03.07.2014 Views

ECG differential diagnosis of narrow QRS complex ... - Semes

ECG differential diagnosis of narrow QRS complex ... - Semes

ECG differential diagnosis of narrow QRS complex ... - Semes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Formación<br />

acreditada<br />

REVIEW ARTICLE<br />

<strong>ECG</strong> <strong>differential</strong> <strong>diagnosis</strong> <strong>of</strong> <strong>narrow</strong> <strong>QRS</strong> <strong>complex</strong><br />

tachycardia in the emergency department: A review<br />

<strong>of</strong> common rhythms and distinguishing features<br />

MATTHEW P. BORLOZ 1 , DUSTIN G. MARK 2 ,JESSE M. PINES 3,4,5 , WILLIAM J. BRADY 6<br />

1<br />

Departamento de Emergencias. Universidad de Georgetown/Hospital Center Washington, Washington,<br />

EE.UU. 2 Departamento de Cuidados Intensivos. Universidad Health System de Pennsylvania. Filadelfia, EE.UU.<br />

3<br />

Departamento de Emergencias. Universidad Health System de Pennsylvania. Filadelfia, EE.UU. 4 Centro de<br />

Epidemiología Clínica y Bioestadística, Facultad de Medicina, Universidad de Pennsylvania. Filadelfia, EE.UU.<br />

5<br />

Instituto Leonard Davis. Universidad de Pennsylvania. Filadelfia, EE.UU. 6 Departamento de Emergencias.<br />

Universidad de Virginia, Charlottesville, EE.UU.<br />

CORRESPONDENCE:<br />

William Brady<br />

Department <strong>of</strong> Emergency<br />

Medicine<br />

University <strong>of</strong> Virginia Health<br />

System<br />

Charlottesville, VA. EE.UU.<br />

E-mail: wb4z@virginia.edu<br />

RECEIVED:<br />

5-2-2010<br />

ACCEPTED:<br />

7-4-2010<br />

CONFLICT OF INTERES:<br />

None<br />

The differentiation <strong>of</strong> <strong>narrow</strong> <strong>complex</strong> tachycardias (NCT) is a commonly encountered<br />

diagnostic dilemma in the adult emergency department. Some NCTs (e.g., sinus<br />

tachycardia) are secondary to the presenting complaint (e.g., fever, anxiety, pain) and will<br />

respond to appropriate treatment <strong>of</strong> the inciting pathologic insult. Alternatively, other<br />

NCTs (e.g., atrial fibrillation, AV nodal reentrant tachycardia) may indeed be the cause <strong>of</strong><br />

the chief complaint (e.g., palpitations, lightheadedness from poor perfusion) and must be<br />

positively identified and primarily managed. An appreciation <strong>of</strong> the similarities and<br />

differences among these NCTs is necessary for appropriate recognition. This article<br />

delineates which demographic, historical, and electrocardiographic characteristics are<br />

helpful in identifying the following rhythms: sinus tachycardia, sinus node reentrant<br />

tachycardia, unifocal atrial tachycardias, multifocal atrial tachycardia, atrial fibrillation,<br />

atrial flutter, atrioventricular nodal reentrant tachycardia, and atrioventricular reentrant<br />

tachycardia. In addition, a discussion <strong>of</strong> various diagnostic maneuvers, such as adenosine<br />

administration, is included. [Emergencias 2010;22:369-380]<br />

Key words: <strong>QRS</strong> <strong>complex</strong> tachycardia. Emergency department. Common rhythms.<br />

Introduction<br />

The clinical manifestations resulting from <strong>narrow</strong><br />

<strong>complex</strong> tachycardias (NCT) are a not uncommon<br />

reason for presentation to the emergency<br />

department (ED) 1 . NCTs are defined as<br />

rhythms with a rate greater than 100 beats per<br />

minute (bpm) and a <strong>QRS</strong> <strong>complex</strong> duration less<br />

