields.<br />

b Isolated yield under argon atmosphere.<br />

Heck coupling reactions were also examined in DMA by the<br />

reaction of bromobenzene with butyl acrylate in the<br />

presence of various bases (Table 4, entries 1–7). We<br />

found that KF af<strong>for</strong>ded the best results <strong>for</strong> this reaction <strong>and</strong><br />

offered the coupling product 4a in 53% under ambient<br />

Table 4. <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong> 2 catalyzed Heck coupling of bromobenzene<br />

with n-butyl acrylate under ambient or argon atmosphere<br />

Table 2. <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong> 2 catalyzed <strong>Suzuki</strong> coupling reaction<br />

between phenylboronic acid (1.2 mmol) with bromobenzene (1.0 mmol) in<br />

the presence of various bases<br />

Entry Base Time (h) Yield (%) 3a a<br />

1 CS 2 CO 3 24 98<br />

2 Na 2 CO 3 24 56<br />

3 K 2 CO 3 24 67<br />

4 KF 24 85<br />

5 K 3 PO 4 $3H 2 O 24 77<br />

6 KOBu t 24 6<br />

a Isolated yields.<br />

Entry Base Time (h) Yield (%) 4a a<br />

1 Na 2 CO 3 30 38<br />

2 K 2 CO 3 30 40<br />

3 KF 30 53 (98) b<br />

4 K 3 PO 4 $3H 2 O 30 31<br />

5 NaOAc 30 9<br />

6 KOBu t 30 Trace<br />

7 NaOAc c 30 48<br />

a Isolated yields.<br />

b Under argon atmosphere.<br />

c Bu 4 NBr (0.2 mmol) was added to the reaction solution.


Q. Xu et al. / Tetrahedron 61 (2005) 11225–11229 11227<br />

Table 5. <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong> 2 catalyzed Heck coupling of aryl halides with butyl acrylate under argon atmosphere<br />

Entry X R R 0 Time (h) Yield (%) 4 a<br />

1 Br o-Me n-Bu 30 4b, 86<br />

2 Br p-Me n-Bu 30 4c, 84<br />

3 Br p-COMe n-Bu 30 4d, 99<br />

4 Br p-OMe n-Bu 30 4e, 28<br />

5 Br o-Cl n-Bu 30 4f, 90<br />

6 Br 3,5-Me,Me n-Bu 30 4g, 70<br />

7 Br H n-Bu 30 4a, 98<br />

8 Cl p-COMe n-Bu 30 4d, 50<br />

9 Br H Me 30 4h, 76<br />

10 Br p-CHO Me 30 4i, 83<br />

a Isolated yields.<br />

atmosphere (Table 4, entry 3). Using an argon atmosphere,<br />

the yield of 4a was improved to 98% (Table 4, entry 3).<br />

Using these reaction conditions, we next examined the Heck<br />

coupling of a variety of aryl halides with butyl <strong>and</strong> methyl<br />

acrylate. The results are summarized in Table 5. We found<br />

that the Heck reaction products 4 were obtained in good to<br />

high yields in most cases when an argon atmosphere was<br />

used (Table 5, entries 1–3 <strong>and</strong> 5–10). For electron rich<br />

4-bromoanisole, the reaction was sluggish <strong>and</strong> product 4e<br />

was obtained in only 28% yield under the same conditions<br />

(Table 5, entry 4). Product structures were determined by 1 H<br />

<strong>and</strong> 13 C NMR spectroscopy <strong>and</strong> HRMS or microanalyses<br />

(<strong>for</strong> 1 H NMR charts see Supporting in<strong>for</strong>mation).<br />

We believe that the <strong>cis</strong>-<strong>chelated</strong> configuration of 2 is<br />

responsible <strong>for</strong> allowing it to be an effective catalyst in these<br />

coupling reactions since the 1,1-reductive elimination from<br />

a <strong>cis</strong>-oriented coordination site is favored. 9 Moreover,<br />

carbene lig<strong>and</strong>s are less likely to dissociate than the<br />

corresponding phosphine 10 or bis-pyridine 11 systems, so<br />

the catalysis via less saturated intermediates is disfavored. 12<br />

In conclusion, we disclosed <strong>novel</strong> <strong>cis</strong>-chelating, <strong>Pd</strong>(<strong>II</strong>)–<br />

