05.07.2014 Views

Sustainable Road Transport - SFFE

Sustainable Road Transport - SFFE

Sustainable Road Transport - SFFE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sustainable</strong> <strong>Road</strong> <strong>Transport</strong><br />

Ann Mari Svensson<br />

SINTEF Materials and Chemistry<br />

Lunch meeting, 27.02.2008,<br />

The Centre for Renewable Energy<br />

”Renewable energy for improved<br />

environment and creation of values”<br />

www.sffe.no


Emissions from transportation<br />

The transportation sector<br />

contributes by 37 %<br />

to the domestic<br />

emission of GHGs<br />

Aviation Railw ay<br />

8 % 0 %<br />

Ships<br />

28 %<br />

Personal<br />

(car+bus)<br />

46 %<br />

Sources: Facts 2007, SSB<br />

Trucks<br />

18 %


Increase in road transportation (source: SSB)<br />

~1.5%<br />

~3.2 %<br />

Estimated increase 1 :<br />

Private vehicles: 0.7% (-> 2012) 0.8% (2012-2020)<br />

Heavy vehicles: 1.7% (-> 2012) 0.9% (2012-2020)<br />

1<br />

St. meld. No 24, Nasjonal <strong>Transport</strong>plan 2006-2015


The transportation sector<br />

Emissions from <strong>Transport</strong>ation down by 78 %,<br />

14,4 million tons CO 2 equ. within 2050<br />

Low emission path:<br />

50-80 % reduction by 2050,<br />

Stabilize CO 2<br />

at around 450 ppmv<br />

(ca 550 ppmv CO 2<br />

equiv.),<br />

Temp increase ~3-4 o C<br />

Source: Commission of Low Emissions, 2006


Options for reduction of GHG emissions<br />

• More environmentally friendly fuels and energy<br />

carriers, like<br />

– electricity, biofuels and hydrogen<br />

• More efficient vehicles<br />

– Power trains with improved fuel/energy utilization<br />

(including also hybrid vehicles and all-electric cars)<br />

– Reduced weight of vehicles<br />

• Reduction of the transportation<br />

– Reduction of transportation work in terms of person km,<br />

and ton km of transported goods<br />

– Increased number of passengers per vehicle, public<br />

transport, car-pooling etc.


