05.07.2014 Views

Dextra Pacific Limited 02 Nov 2010 - Arnaud de Surville

Dextra Pacific Limited 02 Nov 2010 - Arnaud de Surville

Dextra Pacific Limited 02 Nov 2010 - Arnaud de Surville

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Sustainability and rehabilitation using FRPs<br />

1<br />

1<br />

<strong>Dextra</strong> <strong>Pacific</strong> <strong>Limited</strong><br />

<strong>02</strong> <strong>Nov</strong> <strong>2010</strong> - <strong>Arnaud</strong> <strong>de</strong> <strong>Surville</strong>


Sustainability and rehabilitation using FRPs 2<br />

Preamble<br />

• Aerospace industry<br />

• Aslan FRP<br />

• Rehabilitation with FRP<br />

• Objectives of presentation


Sustainability and rehabilitation using FRPs 3<br />

In<strong>de</strong>x of presentation<br />

• What are FRPs?<br />

• Why use FRPs?<br />

• Repair technologies<br />

• Case studies


Sustainability and rehabilitation using FRPs 4<br />

In<strong>de</strong>x of presentation<br />

• What are FRPs?<br />

• Why use FRPs?<br />

• Repair technologies<br />

• Case studies


Sustainability and rehabilitation using FRPs 5<br />

FRP stands for:<br />

• Fiber Reinforced Plastics


Sustainability and rehabilitation using FRPs 6<br />

Commonly used fibres<br />

Glass<br />

Carbon<br />

Aramid


Sustainability and rehabilitation using FRPs 7<br />

Typical tensile performance


Sustainability and rehabilitation using FRPs 8<br />

Fibre<br />

Resin<br />

Glass<br />

Aramid<br />

Carbon<br />

+<br />

Poly-ester<br />

Vinyl-ester<br />

Epoxy


Typical profile<br />

Sustainability and rehabilitation using FRPs 9


Sustainability and rehabilitation using FRPs 10<br />

Composite behavior – matrix<br />

Light Microscopy 60X<br />

Light Microscopy 240X


Sustainability and rehabilitation using FRPs 11<br />

Composite behavior - fibers


Sustainability and rehabilitation using FRPs 12<br />

Composite behavior – resin


Pultrusion process<br />

Sustainability and rehabilitation using FRPs 13


Sustainability and rehabilitation using FRPs 14<br />

Fabric<br />

Laminates<br />

Rods<br />

Tape


Sustainability and rehabilitation using FRPs 15<br />

In<strong>de</strong>x of presentation<br />

• What are FRPs?<br />

• Why use FRPs?<br />

• Repair technologies<br />

• Case studies


Sustainability and rehabilitation using FRPs 16<br />

Why use FRP?<br />

• Impervious to corrosion<br />

• ¼ weight of steel<br />

• 100 to 400% strength of steel<br />

• Low modulus


Sustainability and rehabilitation using FRPs 17<br />

Two <strong>de</strong>sign approaches = optimization<br />

• Tensile failure<br />

• Concrete failure


Sustainability and rehabilitation using FRPs 18<br />

Common applications<br />

Bridge <strong>de</strong>cks<br />

Marine works<br />

Decorative concrete<br />

Concrete pavement


Sustainability and rehabilitation using FRPs 19<br />

Tunnel excavation<br />

Softeye technology


Sustainability and rehabilitation using FRPs 20<br />

Environment <strong>de</strong>gradation<br />

Overloading<br />

Displacements


Corrosion<br />

Sustainability and rehabilitation using FRPs 21


Structural failure<br />

Sustainability and rehabilitation using FRPs 22


Acci<strong>de</strong>ntal damage<br />

Sustainability and rehabilitation using FRPs 23


Overloading<br />

Sustainability and rehabilitation using FRPs 24


Aging<br />

Sustainability and rehabilitation using FRPs 25


Sustainability and rehabilitation using FRPs 26<br />

In<strong>de</strong>x of presentation<br />

• What are FRPs?<br />

• Why use FRPs?<br />

• Repair technologies<br />

• Case studies


Sustainability and rehabilitation using FRPs 27<br />

Repair and strengthening<br />

Retrofit, including seismic<br />

Conservation


Sustainability and rehabilitation using FRPs 28<br />

Constraints<br />

• Minimum intervention<br />

• Change of function/use (e.g. public)<br />

• Repair rather than replace or reconstruction<br />

• Remove source of <strong>de</strong>gradation<br />

• Combination of various materials<br />

• Rehabilitation should be reversible<br />

• Design life<br />

• high performance materials


Sustainability and rehabilitation using FRPs 29<br />

Three main phases<br />

• Diagnosis of existing conditions<br />

• Evaluation and characterization of repairs<br />

• Long term monitoring<br />

• Non Destructive Evaluation<br />

▫ Q/A: encapsulation, <strong>de</strong>pth, moisture…<br />

▫ Q/C: bond strength, durability tests


Sustainability and rehabilitation using FRPs 30<br />

Conventional techniques<br />

bracing/confinement<br />

Bon<strong>de</strong>d steel plates <br />

post-tensioning


Load [kN]<br />

Sustainability and rehabilitation using FRPs 31<br />

Conventional techniques<br />

140<br />

120<br />

100<br />

Strengthened prestress<br />

Strengthened<br />

80<br />

Reference<br />

60<br />

40<br />

20<br />

0<br />

0 10 20 30 40 50 60 70<br />

Midpoint <strong>de</strong>flection [mm]