NHC <strong>complex</strong> 2, which has a ‘normal’ bidentate structure<br />

<strong>and</strong> is an effective catalyst <strong>for</strong> <strong>Suzuki</strong> <strong>and</strong> Heck crosscoupling<br />

reactions. Ef<strong>for</strong>ts are underway to elucidate the<br />

mechanistic details of these C–C bond <strong>for</strong>ming reactions<br />

<strong>and</strong> the use of 2 to catalyze other C–C bond <strong>for</strong>ming<br />

trans<strong>for</strong>mations.<br />

3.1. General remarks<br />

3. Experimental<br />

1 H NMR spectra were recorded on a Bruker AM-300<br />

spectrometer <strong>for</strong> solution in CDCl 3 with tetramethylsilane<br />

(TMS) as an internal st<strong>and</strong>ard; J values are in Hz. Mass<br />

spectra were recorded with a HP-5989 instrument. THF <strong>and</strong><br />

toluene were distilled from Na under Ar atmosphere. All of<br />

the solid compounds reported in this paper gave satisfactory<br />

CHN microanalyses with a Carlo-Erba 1106 analyzer.<br />

Commercially obtained reagents were used without further<br />

purification. All reactions were monitored by TLC with<br />

Huanghai GF 254 silica gel coated plates. Flash column<br />

chromatography was carried out using 300–400 mesh silica<br />

gel at increased pressure.<br />

3.1.1. 1,1 0 -(1,1 0 -Binaphthyl)-3,3 0 -dimethyldibenzimidazolium<br />

diiodide 1. This is a known compound. 5 The<br />

synthesis of 1 has been summarized in Supporting<br />

in<strong>for</strong>mation.<br />

3.1.2. Preparation of <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong>. The compound<br />

1 (154 mg, 0.20 mmol) <strong>and</strong> <strong>Pd</strong>(OAc) 2 (44 mg,<br />

0.20 mmol) was refluxed in THF (10 mL) <strong>for</strong> 16 h. The<br />

solvent was removed under reduced pressure <strong>and</strong> the residue<br />

was separated by silica gel chromatography to give <strong>Pd</strong>(<strong>II</strong>)–<br />

NHC <strong>complex</strong> 2 (134 mg, 77%) as a yellow solid [eluent:<br />

CH 2 Cl 2 /ethyl acetate 0:1–1:1]. The single crystal <strong>for</strong> X-ray<br />

diffraction was obtained by recrystallization from CH 2 Cl 2 /<br />

petroleum ether. MpO300 8C; IR (KBr): n 3538, 1583,<br />

1509, 1382, 747 cm K1 ; 1 H NMR (300 MHz, CDCl 3 , TMS):<br />

d 3.82 (6H, s, CH 3 ), 6.66 (2H, d, JZ8.1 Hz, ArH), 6.73–<br />

6.93 (10H, m, ArH), 7.19–7.24 (2H, m, ArH), 7.70 (2H, d,<br />

JZ8.7 Hz, ArH), 8.03–8.10 (4H, m, ArH); MS (ESI) m/e<br />

747.0 (M C KI). Anal. Calcd <strong>for</strong> C 36 H 26 I 2 N 4 <strong>Pd</strong>$H 2 O<br />

requires: C, 48.43; H, 3.16; N, 6.27%. Found: C, 48.27;<br />

H, 3.24; N, 6.15%.<br />

3.2. General procedure <strong>for</strong> the <strong>Suzuki</strong> reactions of aryl<br />

bromides with boronic acids<br />

A typical procedure is given below on the reaction<br />

expressed in entry 3 of Table 3. Complex 2 (8.7 mg,<br />

0.01 mmol), cesium carbonate (646 mg, 2.0 mmol),<br />

4-bromoacetophenyl (198 mg, 1.0 mmol), phenylboronic<br />

acid (148 mg, 1.2 mmol), <strong>and</strong> DMA (2.0 mL) were<br />

introduced to an Schlenk tube under ambient atmosphere.<br />

The mixture was stirred at 100 8C <strong>for</strong> 24 h. The reaction<br />

mixture was diluted with H 2 O (15 mL) <strong>and</strong> Et 2 O (15 mL),<br />