Alternative technologies and fuels for emission<br />

reduction<br />

• Improved efficiency<br />

(Existing and new technology)<br />

– Combustion Hybrid<br />

– Batteries drive<br />

– Fuel cells<br />

• Hybrid vehicles<br />

– ~ 40% improvement of fuel econonomy,<br />

city driving<br />

- US: 1% market share 2005<br />

– Toyota 61%, Honda 30%, Ford 5%, GM 4%<br />

– Benefits, California (Air Resource Board):<br />

• Federal Tax Deduction (US$ 2000)<br />

• ”Clean Air Vehicle Stickers”<br />

> 45 miles/gallon (CNG, H 2 og el-biler)<br />

• Alternative fuels<br />

– Ethanol<br />

– Biodiesel<br />

– Hydrogen<br />

– NG/LNG<br />

– LPG<br />

– DME<br />

Hytan<br />

Hytan-fyllestasjon<br />

fyllestasjon, Malmø


<strong>Transport</strong>ation<br />

Efficiency, „tank-to-wheel“, EDC<br />

90 %<br />

80 %<br />

Elektrisk motor<br />

70 %<br />

1liter petrol=100%<br />

Effektivitet<br />

Private<br />

car Driving<br />

1997<br />

(CCFA)<br />

91% Idling<br />

9%<br />

Total amount of<br />

Mechanical<br />

energy to heat<br />

energy<br />

72%<br />

19%<br />

Kinetic<br />

energy<br />

Friction<br />

16%<br />

Heat loss<br />

1%<br />

cooling system<br />

Loss,<br />

auxiliarie<br />

47% Heat loss,<br />

2%<br />

exhaust<br />

Loss,<br />

25%<br />

Resistance<br />

breakin<br />

11%<br />

5%<br />

60 %<br />

50 %<br />

40 %<br />

30 %<br />

20 %<br />

10 %<br />

0 %<br />

Hybrid<br />

Bensinmotor<br />

Turtall<br />

Brenselcelle<br />

Dieselmotor


Plug-in hybrids<br />

Toyota plug-in hybrid,<br />

Available 2010,<br />

7 mile battery range<br />

Source: Electric power research institute, 2006


Plug-in hybrids, typical fuel consumption: 40% of<br />

conventional vehicles<br />

Source: Electric power research institute, 2003


Hydrogen in the transportation sector: Vehicles<br />

• Conventional internal combustion engines (ICEs)<br />

– Otto engines (e.g., BMW, Ford)<br />

– Wankel engine (Mazda)<br />

• Hybrid vehicles (with ICEs converted to hydrogen)<br />

– Hybridization with ICE as only power source (e.g., Toyota Prius)<br />

– Plug-in hybrids (prototypes coming, e.g., Toyota, GM)<br />

• Fuel cell vehicles<br />

– Range extenders (e.g., Th!nk Hydrogen)<br />

For lease: 20 000<br />

NOK/month!!<br />

HYNOR<br />

– Weak or no hybridisation (e.g., Opel Zafira HydroGen 3)<br />

– Strong hybrids (e.g., Toyota FCV and Honda FCX)<br />

Toyota Prius Hydrogen Mazda RX8 BMW 7-series


Hydrogen supply and storage<br />

• Renewable: Water electrolysis (commercially available, Norsk<br />

Hydro++) alkaline electrolyzers, PEM electrolyzers<br />

• Onboard storage, compressed hydrogen, 350 – 700 bar<br />

• Challenges:<br />

– Vehicles, infrastructure, costs, ”hen and egg”


Fuel cell activities, NTNU and SINTEF<br />

Activities:<br />

• Performance characterisation and evaluation<br />

• Assessment of membrane/electrode degradation<br />

• Effect of fuel impurities (CO, Cl 2 )<br />

• Modelling (electrodes, single cells)<br />

• Thermal effects<br />

• Alternative fuels (reformed hydrogen,<br />

methanol)


Hydrogen production, activities at NTNU<br />

• PEM-water electrolysis<br />

– From catalyst development to product<br />

1997<br />

2001<br />

H 2 -production rate<br />

Nm 3 H 2 /hour per m 2 electrode area<br />

Cell voltage /Volt<br />

0 5 10 15<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

PEM electrolyser<br />

1.2<br />

Alkaline electrolyser<br />

1.0<br />

0 10 20 30 40<br />

4.4<br />

3.9<br />

3.4<br />

2.9<br />

2.4<br />

Specific energy consumption<br />

kWh/Nm 3 H2<br />

2006<br />

Current density / kA/m 2


Biofuels<br />

• Could potentially contribute to significant GHG emission reductions<br />

• 1st generation: bioethanol, biodiesel – from plants<br />

• 2nd generation: bioethanol, biodiesel, flexible raw material,<br />

incl. wood/waste wood/waste -> Norway<br />

• Challenges: Competition with other applications<br />

Domestic utilization of biomass:<br />

• Domestic biomass resources: ca 14 TWh/year used for buildings/industry<br />

(annual growth ~30 TWh/year)<br />

• Ambitions for increased utilization:<br />

Source: Tijmensen et al,<br />

– 14 TWh/year (Klimameldingen)<br />

– 20 TWh/year (NVE)<br />

8 TWh/year<br />

– 25 TWh/year (optimists)<br />

• Challenges: Not yet commercial<br />

Large scale production (2nd gen)