than 120 milliseconds (msec) in the adult patient.<br />

NCTs are most <strong>of</strong>ten supraventricular in origin,<br />

arising from the sinus node, the atria, or the atrioventricular<br />

(AV) junction. While <strong>narrow</strong> <strong>complex</strong><br />

ventricular tachycardia has been reported 2 , the<br />

latter is very rare and, thus, will not be discussed<br />

further in this paper.<br />

Because NCTs are numerous and their differences<br />

subtle, it is important for the emergency<br />

physician to understand the differences among<br />

these rhythms in order to render a correct <strong>diagnosis</strong><br />

and appropriate management. While we do<br />

not discuss specific treatment <strong>of</strong> these rhythms,<br />

we do address diagnostic maneuvers, such as<br />

adenosine administration, and acknowledge that<br />

these may be both diagnostic and therapeutic. In<br />

no circumstance should the diagnostic process<br />

limit timely management <strong>of</strong> an unstable patient.<br />

Electrocardiographic Differential Diagnosis<br />

Sinus tachycardia (ST)<br />

Physiologic sinus tachycardia refers to a NCT<br />

that originates from the SA node and is due to increased<br />

automaticity, rather than a reentrant<br />

mechanism. The atrial rate is greater than 100<br />

Emergencias 2010; 22: 369-380 369


M. P. Borloz et al.<br />

bpm and is largely regular with slight variations<br />

over time 3,4 . The P wave morphology is identical<br />

to that seen in sinus rhythm and appears positive<br />

in leads I, II, III, and aVF 5-7 and biphasic 7,8 or negative<br />

5 in lead V 1 (Figures 1A and B). The onset <strong>of</strong><br />

ST is gradual, exhibiting a “warm up” period, and<br />

is not initiated by atrial or ventricular premature<br />

beats 4,7,9,10 . Perhaps the most telling feature <strong>of</strong> ST<br />

is that it occurs in the setting <strong>of</strong> underlying physiologic<br />

stress or pharmacologic influence, namely<br />

fever, infection, anxiety, stimulant drug use, or hypotension,<br />

among many others 4,7,9 . When frequent<br />

premature atrial contractions (PACs) accompany<br />

ST, it may be difficult to differentiate from multifocal<br />

atrial tachycardia (MAT, discussed below) 3 .<br />

Sinus node reentrant tachycardia (SNRT)<br />

As the name implies, sinus node reentrant<br />

tachycardia is due to a reentrant mechanism within<br />

or adjacent to the sinus nodal tissue 4,7 . This<br />

rhythm is indistinguishable from sinus tachycardia<br />

on a simple 12-lead <strong>ECG</strong> (Figure 2), as the P wave<br />

position, axis, and morphology are essentially<br />

identical to those <strong>of</strong> the latter 4,5,7,9,11,12 . The rate is<br />

usually 100-150 bpm, and the rhythm is regular 4,7 .<br />

In contrast to ST, the onset <strong>of</strong> SNRT is abrupt and<br />

<strong>of</strong>ten initiated by a premature atrial impulse 4-7,9-12 .<br />

Termination is similarly abrupt and may be effected<br />

with vagal maneuvers or adenosine administration<br />

5,9 . This rhythm is <strong>of</strong>ten an incidental finding<br />

seen on Holter monitoring, is typically non-sustained,<br />

and rarely causes clinically significant<br />

symptomatology 13 . Sanders et al 14 report an incidence<br />

<strong>of</strong> 3% in their series <strong>of</strong> patients referred for<br />