followed by extraction twice with Et 2 O. The combined<br />

organic layers were dried over MgSO 4 , filtered, <strong>and</strong><br />

evaporated under reduced pressure to give the crude<br />

product. The pure product was isolated by column<br />

chromatography (eluent: hexane/ethyl acetate 15:1) on<br />

silica gel to give 176 mg (90%) of 4-acetylbiphenyl as a


11228<br />

Q. Xu et al. / Tetrahedron 61 (2005) 11225–11229<br />

colorless solid, which was analyzed by 1 H NMR <strong>and</strong> IR<br />

spectroscopy.<br />

3.2.1. Compound 3a. A white solid, mp 70.5–72.0 8C; IR<br />

(KBr): n 3037, 1569, 1480, 1429, 729, 697 cm K1 ; 1 H NMR<br />

(CDCl 3 , 300 MHz, TMS): d 7.35–7.37 (2H, m, ArH), 7.42–<br />

7.47 (4H, m, ArH), 7.59–7.62 (4H, m, ArH).<br />

3.2.2. Compound 3b. A colorless oil; IR (KBr): n 3059,<br />

3020, 2933, 1590, 1479, 1439, 1372, 1010, 774, 748, 726,<br />

701 cm K1 ; 1 H NMR (CDCl 3 , 300 MHz, TMS): d 2.27 (3H,<br />

s, CH 3 ), 7.23–7.61 (9H, m, ArH).<br />

3.2.3. Compound 3c. A white solid, mp 45.0–50.0 8C; IR<br />

(KBr): n 3029, 1486, 1398, 823, 755, 735, 690 cm K1 ; 1 H<br />

NMR (CDCl 3 , 300 MHz, TMS): d 2.40 (3H, s, CH 3 ), 7.24–<br />

7.60 (9H, m, ArH).<br />

3.2.4. Compound 3d. A white solid, mp 120.4–121.3 8C; IR<br />

(KBr): n 3050, 1680, 1600, 1570, 1450, 1394, 1353, 1261,<br />

958, 835, 765, 721, 690 cm K1 ; 1 H NMR (CDCl 3 , 300 MHz,<br />

TMS): d 2.65 (3H, s, CH 3 ), 7.40–7.48 (3H, m, ArH), 7.62–<br />

7.71 (4H, m, ArH), 8.04 (2H, d, JZ7.2 Hz, ArH).<br />

3.2.5. Compound 3e. A white solid, mp 91.1–92.3 8C; IR<br />

(KBr): n 3050, 2956, 2837, 1605, 1520, 1486, 1446, 1283,<br />

1269, 1180, 1035, 834, 760, 688 cm K1 ; 1 H NMR (CDCl 3 ,<br />

300 MHz, TMS): d 3.87 (3H, s, OCH 3 ), 6.97–7.00 (2H, m,<br />

ArH), 7.26–7.30 (1H, m, ArH), 7.39–7.44 (2H, m, ArH),<br />

7.52–7.57 (4H, m, ArH).<br />

3.2.6. Compound 3f. A yellow solid, mp 32.5–33.5 8C; IR<br />

(KBr): n 3059, 3031, 2924, 1380, 1498, 1467, 1425, 1128,<br />

1075, 1036, 1009, 770, 748, 699 cm K1 ; 1 H NMR (CDCl 3 ,<br />

300 MHz, TMS): d 7.24–7.61 (9H, m, ArH).<br />

3.2.7. Compound 3g. A white solid, mp 22.2–23.1 8C; IR<br />

(KBr): n 3059, 3031, 2919, 1603, 1577, 1482, 1380, 850,<br />

761, 737, 698 cm K1 ; 1 H NMR (CDCl 3 , 300 MHz, TMS): d<br />

2.37 (6H, s, CH 3 ), 6.99–7.61 (8H, m, ArH).<br />

3.3. Typical reaction procedure <strong>for</strong> Heck reaction<br />

In a Schlenk tube fitted with a septum <strong>and</strong> a reflux condenser<br />

were placed aryl halide (1.0 mmol), butyl acrylate<br />

(1.5 mmol), potassium fluoride (116 mg, 2.0 mmol), tetrabutylammonium<br />

bromide (64.4 mg, 0.20 mmol), <strong>and</strong> N,Ndimethylacetamide<br />

(DMAC, 2.0 mL). After repeated<br />

degassing by oil pump vacuum <strong>and</strong> flushing with argon,<br />

<strong>complex</strong> 2 (8.7 mg, 0.01 mmol) was added under an argon<br />

atmosphere. The mixture was stirred at 140 8C <strong>for</strong> 30 h. The<br />

reaction mixture was diluted with H 2 O (15 mL) <strong>and</strong> Et 2 O<br />