2nd generation biodiesel<br />

• Synthetic biodiesel: ca 40% conversion efficiency from wood<br />

Source: Concawe


Bioethanol<br />

Conversion efficiency from wood ~ 30 – 35 %


Bio-alcohol Production from<br />

Ligno-cellulosic Biomass<br />

Lignocellulosic<br />

biomass<br />

Pre-treatment Hydrolysis Fermentation<br />

Distillation or<br />

separation<br />

Wood, grain straw,<br />

bagasse<br />

Whole process<br />

analysis<br />

Physical separation of<br />

the lignocellulosic fibers<br />

Enzymatic or chemical<br />

hydrolysis of cellulose<br />

and hemicellulose to<br />

release C6 and C5<br />

mono-sugars<br />

Fermentation of C6<br />

and C5 mono-sugars<br />

to alcohols by<br />

microorganisms<br />

Separation and<br />

concentration of<br />

alcohol<br />

Nordic collaboration project<br />

Internal SINTEF project<br />

Evaluation of the<br />

biorefinery<br />

concept


Summary, alternative fuels and technology<br />

Biofuel, Hybrid, All-electric, Hydrogen<br />

Biofuel, Hybrid


Emissions from road transport<br />

Propulsion<br />

technology<br />

Vehicle<br />

Average age of<br />

private cars (2006):<br />

19.7 years<br />

Distribution [%]<br />

Ca 52% of person km on short trips (< 20 km)<br />

25 %<br />

20 %<br />

15 %<br />

10 %<br />

5 %<br />

0 %<br />

< 1 km 1-1.9<br />

km<br />

Source: TØI<br />

Fuel<br />

2-2.9<br />

km<br />

3-4.9<br />

km<br />

5-9.9<br />

km<br />

Travel distance [km]<br />

Drive pattern<br />

10-<br />

19.9<br />

km<br />

> 20<br />

km<br />

Average number of persons in car<br />

Average number of persons per car<br />

decreases over time<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0-2 km 2-5 km 5-10 km 10-20<br />

km<br />

20-50<br />

km<br />

Length of trip [km]<br />

50-100<br />

km<br />

> 100<br />

km


Scenarios for emission reduction<br />

Scenario A: ”conventional” technologies<br />

• Large scale, domestic production of biofuel, 20 TWh biomass,<br />

reserved for heavy duty vehicles:<br />

– 2012: FT plant, synthetic diesel, 8TWh biomass<br />

– 2016: Small scale ethanol production, 4 TWh biomass<br />

– 2022: FT plant for synthetic diesel, 8TWh<br />

• Growth in transport demand is assumed according to public forecasts.<br />

• Maximum number of electric vehicles:<br />

31 % of the car park, corresponding to 1 car for every household with<br />

2 or more cars.


Scenario A<br />

Commission of Low Emissions<br />

- is it at all possible?<br />

Share of new cars<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Electric cars<br />

Hybrid cars<br />

Conv. cars<br />

0<br />

2000 2010 2020 2030 2040 2050<br />

Year


Scenario A<br />

Commission of Low Emissions<br />

- is it at all possible?<br />

100 %<br />

Car pool<br />

80 %<br />

60 %<br />

40 %<br />

Electric cars<br />

Hybrid vehicles<br />

(fossil)<br />

Conv. cars<br />

20 %<br />

0 %<br />

2005<br />

2010<br />

2015<br />

2020<br />

2025<br />

2030<br />

2035<br />

2040<br />

2045<br />

2050<br />

Year


Scenario A<br />

14<br />

Commission of Low Emissions<br />

- is it at all possible?<br />

Mt CO2 equiv pa<br />

12<br />

10<br />

8<br />

6<br />

4<br />

Reference path<br />

Bio+hybrid+electric<br />

Low emission path<br />

Bio + Plug-in<br />

hybrid<br />

2<br />

0<br />

2000 2010 2020 2030<br />

Year<br />

2040 2050 2060


Summary, results (scenario A)<br />

• 62 % coverage of fuel for heavy duty vehicles from domestic biofuel<br />

(20 TWh)<br />

• Corresponding emission reduction (biofuel) is 2.2 Mton CO 2 equiv per<br />

year<br />

• 20 TWh biomass for residential heating<br />

⇒ replace 15 TWh of electricity,<br />

⇒ reduction of 12 Mton CO 2 equiv per year, electric vehicles<br />

(Scandinavia)<br />

• Electric vehicles (31% of all cars), 24 % of the total vehicle km<br />

travelled, consumption of 2.2 TWh, emission reduction amounts to<br />

2.2 Mton CO 2 equiv per year.


Scenario B: Extensive introduction of hydrogen<br />

• In addition to the assumptions introduced for Scenario A,<br />

the following is assumed:<br />

– Extensive introduction of hydrogen vehicles from 2020.<br />

In 2030-2035, all new cars purchased will be either<br />

hydrogen vehicles, or electric vehicles.<br />

=> Zero emission road transportation in 2050.