Sustainability and rehabilitation using FRPs 32<br />

Conventional techniques<br />

• Add “<strong>de</strong>ad weight” to the repaired structure<br />

• Subject to corrosion and vandalism<br />

• Tedious to install<br />

• 99% custom ma<strong>de</strong><br />

• Aesthetically unsatisfactory<br />

• Costly and ugly


Sustainability and rehabilitation using FRPs 33<br />

1 st Generation of FRP repair


Sustainability and rehabilitation using FRPs 34<br />

Early approach<br />

• Woven CFRP fabric<br />

• Cured CFRP laminates


Externally bon<strong>de</strong>d fabric<br />

Sustainability and rehabilitation using FRPs 35


Externally bon<strong>de</strong>d plates<br />

Sustainability and rehabilitation using FRPs 36


Sustainability and rehabilitation using FRPs 37<br />

EBR limitations<br />

• Require heavy surface preparation<br />

• May require several layers<br />

• Remain exposed<br />

• Aesthetic compromise<br />

• Application subject to weather conditions<br />

• Soffit of beams and columns<br />

• Messy and wasted efficiency


Sustainability and rehabilitation using FRPs 38


Sustainability and rehabilitation using FRPs 39<br />

Embed<strong>de</strong>d profiles<br />

• Rods<br />

• Tapes


NSM innovation<br />

Sustainability and rehabilitation using FRPs 40


NSM installation<br />

Sustainability and rehabilitation using FRPs 41


EBR vs. NSM<br />

Sustainability and rehabilitation using FRPs 42


Sustainability and rehabilitation using FRPs 43<br />

EBR vs. NSM<br />

Courtesy of R. El-Hacha, J.N da Silva Filho, G.S. Melo, S.H. Rizkalla


Sustainability and rehabilitation using FRPs 44<br />

NSM benefits<br />

• Maximized efficiency<br />

• Minimum surface preparation<br />

• Quick installation<br />

• Concealed, preserved aesthetics<br />

• Suitable for negative moments<br />

• Cost effective and uncompromising


Sustainability and rehabilitation using FRPs 45<br />

3 rd Generation of FRP repair


Sustainability and rehabilitation using FRPs 46<br />

3 rd generation FRP: PT tendon<br />

Burj Dubai - UAE


Sustainability and rehabilitation using FRPs 47<br />

3 rd generation FRP: PT tendon


Sustainability and rehabilitation using FRPs 48<br />

3 rd generation FRP: PT tendon<br />

14 th century cloister in Orvieto - Italy<br />

Courtesy of Fidia Srl


Sustainability and rehabilitation using FRPs 49<br />

3 rd generation FRP: PT tendon


Sustainability and rehabilitation using FRPs 50<br />

Now a five star boutique hotel…


Sustainability and rehabilitation using FRPs 51<br />

PT promises<br />

• State of the art performance<br />

• Minimum invasion<br />

• Multipurpose<br />

• Active repair<br />

• Costly but <strong>de</strong>adly efficient


Design gui<strong>de</strong>lines<br />

Sustainability and rehabilitation using FRPs 52


Sustainability and rehabilitation using FRPs 53<br />

In<strong>de</strong>x of presentation<br />

• What are FRPs?<br />

• Why use FRPs?<br />

• Repair technologies<br />

• Case studies


Sustainability and rehabilitation using FRPs 54<br />

Masonry strengthening


Sustainability and rehabilitation using FRPs 55<br />

Seismic/blast prevention


Joint strengthening<br />

Sustainability and rehabilitation using FRPs 56


Sustainability and rehabilitation using FRPs 57<br />

Close up<br />

FRP rod


Sustainability and rehabilitation using FRPs 58<br />

