07.07.2014 Views

Basic Radar Signal Processing

Basic Radar Signal Processing

Basic Radar Signal Processing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Basic</strong> <strong>Radar</strong> <strong>Signal</strong> <strong>Processing</strong><br />

Joshua Semeter, Boston University<br />

1


Why study ISR?<br />

• You get to learn about many useful things, in<br />

substantial depth.<br />

- Plasma physics<br />

- <strong>Radar</strong><br />

- Coding<br />

- Electronics (Power, RF, DSP)<br />

- <strong>Signal</strong> <strong>Processing</strong><br />

• But what if I probably won’t stay in this field?<br />

- See above!<br />

2


Outline<br />

• Principle of Pulsed Doppler <strong>Radar</strong><br />

•<br />

•<br />

The Doppler spectrum of the ionospheric plasma<br />

Mathematics of Doppler <strong>Processing</strong><br />

• Pulse Compression 3


The Ubiquitous deciBel<br />

The relative value of two things, measured on a logarithmic scale, is often<br />

expressed in deciBel’s (dB)<br />

Example: SNR<br />

<strong>Signal</strong>-to-noise ratio (dB) = 10 log 10<br />

<strong>Signal</strong> Power<br />

Noise Power<br />

Scientific<br />

Factor of: Notation dB<br />

0.1 10 -1 -10<br />

0.5 10 0.3 - 3<br />

1 10 0 0<br />

2 10 0.3 3<br />

10 10 1 10<br />

100 10 2 20<br />

1000 10 3 30<br />

.<br />

1,000,000 10 6 60<br />

4


Waves versus Pulses<br />

What do radars transmit?<br />

Waves?<br />

Waves, modulated<br />

by “on-off” action of<br />

pulse envelope<br />

or Pulses?<br />

How many cycles are in a typical pulse?<br />

PFISR frequency: 449 MHz<br />

Typical long-pulse length: 480 µs 215,520 cycles! 5


Pulsed <strong>Radar</strong><br />

Pulse length<br />

100 µsec<br />

Power<br />

Peak power<br />

1 Mega-Watt<br />

Target<br />

Return<br />

10 -12 Watt<br />

Inter-pulse period<br />

(IPP) 1 msec<br />

Time<br />

Duty cycle =<br />

Pulse length<br />

Pulse repetition interval<br />

10%<br />

Average power = Peak power * Duty cycle<br />

100 kWatt<br />

Pulse repetition frequency (PRF) = 1/(IPP)<br />

1 kHz<br />

Continuous wave (CW) radar: Duty cycle = 100% (always on)<br />

6


Distance = Time<br />

Range resolution: Set by pulse length given in units of time, τ p , or length, cτ p<br />

ΔR = R 2<br />

− R 1<br />

= cτ p<br />

2<br />

Maximum unambiguous range: Set by Inter-pulse Period (IPP)<br />

2R/c<br />

IPP<br />

IPP<br />

IPP = Interpulse period (s)<br />

PRF = pulse repetition frequence<br />

= 1/IPP (Hz)<br />

R u<br />

= c IPP<br />

2<br />

7


Velocity = Frequency<br />

Transmitted signal: cos(2πf o<br />

t)<br />

After return from target:<br />

⎡ ⎛<br />

cos⎢<br />

2πf o ⎜ t + 2R<br />

⎣ ⎝ c<br />

⎞ ⎤<br />

⎟ ⎥<br />

⎠ ⎦<br />

To measure frequency, we need to observe signal for at least one cycle.<br />

So we will need a model of how R changes with time. Assume constant velocity:<br />

Substituting:<br />

⎡ ⎛<br />

cos⎢<br />

2π⎜<br />

f o<br />

+<br />

⎣ ⎝<br />

R = R o<br />

+ v o<br />

t<br />

f o<br />

2v o<br />

c<br />

− f D<br />

⎞<br />

⎟ t + 2πf R ⎤<br />

o o<br />

⎥<br />

⎠ c ⎦<br />

constant<br />

f D<br />

= −2 f o v o<br />

c<br />

= −2v o<br />

λ o<br />

By convention, positive Doppler frequency shift<br />

Target and radar closing<br />

8


Two key concepts<br />

Two key concepts:<br />

Distant<br />

Time<br />

R = cΔt 2<br />

e-<br />

Velocity<br />

v = − f D<br />

λ 0<br />

2<br />

Frequency<br />

A Doppler radar measures backscattered power as a function range and velocity.<br />

