05.07.2014 Views

Joint modelling of transit and stellar temperature using an MCMC ...

Joint modelling of transit and stellar temperature using an MCMC ...

Joint modelling of transit and stellar temperature using an MCMC ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 6. JOINT MODELLING OF TRANSIT AND STELLAR TEMPERATURE USING AN <strong>MCMC</strong> APPROACH 179<br />

6.2.3 Discussion<br />

The <strong>MCMC</strong> best-fit models <strong>of</strong> CoRoT-2b’s IRF-filtered <strong>tr<strong>an</strong>sit</strong> light curve are presented in<br />

Figure 6.8, <strong><strong>an</strong>d</strong> the parameters are summarised in Table 6.3. These models <strong><strong>an</strong>d</strong> values<br />

are compared to the parameters from Alonso et al. (2008) <strong><strong>an</strong>d</strong> the parameters derived<br />

with the Levenberg-Marquardt algorithm (fitting method used in Chapter 3).<br />

Table 6.3: Comparison table <strong>of</strong> the parameters <strong>of</strong> CoRoT-2b presented in the discovery<br />

paper, derived <strong>using</strong> the Levenberg-Marquardt algorithm (LMA), <strong><strong>an</strong>d</strong> derived <strong>using</strong> the<br />

Markov Chain Monte Carlo (<strong>MCMC</strong>) without <strong><strong>an</strong>d</strong> with a prior on the T eff .<br />

Alonso et al. (2008) LMA <strong>MCMC</strong><br />

no T eff T eff=5516±33K<br />

P [d] <br />

T 0-2454237 [d] 0.53562 ± 0.00014 0.53534 ± 0.00002 0.53518 +0.00006<br />

−0.00006 0.53518 +0.00006<br />

−0.00007<br />

R p/R 0.1667 ± 0.0006 0.1621 ± 0.0003 0.1618 +0.0005<br />

−0.0010 0.1618 +0.0006<br />

−0.0011<br />

b 0.26 ± 0.01 0.25 ± 0.02 0.25 +0.04<br />

−0.13 0.24 +0.05<br />

−0.14<br />

a/R 6.70 ± 0.03 6.56 ± 0.04 6.56 +0.16<br />

−0.08 6.57 +0.17<br />

−0.09<br />

i [ ◦ ] 87.8 ± 0.1 87.8 ± 0.2 87.9 +1.1<br />

−0.4 87.9 +1.2<br />

−0.4<br />

u a 0.41 ± 0.03 <br />

u b 0.06 ± 0.03 <br />

e <br />

Figure 6.8: Top p<strong>an</strong>el: the binned phase-folded <strong>tr<strong>an</strong>sit</strong> <strong>of</strong> CoRoT-2b, zoomed over the<br />

first half <strong>of</strong> the IRF-filtered <strong>tr<strong>an</strong>sit</strong>. Over-plotted are the best <strong>tr<strong>an</strong>sit</strong> models derived with<br />

the LMA <strong><strong>an</strong>d</strong> with the different <strong>MCMC</strong> runs. Bottom p<strong>an</strong>el: the residual to the data <strong>of</strong><br />

the LMA <strong><strong>an</strong>d</strong> <strong>MCMC</strong> <strong>tr<strong>an</strong>sit</strong> models.<br />

Table 6.3 <strong><strong>an</strong>d</strong> Figure 6.8 show that both the LMA <strong><strong>an</strong>d</strong> the <strong>MCMC</strong> derive consistent<br />

pl<strong>an</strong>et parameters <strong><strong>an</strong>d</strong> <strong>tr<strong>an</strong>sit</strong> model to the data. However, the uncertainties on the<br />

parameters derived from the <strong>MCMC</strong> are more conservative <strong><strong>an</strong>d</strong> better representative<br />

<strong>of</strong> the shape <strong>of</strong> the parameter space around the best model. The comparison show<br />

that the LMA has also found the global best minimum for this light curve. It also shows<br />

that adding a constraint on the T eff does not ch<strong>an</strong>ge the pl<strong>an</strong>et parameters derived

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!