Bridge Rehabilitation


Sustainability and rehabilitation using FRPs 59


Sustainability and rehabilitation using FRPs 60<br />

Traditional concrete repair


Conceptual <strong>de</strong>sign<br />

Sustainability and rehabilitation using FRPs 61


Sustainability and rehabilitation using FRPs 62<br />

Deck strengthening<br />

Groove cut in one single pass


Sustainability and rehabilitation using FRPs 63<br />

Minimum traffic interruption


Sustainability and rehabilitation using FRPs 64<br />

Retrofit of cement silos


Sustainability and rehabilitation using FRPs 65<br />

Blue Circle Storage facility - USA


Sustainability and rehabilitation using FRPs 66<br />

Conventional repairs<br />

Crack injection and substrate<br />

concrete replacement


Sustainability and rehabilitation using FRPs 67<br />

NSM preparations<br />

Groove cutting


Sustainability and rehabilitation using FRPs 68<br />

CFRP rods placement<br />

Filling grooves with epoxy<br />

Inserting Aslan rods


Sealing the rods<br />

Sustainability and rehabilitation using FRPs 69


Full capacity restored<br />

Sustainability and rehabilitation using FRPs 70


Sustainability and rehabilitation using FRPs 71<br />

Woo<strong>de</strong>n beams strengthening


Sustainability and rehabilitation using FRPs 72<br />

Private resi<strong>de</strong>nce conversion - Italy


Sustainability and rehabilitation using FRPs 73<br />

NSM vs. bolted steel plates<br />

Conventional<br />

NSM


Chiseled grooves<br />

Sustainability and rehabilitation using FRPs 74


Almost invisible…<br />

Sustainability and rehabilitation using FRPs 75


Sustainability and rehabilitation using FRPs 76<br />

Stone constructions


Sustainability and rehabilitation using FRPs 77<br />

Pietersheim 12s castle - Belgium<br />

(Courtesy of Triconsult)


Sustainability and rehabilitation using FRPs 78<br />

Angkor Wat temple - Cambodia<br />

Stone work reinforcement<br />

and<br />

pinning


Pillars<br />

reinforcement<br />

Sustainability and rehabilitation using FRPs 79<br />

Saint Trudo Church - Belgium<br />

(Courtesy of Triconsult)


New RC structure<br />

Sustainability and rehabilitation using FRPs 80


Sustainability and rehabilitation using FRPs 81<br />

Galaxy Casino Complex - Macau


Sustainability and rehabilitation using FRPs 82<br />

Constraints<br />

• Design requirements<br />

• Time<br />

• Height<br />

• “first time”


Sustainability and rehabilitation using FRPs 83<br />

Detailed <strong>de</strong>sign<br />

Layout plan<br />

Rods arrangement


Site conditions<br />

Sustainability and rehabilitation using FRPs 84


Sustainability and rehabilitation using FRPs 85<br />

Grooving and rod laying


Done in 48h!<br />

Sustainability and rehabilitation using FRPs 86


Conclusion<br />

Sustainability and rehabilitation using FRPs 87


Sustainability and rehabilitation using FRPs 88<br />

Conclusion<br />

• Versatility and performance<br />

• Cost effectiveness<br />

• Constant <strong>de</strong>velopment<br />

• Plentiful research<br />

• Conservative industry<br />

▫ Attitu<strong>de</strong> towards innovation<br />

▫ Design standards


Sustainability and rehabilitation using FRPs 89<br />

Hong Kong in the headlines…


Sustainability and rehabilitation using FRPs 90<br />

Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!