Velocity is manifested as a Doppler frequency shift in the received signal.<br />

9


Two key concepts<br />

Two key concepts:<br />

Distant<br />

Time<br />

R = cΔt 2<br />

Velocity<br />

v = − f D<br />

λ 0<br />

2<br />

Frequency<br />

A Doppler radar measures backscattered power as a function range and velocity.<br />

Velocity is manifested as a Doppler frequency shift in the received signal.<br />

10


J. Semeter, Boston Un<br />

Concept of a “Doppler Spectrum”<br />

er Doppler Spectra<br />

Two key concepts:<br />

Distant Time<br />

R = cΔt 2<br />

ENG SC700 <strong>Radar</strong> Remote Sensing<br />

Velocity<br />

v = − f D<br />

λ 0<br />

2<br />

Frequency<br />

NEXRAD WSR-88D<br />

Power (dB)<br />

Some Other Doppler Spectra<br />

J. Semeter<br />

ine<br />

t give Doppler spectrum<br />

Tennis ball, birds, aircraft engine<br />

Velocity (m/s)<br />

S. Bachma<br />

If there is a distribution of targets moving at different velocities (e.g., electrons in the<br />

ionosphere) then there is no single Doppler shift but, rather, a Doppler spectrum.<br />

What is the Doppler spectrum of the ionosphere at UHF ( λ of 10 to 30 cm)?<br />

11


e, which is the main mode detected by ISRs, and the Langmuir<br />

Longitudinal Modes in a Thermal Plasma<br />

n, 2003]. Using a linear approach to solve the Vlasov-Poisson<br />

DIAZ ET AL.: BEAM-PLASMA INSTABILITY EFFECTS ON IS SPECTRA<br />

X-6 DIAZ ET AL.: BEAM-PLASMA INSTABILITY EFFECTS ON IS SPECTRA<br />

ispersion relation of these modes is obtained. The real part of<br />

me 1 <br />

3<br />

DIAZ ET AL.: BEAM-PLASMA π<br />

2 INSTABILITY Te<br />

2 EFFECTS ON IS SPECTRA<br />

relationωreads<br />

si = −<br />

+ exp − T e<br />

− 3 me ω s 1 <br />

3(2)<br />

8 m i T i 2T i π 2<br />

2 Te<br />

2 27<br />

Ion-acoustic<br />

ω si = −<br />

+ exp − T e<br />

− 3 ω<br />

s<br />

me 1 8 <br />

3<br />

m i T i 2T i 2<br />

s = k B (T e +3T i )/m π i is the2 ion-acoustic Te<br />

ω si = −<br />

+<br />

6<br />

ω s = C s k, where C s = 2 speed. The<br />

exp − T e<br />

dependence<br />

− 3 of this mode<br />

ω s (2)<br />

DIAZ ET8AL.: BEAM-PLASMA m i T i INSTABILITY EFFECTS ON IS SPECTRA<br />

k B (T e +3T2T i )/m i i<br />

2<br />

pheric state parameters is observed in Eq. 2. The Langmuir ismode the(1)<br />

ion-acoustic is detected byspeed. The dependence of<br />

= k B (T e +3T i )/m i is the<br />

ssuming ω si ω s , k 2 on λ 2 ionospheric <br />

ion-acoustic speed. The<br />

De me<br />

1 and 1<br />

T state parameters <br />

dependence<br />

is observed <br />

of this mode<br />

er certain conditions, and the real part of its dispersion 3 relation in Eq. 2. The Langmuir mode is d<br />