(15 mL), followed by extraction twice with Et 2 O. The<br />

combined organic layers were dried over anhydrous<br />

MgSO 4 , filtered, <strong>and</strong> evaporated under reduced pressure to<br />

give crude product. A pure product was isolated by column<br />

chromatography (eluent: hexane/ethyl acetate 15:1) on<br />

silica gel. The purified product was analyzed by 1 H NMR<br />

<strong>and</strong> IR spectroscopy.<br />

3.3.1. Compound 4a. A yellow liquid; IR (KBr): n 3020,<br />

2960, 2874, 1714, 1638, 1571, 1500, 1450, 1380, 979, 768,<br />

711 cm K1 ; 1 H NMR (CDCl 3 , 300 MHz, TMS): d 0.96 (3H,<br />

t, JZ7.2 Hz, CH 3 ), 1.37–1.50 (2H, m, CH 2 ), 1.64–1.74 (2H,<br />

m, CH 2 ), 4.21 (2H, t, JZ7.2 Hz, OCH 2 ), 6.44 (1H, d, JZ<br />

15.9 Hz, ]CH), 7.36–7.38 (3H, m, ArH), 7.50–7.53 (2H,<br />

m, ArH), 7.68 (1H, d, JZ15.9 Hz, ]CH).<br />

3.3.2. Compound 4b. A yellow liquid; IR (KBr): n 3070,<br />

3020, 2959, 2867, 1713, 1634, 1600, 1520, 1461, 1380,<br />

1313, 1275, 1173, 981, 763, 731 cm K1 ; 1 H NMR (CDCl 3 ,<br />

300 MHz, TMS): d 0.97 (3H, t, JZ7.2 Hz, CH 3 ), 1.38–1.50<br />

(2H, m, CH 2 ), 1.64–1.75 (2H, m, CH 2 ), 2.44 (3H, s, CH 3 ),<br />

4.22 (2H, t, JZ7.2 Hz, OCH 2 ), 6.36 (1H, d, JZ15.9 Hz,<br />

]CH), 7.19–7.30 (3H, m, ArH), 7.54–7.57 (1H, m, ArH),<br />

7.98 (1H, d, JZ15.9 Hz, ]CH).<br />

3.3.3. Compound 4c. A yellow liquid; IR (KBr): n 3020,<br />

2956, 2859, 1713, 1638, 1605, 1520, 1464, 1380, 1310,<br />

1256, 1204, 1168, 983, 813 cm K1 ;<br />

1 H NMR (CDCl 3 ,<br />

300 MHz, TMS): d 0.88 (3H, t, JZ7.2 Hz, CH 3 ), 1.29–1.42<br />

(2H, m, CH 2 ), 1.57–1.66 (2H, m, CH 2 ), 2.28 (3H, s, CH 3 ),<br />

4.21 (2H, t, JZ7.2 Hz, OCH 2 ), 6.31 (1H, d, JZ15.6 Hz,<br />

]CH), 7.09 (2H, d, JZ7.2 Hz, ArH), 7.34 (2H, d, JZ<br />

7.2 Hz, ArH), 7.58 (1H, d, JZ15.6 Hz, ]CH).<br />

3.3.4. Compound 4d. A yellow liquid; IR (KBr): n 3020,<br />

2941, 2852, 1715, 1685, 1638, 1601, 1560, 1460, 1380,<br />

1312, 1265, 1174, 982, 827 cm K1 ;<br />

1 H NMR (CDCl 3 ,<br />

300 MHz, TMS): d 0.97 (3H, t, JZ7.2 Hz, CH 3 ), 1.40–1.48<br />

(2H, m, CH 2 ), 1.68–1.73 (2H, m, CH 2 ), 2.62 (3H, s, CH 3 ),<br />

4.23 (2H, t, JZ7.2 Hz, OCH 2 ), 6.53 (1H, d, JZ15.9 Hz,<br />

]CH), 7.61 (2H, d, JZ8.4 Hz, ArH), 7.69 (1H, d, JZ<br />

15.9 Hz, ]CH), 7.97 (2H, d, JZ8.4 Hz, ArH).<br />

3.3.5. Compound 4e. A yellow liquid; IR (KBr): n 3070,<br />

3020, 2959, 2852, 1710, 1635, 1604, 1564, 1513, 1464,<br />