Scenario B<br />

Commission of Low Emissions<br />

- is it at all possible?<br />

Share of new cars<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

Hydrogen cars<br />

Electric cars<br />

Hybrid cars<br />

Conventional cars<br />

0.2<br />

0<br />

2000 2010 2020 2030 2040 2050 2060<br />

Year


Scenario B<br />

100 %<br />

Commission of Low Emissions<br />

- is it at all possible?<br />

Car pool<br />

80 %<br />

60 %<br />

40 %<br />

Hydrogen<br />

Electric<br />

Hybrid<br />

Conventional<br />

20 %<br />

0 %<br />

2005 2010 2015 2020 2025 2030 2035 2040 2045 2050<br />

Year


Commission of Low Emissions<br />

- is it at all possible?<br />

Scenario B<br />

14<br />

12<br />

Mt CO2 equiv pa<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Reference path<br />

Bio+hybrid+el+H2 (ely)<br />

Bio+hybrid+el+H2(NG,CCS)<br />

Low emission path<br />

”Other mobile sources”<br />

Lack of biofuel for heavy vehicles<br />

0<br />

2000 2010 2020 2030 2040 2050 2060<br />

Year


Further implications, Scenario B<br />

• Introduction of hydrogen<br />

⇒ reduction of 4.5-5 Mton CO 2 equiv<br />

• Power for hydrogen to FC vehicles (2050)<br />

⇒ 12 TWh annually.<br />

• NG to hydrogen (incl. CCS) for H2 ICE hybrid vehicles (2050)<br />

⇒17 TWh NG (LHV).<br />

• By gasification of 20 TWh biomass to hydrogen<br />

⇒ reduction of 6.2 Mton CO 2 equiv per year in FC car<br />

⇒ 3.8 Mton CO 2 equiv per year in a ICE H2 hybrid vehicle


Konklusjon<br />

‣Stor utfordring å erstatte fossile<br />

drivstoff – ressurser må utnyttes<br />

optimalt!<br />

‣Reduksjon av utslipp fra veitrafikk er<br />

mulig, men tar lang tid.<br />

Begynn nå!


<strong>SFFE</strong><br />

Contact Information<br />

Director Johan Hustad, NTNU<br />

E-mail: johan.e.hustad@ntnu.no<br />

Co-ordinator Åse Lekang Sørensen<br />

E-mail: ase.lekang.sorensen@ntnu.no<br />

www.sffe.no


Teknologistatus<br />

Brenselcellebiler (status 2007)<br />

Specifications<br />

Number of passengers 4<br />

Motor<br />

Max.<br />

Output<br />

Max.<br />

Torque<br />

Type<br />

95kW (129PS, 127 horsepower)<br />

256N•m (26.1kg•m, 188.8 lb-ft.)<br />

AC synchronous motor (Honda mfg.)<br />

• Honda Toyota<br />

– Imponerende ytelse (se tabell t.h.)<br />

– Rekkevidde 570 km!<br />

• Effektivitet på 60%!<br />

• Kostnad ikke oppgitt<br />

Fuel cell<br />

stack<br />

Fuel<br />

Type<br />

Output<br />

Type<br />

Storage<br />

Tank<br />

Capacity<br />

Dimensions (L×W×H)<br />

Max. Speed<br />

Energy Storage<br />

Vehicle Range*<br />

PEFC<br />

(proton exchange membrane fuel cell,<br />

Honda Mfg.)<br />

100kW<br />

Compressed hydrogen<br />

High-pressure hydrogen tank (350atm<br />

171 liters<br />

4,760 × 1,865 × 1,445mm<br />

(187.4 × 73.4 × 56.9 inches)<br />

160km/h (100 mph)<br />

Lithium Ion Battery<br />

570km (354 miles)<br />

* When driven in LA4 mode (Honda calculations)


Alternative fuels in transportation<br />

100 %<br />

90 %<br />

80 %<br />

Share of fuel<br />

70 %<br />

60 %<br />

50 %<br />

40 %<br />

30 %<br />

20 %<br />

10 %<br />

0 %<br />

All no.2 cars (urban)<br />

Primarily for trucks(ships)<br />

2005<br />

2010<br />

2015<br />

2020<br />

2025<br />

2030<br />

2035<br />

2040<br />

2045<br />

2050<br />

2055<br />

2060<br />

2065<br />

Gasoline<br />

Diesel<br />

Hydrogen (Fuel Cells)<br />

Hydrogen (ICE)<br />

Electrical vehicles<br />

Bio fuels<br />

2070<br />

2075<br />

2080<br />

2085<br />

2090<br />

2095<br />

2100<br />

2105

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!