π<br />

2<br />

i/T Te e 2 1) can be written<br />

ω si = −<br />

+ exp − T e<br />

− 3 is expressed as<br />

heric state parameters ω s (2)<br />

is observed in Eq. 2. The Langmuir mode is detected by<br />

ISR8<br />

under m i certainT conditions, i and 2T i the 2 real part of its dispersion relation is exp<br />

ere Langmuir C s = ω L = ωpe 2 +3k 2 vthe 2<br />

r certain conditions, k B (T e +3T and i )/m the i<br />

real is the part ≈ ω pe + 3<br />

ion-acoustic of its 2dispersion v theλ De k 2 , (3)<br />

speed. relation<br />

The dependence is expressed of this as<br />

ω L = ωpe 2 +3k 2 vthe 2 ≈ ω pe + 3 mode<br />

imaginary part (assuming ω<br />

2 v theλ De k 2 ,<br />

ionospheric state parameters Li ω<br />

is observed L )<br />

in Eq. 2. The Langmuir mode is detected by<br />

ω L = ωpe 2 +3k 2 vthe 2 ≈ is<br />

ω pe + 3 2 v theλ De k 2 , (3)<br />

under certain conditions,<br />

73 and the andimaginary the real part part of its (assuming dispersion ω Li<br />

relation ω L ) is isexpressed as<br />

aginary Maypart 29, (assuming 2010, π 6:36am ω pe<br />

3 Li 1<br />

D R A F T<br />

ω Li ≈− ω<br />

exp L ) is−<br />

ω2 pe<br />

− 3<br />

ω L = ωpe 2 +3k 2 vthe 2 ≈ ω pe + 3 ω<br />

8 k 3 vthe<br />

3 2k 2 v 2 L . (4)<br />

the<br />

2<br />

2 v theλ<br />

De k 2 , (3)<br />

rward model used toestimate ionospheric parameters π ωpe<br />

3 1<br />

ω Li ≈−<br />

exp −<br />

ω2 pe<br />

π ωpe<br />

3 1<br />

the imaginary ω part (assuming ω 8 k 3 vthe<br />

3 Li ≈−<br />

exp<br />

8 k 3 Li −<br />

ω2 pe<br />

ω L 2k ) is − 3 in ISR assumes that these<br />

dominating modes in the ISR spectrum. However, 2 vthe 2 an2injected beam of particles,<br />

v 3 the<br />

Figure 2·4: Longitudinal modes of−a 3 plasma. Blue lines re<br />

acoustic ω waves and red ones 2k to 2 Langmuir vthe 2 L . (4) 2waves.<br />

74<br />

ward model used to estimate<br />

The forward<br />

ionospheric<br />

model<br />

parameters<br />

used to estimate ionospheric parameters in ISR assumes<br />

in ISR assumes that these<br />

π ωpe<br />

3 1<br />

ω75<br />

≈−<br />

exp −<br />

ω2 pe<br />

−<br />

ω 3 . (4)<br />

cular electrons, can destabilize the plasma, altering the dispersion relations and<br />

plasma particles start to interact more strongly with the growing wav<br />

are the dominating modes This caninsometimes the ISR be spectrum. described in However, terms of the an so-called injectedquasi-linea<br />

beam of<br />

des of these modes.<br />

12<br />

<br />

ω L .