electrophysiologic (EP) study.<br />

Refer to Figure 2 for an example <strong>of</strong> SNRT<br />

which, based solely on this rhythm segment, is<br />

impossible to separate from typical sinus tachycardia.<br />

Unifocal Atrial Tachycardias<br />

Unifocal atrial tachycardias are due to automatic,<br />

triggered, or reentrant mechanisms, depending<br />

on the clinical scenario in which they<br />

arise 6,15 . They are a relatively uncommon cause <strong>of</strong><br />

Figure 1. It shows a sinus tachycardia on <strong>ECG</strong>.<br />

Figure 2. It shows a sinus node reentrant tachycardia on<br />

<strong>ECG</strong>.<br />

clinically significant NCT, as they comprise less<br />

than 10% <strong>of</strong> documented cases 4 .<br />

Reentrant atrial tachycardias depend on diseased<br />

atrial tissue to create adjacent areas <strong>of</strong> tissue<br />

with variant speeds <strong>of</strong> conduction and refractory<br />

periods. As such, they usually arise following<br />

atrial surgeries or within otherwise diseased atrial<br />

tissue 7,13 . When seen in a patient without underlying<br />

heart disease, enhanced automaticity is likely<br />

the mechanism. Onset and termination are typically<br />

gradual and occur without the influence <strong>of</strong><br />

premature impulses 3,16,17 . Triggered activity is implicated<br />

in atrial tachycardia seen in the setting <strong>of</strong><br />

digoxin toxicity (<strong>of</strong>ten accompanied by AV<br />

block) 7 .<br />

Unifocal atrial tachycardias, by definition, originate<br />

from a single area <strong>of</strong> the atrium (unlike<br />

MAT), the location <strong>of</strong> which governs the appearance<br />

<strong>of</strong> the P wave. For example, if the focus is<br />

near the SA node, the P wave will be similar in<br />

appearance to that during sinus rhythm. If, however,<br />

the atrial impulse is initiated low in the right<br />

atrium, the P wave may be negative in leads II, III,<br />

and aVF 6 . The atrial rate is typically 100-250<br />

bpm 4,11 , and the presence or absence <strong>of</strong> AV block<br />

does not rule the <strong>diagnosis</strong> in or out 9,6,12,13 .<br />

Multifocal atrial tachycardia (MAT)<br />

Multifocal atrial tachycardia is an irregular NCT<br />

with a frequency <strong>of</strong> 0.08-0.36% among hospitalized<br />

patients 18,19 . It typically occurs in the elderly<br />

in the setting <strong>of</strong> cardiopulmonary disease and is<br />

most commonly associated with chronic obstructive<br />

pulmonary disease (COPD). Associations also<br />

exist with pulmonary embolism, hypoxemia, and<br />

hypokalemia 20 . Triggered activity 21 and enhanced<br />

automaticity 17 have been proposed as likely mechanisms;<br />

however, consensus is lacking, and the<br />

precise mechanism remains elusive.<br />

Very specific electrocardiographic criteria define<br />

MAT; these include an atrial rate > 100 bpm,<br />

three or more distinct non-sinus P wave morphologies<br />

(in the same lead), an isoelectric baseline<br />

(i.e., no flutter or fibrillation waves), and irregularity<br />

<strong>of</strong> the PP, PR, and RR intervals (Figure<br />

3) 5,22,23 . Despite the clear diagnostic criteria, this<br />

370 Emergencias 2010; 22: 369-380


<strong>ECG</strong> DIFFERENTIAL DIAGNOSIS OF NARROW <strong>QRS</strong> COMPLEX TACHYCARDIA IN THE EMERGENCY DEPARTMENT<br />

Figure 3. It shows a multifocal atrial achycardia on <strong>ECG</strong>.<br />

rhythm may be difficult to distinguish from sinus<br />

rhythm with frequent PACs or atrial fibrillation.<br />

Kastor et al 23 support the administration <strong>of</strong> a<br />

small dose <strong>of</strong> an intravenous beta-adrenergic or<br />

calcium-channel antagonist in order to slow the<br />

atrial rate and allow the clinician to search the<br />

baseline for distinct P waves supportive <strong>of</strong> MAT<br />

or fibrillatory waves consistent with atrial fibrillation.<br />

This diagnostic maneuver should be pursued<br />

with caution in the absence <strong>of</strong> clear data to<br />

support a normal left ventricular ejection fraction.<br />

While atrial rates typically range from 100-220<br />

bpm 5 , some authors propose lowering the rate<br />

threshold for <strong>diagnosis</strong> from 100 bpm to 90<br />

bpm 24 .<br />

Atrial fibrillation<br />

Figure 4. It shows an atrial fibrillation on <strong>ECG</strong>.<br />

Atrial fibrillation remains the most prevalent<br />

form <strong>of</strong> <strong>narrow</strong> <strong>complex</strong> tachycardia 25 . In the<br />

United States, 2.3 million individuals carry this <strong>diagnosis</strong><br />