1387, 1251, 1170, 1031, 983, 828 cm K1 ; 1 H NMR (CDCl 3 ,<br />

300 MHz, TMS): d 0.89 (3H, t, JZ7.2 Hz, CH 3 ), 1.32–1.40<br />

(2H, m, CH 2 ), 1.56–1.63 (2H, m, CH 2 ), 3.76 (3H, s, OCH 3 ),<br />

4.12 (2H, t, JZ7.2 Hz, OCH 2 ), 6.24 (1H, d, JZ15.6 Hz,<br />

]CH), 6.81–6.84 (2H, m, ArH), 7.39–7.42 (2H, m, ArH),<br />

7.57 (1H, d, JZ15.6 Hz, ]CH).<br />

3.3.6. Compound 4f. A yellow liquid; IR (KBr): n 3070,<br />

3020, 2960, 2934, 2873, 1717, 1637, 1591, 1520, 1471,<br />

1443, 1380, 1315, 1269, 1202, 1176, 1053, 980, 760,<br />

738 cm K1 ; 1 H NMR (CDCl 3 , 300 MHz, TMS): d 0.97 (3H,<br />

t, JZ7.2 Hz, CH 3 ), 1.42–1.48 (2H, m, CH 2 ), 1.55–1.74 (2H,<br />

m, CH 2 ), 4.22 (2H, t, JZ7.2 Hz, OCH 2 ), 6.43 (1H, d, JZ<br />

15.6 Hz, ]CH), 7.25–7.31 (2H, m, ArH), 7.38–7.41 (1H,<br />

m, ArH), 7.59–7.62 (1H, m, ArH), 8.08 (1H, d, JZ15.6 Hz,<br />

]CH).<br />

3.3.7. Compound 4g. A yellow liquid; IR (KBr): n 3020,<br />

2959, 2867, 1714, 1637, 1594, 1442, 1380, 1285, 1254,<br />

1164, 982, 843, 678 cm K1 ; 1 H NMR (CDCl 3 , 300 MHz,<br />

TMS): d 0.97 (3H, t, JZ7.2 Hz, CH 3 ), 1.40–1.48 (2H, m,<br />

CH 2 ), 1.66–1.71 (2H, m, CH 2 ), 2.33 (6H, s, CH 3 ), 4.20 (2H,<br />

t, JZ7.2 Hz, OCH 2 ), 6.42 (1H, d, JZ15.6 Hz, ]CH), 7.02<br />

(1H, s, ArH), 7.15 (2H, s, ArH), 7.62 (1H, d, JZ15.6 Hz,<br />

]CH).<br />

3.3.8. Compound 4h. A white solid, mp 35.8–36.5 8C; IR<br />

(KBr): n 3050, 3020, 2944, 1717, 1638, 1576, 1496, 1450,<br />

1380, 1314, 1275, 1200, 1170, 980, 768, 712 cm K1 ; 1 H


Q. Xu et al. / Tetrahedron 61 (2005) 11225–11229 11229<br />

NMR (CDCl 3 , 300 MHz, TMS): d 3.81 (3H, s, OCH 3 ), 6.45<br />

(1H, d, JZ15.6 Hz, ]CH), 7.38–7.41 (3H, m, ArH), 7.51–<br />

7.55 (2H, m, ArH), 7.70 (1H, d, JZ15.6 Hz, ]CH).<br />

3.3.9. Compound 4i. A white solid, mp 82.1–83.0 8C; IR<br />

(KBr): n 3020, 2958, 2840, 2740, 1712, 1691, 1637, 1602,<br />

1540, 1425, 1392, 1315, 1203, 1163, 984, 820, 796 cm K1 ;<br />

1 H NMR (CDCl 3 , 300 MHz, TMS): d 3.84 (3H, s, OCH 3 ),<br />

6.57 (1H, d, JZ15.9 Hz, ]CH), 7.69 (2H, d, JZ8.0 Hz,<br />

ArH), 7.73 (1H, d, JZ15.9 Hz, ]CH), 7.91 (2H, d, JZ<br />

8.0 Hz, ArH), 10.04 (1H, s, HC]O).<br />

Acknowledgements<br />

We thank the State Key Project of Basic Research (project<br />

973) (no. G2000048007), Shanghai Municipal Committee<br />

of Science <strong>and</strong> Technology, <strong>and</strong> the National Natural<br />