tion equation, has to be used. The system of equations formed<br />

m at high latitudes, therefore a kinetic approach, which<br />

htities includes<br />

equation,<br />

to the<br />

has<br />

simulation Vlasov equation<br />

to be used. The<br />

particles. plus Maxwell’s equations, has<br />

system of equations formed<br />

to obtain the wave modes propagating along the plasma.<br />

ncludes the Vlasov equation plus Maxwell’s equations, has<br />

field equations. The name “Particle-in-Cell” comes from the way of<br />

Simulated ISR Doppler Spectrum<br />

des solve the equation of motion of particles with the Newton-Lorentz<br />

obtain the wave modes propagating along the plasma.<br />

· ∂f j(t, x, v)<br />

+ q j<br />

(E + v × B) · ∂f j(t, x, v)<br />

= 0 (2.3)<br />

∂x m j ∂v<br />

f j (t, x, Particle-in-cell v)<br />

+ q j (PIC):<br />

(E + v × B) · ∂f j(t, x, v)<br />

= 0 (2.3)<br />

∂x m j ∂v<br />

d v i<br />

dt = q i<br />

20<br />

∇×E (E(x i )+v i × B(x i )) for i =1,...,N (2.49)<br />

m<br />

= −∂B<br />

(2.4)<br />

i<br />

uations (Equations ∂t 2.4 and 2.7) together with the prescribed rule 96of<br />

J<br />

∂t<br />

20<br />

∇×E = −∂B<br />

(2.4)<br />

∇×B = µ 0 J + 1 ∂E<br />

∇ · E = ρ c 2 (2.6) (2.5)<br />

0 ∂t<br />

∇×B ∇ · E = = µ 0 J ρ + 1 ∂E<br />

(2.6)<br />

c 2 3000 (2.5)<br />

0 ∂t<br />

∇ · B = 0 (2.7)<br />

Frequency (kHz)<br />

ρ = ρ(x 1 , v 1 ,...,x N , v N ), (2.50)<br />

Ion-acoustic (“Ion Line”)<br />

J = J(x 1 , v 1 ,...,x N , v N ). (2.51)<br />

e and current ∇ · B = densities. 0 (2.7)<br />

e and current densities.<br />

0<br />

Simple<br />

q j n j = rules yield<br />

complex q j behavior f j d 3 v (2.8)<br />

<br />

q j n j = j <br />

q j f j d 3 v (2.8)<br />

the j PIC simulation j is given in Figure 2·8.<br />

q j n j v j = <br />

q j f j v d 3 v, -3000 (2.9)<br />

j<br />

<br />

q j<br />

jcharge and current density of the medium at certain iteration.<br />

y are classified depending on dimensionality of the code and on the<br />

q j n j v j = f j v d 3 v, (2.9)<br />

(a)<br />

e-velocity distribution function of the species j, <br />

tions used. j The codes solving a whole set of 0 and<br />

Maxwell’s equations are<br />

Langmuir (“Plasma Line”)<br />

A<br />

20 40 60 80 100 120<br />

k = 2π λ (1/m)<br />

13<br />

13


ISR Measures a Cut Through This Surface<br />

77<br />

96<br />

31<br />

3000<br />

150<br />

Frequency (kHz)<br />

0<br />

0<br />

-3000<br />

20 40 60 80 100 120<br />

k = 2π λ<br />

(a)<br />

(1/m)<br />

-150<br />

20 40 60 80 100 120<br />

k = 2π λ (1/m)<br />

Ion-acoustic “lines”<br />

are broadened by<br />

Landau damping<br />

AMISR, MHO<br />

EISCAT UHF<br />

Sondrestrom<br />

14


The ISR model<br />

where:<br />

Te/Ti<br />

area ~ Ne<br />

Ti/mi<br />

Vi<br />

From Evans, IEEE Transactions, 1969<br />

15


Incoherent Averaging<br />

Normalized ISR spectrum for different integration times at 1290 MHz<br />

1 sample<br />

30 samples<br />

We are seeking to estimate the<br />

power spectrum of a Gaussian<br />

random process. This requires<br />

that we sample and average many<br />

independent “realizations” of the<br />

process.<br />

Uncertainties ∝<br />

1<br />

Number of Samples<br />

600 samples<br />

16<br />

16


Components of a Pulsed Doppler <strong>Radar</strong><br />

_<br />

+<br />

+<br />

+<br />

_<br />

_<br />

Model Fit<br />

Plasma density (N e )<br />

Ion temperature (T i )<br />

Electron temperature (T e )<br />

Bulk velocity (V i )<br />

17<br />

17


ts spectrum. For a real waveform we have<br />

"!<br />

<br />

"!<br />

Essential Mathematical Operations<br />

!<br />

"!<br />

ly states that the total energy in a waveform is equal to the total<br />

Euler:<br />

its spectrum. For a real waveform<br />

|U( y)| 2 we have<br />

dy (2.26)<br />

u(x) 2 dx = 2 ! 0<br />

Fourier:<br />

!<br />

"!<br />

) = U("y)* for the spectrum of |U( a real y)| waveform.<br />

2 dy (2.26)<br />

u(x) 2 dx = 2 ! 0<br />

Wiener-Khinchine Relation<br />

y) =<br />

Convolution:<br />

U("y)* for the spectrum of a real waveform.<br />

that the autocorrelation function of a waveform is given by the<br />

ourier transform of its power spectrum. For a waveform u with<br />

) espectrum Wiener-Khinchine U, the power Relation spectrum is |U | 2 , and from R2 and R3<br />

