04.07.2014 Views

Journal of Luminescence 107 (2004) - Department of Physics ...

Journal of Luminescence 107 (2004) - Department of Physics ...

Journal of Luminescence 107 (2004) - Department of Physics ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ARTICLE IN PRESS<br />

M. Drobizhev et al. / <strong>Journal</strong> <strong>of</strong> <strong>Luminescence</strong> <strong>107</strong> (<strong>2004</strong>) 194–202 199<br />

fluorescence spectrum:<br />

Fðn; TÞ<br />

¼ KðnÞ½1 þ MðTÞ cosð2pDtn þ DjðTÞÞŠ;<br />

ð7Þ<br />

where the amplitude MðTÞ and the phase shift<br />

DjðTÞ <strong>of</strong> the grating are given by<br />

MðTÞ ¼bf½A þ B cos d 2 þ C cos d 1<br />

þ D cosðd 1 þ d 2 ÞŠ 2<br />

þ½B sin d 2 þ C sin d 1<br />

þ D sinðd 1 þ d 2 ÞŠ 2 g 1=2 ;<br />

ð8Þ<br />

DjðTÞ<br />

B sin d 2 þ C sin d 1 þ D sinðd 1 þ d 2 Þ<br />

¼ arctg<br />

A þ B cos d 2 þ C cos d 1 þ D cosðd 1 þ d 2 Þ :<br />

ð9Þ<br />

Here functions AðTÞ; BðTÞ; CðTÞ; and DðTÞ are<br />

expressed through the model parameters as<br />

follows:<br />

AðTÞ ¼a 1 ðTÞa 2 ðTÞ;<br />

ð10Þ<br />

BðTÞ ¼½1 a 1 ðTÞŠa 2 ðTÞ<br />

f1 þðpDtn 2 Þ 2 g 3=2 ;<br />

CðTÞ ¼a 1 ðTÞ½1 a 2 ðTÞŠ<br />

f1 þðpDtn 1 Þ 2 g 3=2 ;<br />

DðTÞ ¼½1 a 1 ðTÞŠ½1 a 2 ðTÞŠ<br />

f½1 þðpDtn 2 Þ 2 Š½1 þðpDtn 1 Þ 2 Šg 3=2<br />

ð11Þ<br />

ð12Þ<br />

ð13Þ<br />

and<br />

d 1; 2 ¼ 3 arctgðpDtn 1; 2 Þ:<br />

ð14Þ<br />

We note here that in the limiting case a 1 ð0Þ ¼<br />

a 2 ð0Þ ¼1 Eq. (9) does give a quantitativelycorrect<br />

phase shift, Djð0Þ ¼0: However, for example, for<br />

a 1 ¼ a 2 ¼ 0; the correct behavior is reproduced<br />

onlyat small pDtn 1; 2 : Dj ¼ 3pDtðn 1 þ n 2 Þ: This<br />

last value corresponds to a frequencyshift (Stokes<br />

shift) <strong>of</strong> Dn ¼ 3 2 ðn 1 þ n 2 Þ; equal to a difference<br />

between centers <strong>of</strong> gravity<strong>of</strong> PWs (5) in absorption<br />

and fluorescence. In general case, the values <strong>of</strong><br />

Dj allowed byEq. (9) are restricted bydefinition<br />

<strong>of</strong> function arctgðxÞ; and, therefore, Eq. (9) is<br />

unable to describe a wide range <strong>of</strong> other real sets <strong>of</strong><br />

parameters. In our approach we use Eq. (8) for the<br />

simulation <strong>of</strong> the temperature dependence <strong>of</strong> the<br />

amplitude (contrast) <strong>of</strong> the fringes, but we resort<br />

to a simpler model for the simulation <strong>of</strong> the<br />

temperature dependence <strong>of</strong> the phase. We consider<br />

the Stokes shift as a difference between the first<br />

moments (centers <strong>of</strong> gravity) <strong>of</strong> absorption and<br />

fluorescence homogeneous spectra, namely,<br />

DnðTÞ ¼ð1 a 2 ðTÞÞn 2<br />

þð1 a 1 ðTÞÞn 1 ; ð15Þ<br />

and, therefore,<br />

DjðTÞ ¼2pDt½ð1 a 2 ðTÞÞn 2<br />

þð1 a 1 ðTÞÞn 1 Š: ð16Þ<br />

5. Results <strong>of</strong> simulations and discussion<br />

5.1. Chl in PVB<br />

First <strong>of</strong> all, we simulated the temperature<br />

dependence <strong>of</strong> the fringes in Chl:PVB system by<br />

using symmetrical model with x 1 ¼ x 2 ¼ x and<br />

Phase shift, ∆ϕ (rad) Modulation amplitude, M<br />

(a)<br />

(b)<br />

0.3<br />

0.2<br />

0.1<br />

3<br />

2<br />

1<br />

20 40 60 80 100 120<br />

T, K<br />

40 60 80 100<br />

Fig. 5. Temperature dependence <strong>of</strong> the amplitude M (a) and<br />

phase shift Dj (b) <strong>of</strong> spectral grating observed in Chl:PVB and<br />

corresponding fits <strong>of</strong> these data to Eqs. (8) and (16) in mirrorsymmetrical<br />

model.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!