Science Foundation of China (203900502, 20472096 <strong>and</strong><br />

20272069) <strong>for</strong> financial support.<br />

Supplementary data<br />

Supplementary data associated with this article can be<br />

found, in the online version, at doi:10.1016/j.tet.2005.09.<br />

010. The spectroscopic charts of coupling products 3 <strong>and</strong> 4<br />

as well as the synthesis of 1,1 0 -(1,1 0 -binaphthyl)-3,3 0 -<br />

dimethyldibenzimidazolium diiodide 1 <strong>and</strong> the X-ray<br />

crystal data of NHC–<strong>Pd</strong>(<strong>II</strong>) <strong>complex</strong> 2.<br />

References <strong>and</strong> notes<br />

1. (a) Öfele, K. J. Organomet. Chem. 1968, 12, 42–43. (b)<br />

Wanzlick, H. W.; Schönherr, H. J. Angew. Chem., Int. Ed.<br />

Engl. 1968, 7, 141–142.<br />

2. (a) Arduengo, A. J.; Harlow, R. L., <strong>II</strong>I; Kline, M. J. Am. Chem.<br />

Soc. 1991, 113, 361–363. (b) Arduengo, A. J., <strong>II</strong>I,; Krafczyk,<br />

R.; Schmutzler, R. Tetrahedron 1999, 55, 14523–14534.<br />

3. (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 40,<br />

1290–1309. (b) Bourissou, D.; Guerret, O.; GabbaÏ, F. P.;<br />

Bertr<strong>and</strong>, G. Chem. Rev. 2000, 100, 39–91. (c) Herrmann,<br />

W. A.; Böhm, V. P. W.; Gstöttmayr, C. W. K.; Grosche, M. C.;<br />

Reisinger, C.; Weskamp, T. J. Organomet. Chem. 2001, 617,<br />

616–628. (d) Enders, D.; Gielen, H. J. Organomet. Chem.<br />

2001, 617, 70–80. (e) Herrmann, W. A.; Elison, M.; Fischer, J.;<br />

Köcher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1995,<br />

34, 2371–2374. (f) Herrmann, W. A.; Reisinger, C. P.;<br />

Spiegler, M. J. Organomet. Chem. 1998, 557, 93–98.<br />

4. (a) Huang, J.; Nolan, S. P. J. Am. Chem. Soc. 1999, 121,<br />

9889–9890. (b) Furstner, A.; Leitner, A. Synlett 2001,<br />

290–292. (c) Herrmann, W. A.; Böhm, V. P. W.; Gstöttmayr,<br />

C. W. K.; Grosche, M. C.; Reisinger, C.; Weskamp, T.<br />

J. Organomet. Chem. 2001, 617, 616–628. (d) Grasa, G. A.;<br />

Hillier, A. C.; Nolan, S. P. Org. Lett. 2001, 3, 1077–1080. (e)<br />

Viciu, M. S.; Grasa, G. A.; Nolan, S. P. Organometallics 2001,<br />

20, 3607–3612. (f) Grasa, G. A.; Viciu, M. S.; Huang, J.;<br />

Zhang, C. M.; Trudell, M. L.; Nolan, S. P. Organometallics<br />

2002, 21, 2866–2873. (g) Hillier, A. C.; Grasa, G. A.; Viciu,<br />

M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem.<br />

2002, 653, 69–82. (h) Viciu, M. S.; Germaneau, R. F.;<br />

Navarro-Fern<strong>and</strong>ez, O.; Stevens, E. D.; Nolan, S. P. Organometallics<br />