U *( Correlation: f ) is the transform of u*("t), so we have<br />

s that the autocorrelation function of a waveform is given by the<br />

Fourier transform of its power spectrum. For a waveform u with<br />

e) spectrum u(t) # u*("t) U, the$ power U( f spectrum ) U *( f is ) |U = |U( | 2 , and f )| 2 from R2 (2.27) and R3<br />

at U *( f ) is the transform of u*("t), so we have<br />

Wiener-Khinchine Theorem:<br />

ng out the convolution, we have<br />

u(t) # u*("t) $ U( f ) U *( f ) = |U( f )| 2 (2.27)<br />

!<br />

!<br />

u*("t) = u(t " t%)u*("t%) dt% = u(s)u(s " t) ds = r(t) 18


Dirac Delta Function<br />

δ(t) =<br />

⎧⎪<br />

⎨<br />

⎩⎪<br />

+∞, x = 0<br />

0, x ≠ 0<br />

The Fourier Transform of a train of delta functions is a train of delta functions.<br />

19


Harmonic Functions<br />

20


Gate function<br />

ISR spectrum<br />

Autocorrelation function (ACF)<br />

Increasing Te<br />

Not surprisingly, the ISR ACF looks like a sinc function…<br />

21


Fourier Transform of an RF Pulse<br />

τ<br />

f 0<br />

frequency<br />

f 0<br />

– ( 1 ⁄ τ)<br />

f 0 + ( 1 ⁄ τ)<br />

The F.T. of a simple RF pulse is a sync function shifted to<br />

Figure 5.3. Amplitude spectrum for a single pulse, or a train of<br />

non-coherent pulses.<br />

the carrier frequency (by convolution property and<br />

Now consider the coherent gated CW waveform<br />

definition of delta function).<br />

f 3 () t = f 2 ( t – nT)<br />

n<br />

=<br />

∞<br />

∑<br />

– ∞<br />

f 3 () t<br />

given by<br />

(5.15)<br />

Clearly f 3 () t is periodic, where T is the period (recall that f r<br />

= 1 ⁄ T is the<br />

PRF). Using the complex exponential Fourier series we can rewrite f () t as<br />

22


Fourier Transform of a Finite Pulse Train<br />

T<br />

NT<br />

frequency<br />

2<br />

------<br />

NT<br />

Figure 5.5. Amplitude spectrum for a coherent pulse train of finite length.<br />

The F.T. of a finite train of RF pulses is a decaying train of<br />

sync functions with width inversely proportional to the<br />

total number of pulses, and separation inversely<br />

5.3. Linear Frequency Modulation Waveforms<br />

proportional to the Interpulse Period (IPP).<br />

Frequency or phase modulated waveforms can be used to achieve much<br />

wider operating bandwidths. Linear Frequency Modulation (LFM) is commonly<br />

used. In this case, the frequency is swept linearly across the pulse width,<br />

either upward (up-chirp) or downward (down-chirp). The matched filter bandwidth<br />

is proportional to the sweep bandwidth, and is independent of the pulse<br />

width. Fig. 5.6 shows a typical example of an LFM waveform. The pulse width<br />

23


Thus we see that the spectrum consists of lines (which follows from<br />

the Fourier repetitive nature Transform of the waveform) of an at intervals Long 1/T, Pulse with strengths Train given<br />

Pulse Spectra<br />

59<br />

Figure 3.17 Regular train of identical RF pulses.<br />

The F.T. of an infinite train of RF pulses is a line spectrum<br />

Figure 3.18 Spectrum of regular RF pulse train.<br />

with lines separated by the pulse repetition frequency.<br />

by two sinc function envelopes centered at frequencies f and !f . As<br />

24


Bandwidth of a pulsed signal<br />

Spectrum of receiver output has sinc shape, with sidelobes half the width of the<br />

central lobe and continuously diminishing in amplitude above and below main lobe<br />

A 1 microsecond pulse has a nullto-null<br />

bandwidth of the central<br />

lobe = 2 MHz<br />

Two possible bandwidth measures:<br />

“null to null” bandwidth<br />

B nn<br />

= 2 τ<br />

“3dB” bandwidth<br />

Unless otherwise specified, assume<br />

bandwidth refers to 3 dB bandwidth<br />

25<br />

25


Pulse-Bandwidth Connection<br />

Shorter pulse<br />

Larger bandwidth<br />

26


Strategies for radar reception<br />

We send a pulse of duration τ. How should we listen for the echo?<br />

Convolution of two rectangle functions<br />

Output<br />

Receiver<br />

Input<br />

Value at a single point<br />

• To determine range, we only need to find the rising edge of the<br />

pulse we sent. So make T 1 T 2 , then we’re integrating noise in time domain.<br />

• So how long should we close the switch?<br />

27


Detection of a signal embedded in noise<br />

Exponential pulse buried in random noise. Sine the signal and noise overlap<br />

in both time and frequency domains, the best way to separate them is not<br />

obvious.<br />

28


Most important consideration: Match the<br />

bandwidth of the signal you are looking for<br />

29


The bandwidth-noise connection<br />

The matched filter is a filter whose impulse response,<br />

or transfer function, is determined by a given signal,<br />

in a way that will result in the maximum attainable<br />

signal-to-noise ratio at the filter output when both<br />

the signal and white noise are passed through it.<br />

The optimum bandwidth of the filter, B,<br />

turns out to be very nearly equal to the<br />

inverse of the transmitted pulse width.<br />

To improve range resolution, we can<br />

reduce τ (pulse width), but that means<br />

increasing the bandwidth of transmitted<br />

signal = More noise…<br />

30


Transmitted signal: cos(2πf o<br />

t)<br />

Doppler Revisited<br />

After return from target:<br />

⎡ ⎛<br />

cos⎢<br />

2πf o ⎜ t + 2R<br />

⎣ ⎝ c<br />

⎞ ⎤<br />

⎟ ⎥<br />

⎠ ⎦<br />

To measure frequency, we need to observe signal for at least one cycle.<br />

So we will need a model of how R changes with time. Assume constant velocity:<br />

Substituting:<br />

⎡ ⎛<br />

cos⎢<br />

2π⎜<br />

f o<br />

+<br />

⎣ ⎝<br />

R = R o<br />

+ v o<br />

t<br />

f o<br />

2v o<br />

c<br />

− f D<br />

⎞<br />

⎟ t + 2πf R ⎤<br />

o o<br />

⎥<br />

⎠ c ⎦<br />

constant<br />

f D<br />

= −2 f o v o<br />

c<br />

= −2v o<br />

λ o<br />

By convention, positive Doppler frequency shift<br />

Target and radar closing<br />

31


Doppler Detection: Intuitive Approach<br />

Phasor diagram is a graphical representation of a sine wave<br />

I & Q components*<br />

I => in-phase component<br />

Acos(φ)<br />

Q => in-quadrature<br />

component<br />

Asin(φ)<br />

Consider strobe light as<br />

cosine reference wave<br />

at same frequency but<br />

with initial phase = 0<br />

*relative to reference signal<br />

32


Doppler Detection: Intuitive Approach<br />

Closing on target – positive Doppler shift<br />

e-<br />

Transmitted<br />

Received<br />

φ 1<br />

φ 2<br />

Target’s Doppler frequency shows up<br />

as a pulse-to-pulse shift in phase.<br />

33


I and Q Demodulation<br />

The fundamental output of a pulsed Doppler radar is a<br />

time series of complex numbers.<br />

34


I and Q Demodulation in Frequency Domain<br />

Transmitted signal<br />

Frequency domain<br />

cos(2πf o<br />

t)<br />

0<br />

f o<br />

-f o<br />

f o +f D<br />

Doppler shifted<br />

cos(2π( f o<br />

+<br />

f D<br />

)t)<br />

-f o -f D<br />

f D<br />

cos(2πf o<br />

t)<br />

cos(2πf D<br />

t)<br />

-f o -f D<br />

Cosine is even function, so sign of f D (and, hence, velocity) is lost.<br />

What we need instead is:<br />

exp( j2πf D<br />

t) = cos(2πf D<br />

t) + j sin(2πf D<br />

t)<br />

-f D f D<br />

f o +f D<br />

exp( j2πf D<br />

t)<br />

The analytic signal<br />

cannot be measured directly, but the cos and sin components<br />

via mixing with two oscillators with same frequency but orthogonal phases. The components<br />