2002, 21, 5470–5472. (i) Pytkowicz, J.; Rol<strong>and</strong>, S.;<br />

Mangeney, P.; Meyer, G.; Jut<strong>and</strong>, A. J. Organomet. Chem.<br />

2003, 678, 166–179. (j) Eckhardt, M.; Fu, G. C. J. Am. Chem.<br />

Soc. 2003, 125, 13642–13643. (k) Zhou, J. R.; Fu, G. C. J. Am.<br />

Chem. Soc. 2004, 126, 1340–1341. (l) Altenhoff, G.; Goddard,<br />

R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126,<br />

15195–15201. (m) Caddick, S.; Cloke, F. G. N.; Clentsmith,<br />

G. K. B.; Hitchcock, P. B.; Mckeirecher, D.; Thcomb, L. R.;<br />

Williams, M. R. V. J. Organomet. Chem. 2001, 617, 635–639.<br />

(n) Titcomb, L. R.; Caddick, S.; Cloke, F. G. N.; Wilson, D. J.;<br />

McKerrecher, D. Chem. Commun. 2001, 1388–1389. (o)<br />

Mcguinness, D. S.; Cavell, K. J.; Skelton, B. W.; White,<br />

A. H. Organometallics 1999, 18, 1596–1605. (p) de Lewis,<br />

A. K.; Caddick, K. S.; Cloke, F. G. N.; Billingham, N. C.;<br />

Hitchcock, P. B.; Leonard, J. J. Am. Chem. Soc. 2003, 125,<br />

10066–10073.<br />

5. This is a known compound. (a) Duan, W.-L.; Shi, M.; Rong,<br />

G.-B. Chem. Commun. 2003, 2916–2917. (b) Shi, M.; Duan,<br />

W. L. Appl. Organomet. Chem. 2005, 19, 40–44.<br />

6. Nolan <strong>and</strong> co-workers recently disclosed that ‘unusual’ <strong>Pd</strong>(<strong>II</strong>)–<br />

NHC <strong>complex</strong> synthesized from imidazolium salts is a more<br />

suitable precursor <strong>for</strong> the <strong>Suzuki</strong> <strong>and</strong> Heck coupling reactions.<br />

Lebel, H.; Janes, M. K.; Charette, A. B.; Nolan, S. P. J. Am.<br />

Chem. Soc. 2004, 126, 5046–5047.<br />

7. The crystal data of 2 has been deposited in CCDC with number<br />

209242. Empirical <strong>for</strong>mula: C 36 H 28 N 4 OI 2 <strong>Pd</strong>; <strong>for</strong>mula weight:<br />

892.82; crystal color, habit: colorless, prismatic; crystal<br />

dimensions: 0.548!0.097!0.041 mm; crystal system: monoclinic;<br />

lattice type: primitive; lattice parameters: aZ<br />

12.9006(15) Å, bZ9.1085(11) Å, cZ14.7425(17) Å, aZ908,<br />

bZ106.512(2)8, gZ908, VZ1660.9(3) Å 3 ; space group:<br />

P2(1); ZZ2; D calcd Z1.785 g/cm 3 ; F 000 Z864; diffractometer:<br />

Rigaku AFC7R; residuals: R; R w : 0.0635, 0.1515.<br />

8. <strong>Pd</strong>(<strong>II</strong>)<strong>–NHC</strong> <strong>complex</strong>es with <strong>cis</strong>-chelating geometry are rare.<br />

(a) Hermann, W. A.; Schwarz, J.; Gardiner, M. G. Organometallics<br />

1999, 18, 4082–4089. (b) Hermann, W. A.;<br />

Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem. 1998,<br />

557, 93–96. (c) Clyne, D. S.; Jin, J.; Genest, E.; Gallucci, J. C.;<br />

RajarBabu, T. V. Org. Lett. 2000, 2, 1125–1128.<br />

9. (a) Gillie, A.; Stille, J. K. J. Am. Chem. Soc. 1998, 102,<br />

4933–4941. (b) Fagnou, K.; Lautens, M. Angew. Chem., Int.<br />

Ed. 2002, 41, 26–47.<br />

10. Huang, J.; Schanz, H.-J.; Stevens, E. D.; Nolan, S. P.<br />

Organometallics 1999, 18, 2370–2375.<br />

11. Kawano, T.; Shinomaru, T.; Ueda, I. Org. Lett. 2002, 4,<br />

2545–2547.<br />

12. Perry, M. C.; Cui, X.; Burgess, K. Tetrahedron: Asymmetry<br />

2002, 13, 1969–1972.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!