are called “in phase” (or I) and “in quadrature” (or Q):<br />

Aexp( j2πf D<br />

t) = I +<br />

jQ<br />

35<br />

35


Example: Doppler Shift of a Meteor Trail<br />

• Collect N samples of I(t k ) and Q(t k ) from a target<br />

• Compute the complex FFT of I(t k )+jQ(t k ), and find the maximum in the<br />

frequency domain<br />

• Or compute “phase slope” in time domain.<br />

Meteor Echo I & Q<br />

Meteor Echo Power<br />

SNR (dB)<br />

Voltage<br />

Time (s)<br />

36


Does this strategy work for ISR?<br />

Typical ion-acoustic velocity: 3 km/s<br />

Doppler shift at 450 MHz: 10kHz<br />

Correlation time: 1/10kHz = 0.1 ms<br />

Required PRF to probe ionosphere (500km range):<br />

300 Hz<br />

Plasma has completely decorrelated by the time we send the next pulse.<br />

φ 1<br />

φ 2<br />

37


Does this strategy work for ISR?<br />

Typical ion-acoustic velocity: 3 km/s<br />

Doppler shift at 450 MHz: 10kHz<br />

Correlation time: 1/10kHz = 0.1 ms<br />

Required PRF to probe ionosphere (500km range):<br />

300 Hz<br />

Alternately, the Doppler shift is well Pulse beyond Spectra the max unambiguous<br />

Doppler defined by the Inter-Pulse Period T.<br />

59<br />

Figure 3.18 Spectrum of regular RF pulse train.<br />

38


The ISR target is “overspread”<br />

f d >>1/τ (Doppler changes significantly during one pulse)<br />

– Must sample multiple times per pulse<br />

– Result: Doppler can be determined from single pulse.<br />

Range<br />

Time<br />

τ S<br />

39


ISR Receiver: Doppler filter bank<br />

Doppler Filter Bank<br />

Doppler Range<br />

BPF1<br />

BPF2<br />

BPF<br />

f L ,f H<br />

G<br />

BPF3<br />

BPF4<br />

F1 F2 …<br />

Choose f L and f H such that<br />

f L f 0 +f dmax<br />

BPF5<br />

BPF6<br />

Practical Problem: It is hard to make narrow band (High Q) RF filters:<br />

Q =<br />

f 0<br />

f H<br />

− f L<br />

40


ISR Receiver: I and Q plus decorrelation<br />

LPF<br />

I(t i ) “in phase”<br />

BPF<br />

f L ,f H<br />

G<br />

Power<br />

splitter<br />

π/2 phase<br />

shift.<br />

LPF<br />

Q(t i ) “quadrature”<br />

We have time series of V(t) =I(t) + jQ(t), how do I compute the Doppler spectrum?<br />

Estimate the autocorrelation<br />

function (ACF) by computing products<br />

of complex voltages<br />

(“lag products”)<br />

ρ(τ ) = V(t)V * (t + τ )<br />

S<br />

FFT<br />

Power spectrum is Fourier<br />

Transform of the ACF<br />

41


Pulse compression and matched<br />

“If you know what you’re looking for, it’s easier to find.”<br />

c. Kernel<br />

Problem: Find the precise location of the target in the image.<br />

Solution: Correlation<br />

42


Range detection: revisited<br />

ΔR = cτ 2 =<br />

c<br />

2B<br />

τ = Pulse length<br />

B = Bandwidth<br />

• For high range resolution we want short pulse large<br />

bandwidth<br />

• For high SNR we want long pulse small bandwidth<br />

• Long pulse also uses a lot of the duty cycle, can’t listen as<br />

long, affects maximum range<br />

• The Goal of pulse compression is to increase the<br />

bandwidth (equivalent to increasing the range resolution)<br />

while retaining large pulse energy.<br />

43


Linear Frequency Modulation (LFM or<br />

44


Matched filter detection of a chirp<br />

45


Barker codes<br />

+<br />

off<br />

_<br />

46


Matched filtering of Barker Code<br />

3 bit code<br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!