26 , and 0.2% <strong>of</strong> ED visits were attributed to<br />

atrial fibrillation during 1993-2004 27 . Patients may<br />

present to the ED with worsening <strong>of</strong> their chronic<br />

atrial fibrillation due to poorly controlled ventricular<br />

rates or with paroxysmal atrial fibrillation associated<br />

with hyperthyroidism 5,25 , hypokalemia or<br />

hypomagnesemia 25 , or following excessive ethanol<br />

intoxication, the so-called “holiday heart syndrome”<br />

28 . The mechanism <strong>of</strong> atrial fibrillation appears<br />

to be multiple micro-reentrant wavelets in<br />

the atria 3,13 . Paroxysms <strong>of</strong> atrial fibrillation may be<br />

triggered by preceding alterations in autonomic<br />

tone 29 and/or ectopic foci frequently located in or<br />

around the pulmonary veins 30 . Atrial fibrillation is<br />

also the second most common tachycardia experienced<br />

by patients with the Wolff-Parkinson-White<br />

syndrome, seen in 20-25% 31,32 .<br />

Electrocardiographically (Figure 4), the absence<br />

<strong>of</strong> P waves and the irregularly irregular ventricular<br />

response are the hallmarks <strong>of</strong> this rhythm 5,33 . The<br />

baseline may be isoelectric or may exhibit fibrillatory<br />

waves <strong>of</strong> varying morphology at a rate <strong>of</strong><br />

400-700 bpm 3,5,25 . The amplitude <strong>of</strong> the fibrillatory<br />

waves is suggestive <strong>of</strong> the underlying pathology.<br />

Fine fibrillatory waves ( 0.5 mm amplitude) are<br />

associated with ischemic heart disease, while<br />

coarse waves (> 0.5 mm) signify left atrial enlargement<br />

3,34 . Untreated ventricular rates range<br />

from 100-200 bpm 3,5 compromising diastolic ventricular<br />

filling, and <strong>of</strong>ten producing palpitations,<br />

chest pain, and symptoms <strong>of</strong> congestive heart failure<br />

35 .<br />

Atrial flutter (AF)<br />

Atrial flutter is most commonly due to a<br />

macro-reentrant circuit within the right atrium<br />

and shares many etiologic features with atrial fibrillation<br />

13,36 . Indeed, it may <strong>of</strong>ten be confused with<br />

“coarse” atrial fibrillation 37 . Typical AF (type 1) involves<br />

either a counterclockwise (common) or<br />

clockwise (less common) reentrant circuit. Counterclockwise<br />

circuits produce downward deflections,<br />

called flutter waves, in the inferior leads;<br />

these are classically referred to as having a “sawtooth”<br />

appearance 5,36 . Flutter waves are also frequently<br />

visualized in lead V1 and must be <strong>of</strong> uniform<br />

rate, amplitude, and morphology to be<br />

so-called 37 . The atrial rate is regular and ranges<br />

between 250 and 350 bpm, <strong>of</strong>ten close to or exactly<br />

300 bpm 5,33 . A less common variant <strong>of</strong> AF,<br />

termed type II, produces faster atrial rates, typically<br />

in the range <strong>of</strong> 340-430 bpm. Because the AV<br />

node is usually incapable <strong>of</strong> conducting impulses<br />

to the ventricles at these rates, AV block is almost<br />

always present; although, 1:1 conduction is possible<br />

38 . Two-to-one AV block, which is most common,<br />

will produce a ventricular rate around 150<br />

bpm in type I AF, whereas 3:1 AV block will result<br />

in a ventricular rate <strong>of</strong> 100 bpm. While the degree<br />

<strong>of</strong> AV block is <strong>of</strong>ten fixed, it may also be<br />

variable, yielding an irregular ventricular<br />

response 5 .<br />

Refer to Figure 5A for examples <strong>of</strong> atrial flutter<br />

with a regular rate <strong>of</strong> 150 bpm (upper panel) and<br />

a rapid, irregular form <strong>of</strong> atrial flutter (atrial flutter<br />

with variable block, lower panel). Note Figure 5B,<br />

demonstrating sinus tachycardia initially misdiagnosed<br />

as atrial flutter due to the “classic” rate <strong>of</strong><br />

150 bpm. Note the normal P wave polarity in the<br />

limb leads. This finding, along with significant<br />

rate variation observed over a very short period <strong>of</strong><br />

time, ultimately contributed to the correct electrocardiographic<br />

<strong>diagnosis</strong> – very rapid sinus tachycardia.<br />

Emergencias 2010; 22: 369-380 371


M. P. Borloz et al.<br />

Figure 5. It shows an atrial flutter with a regular rate <strong>of</strong> 150<br />

bpm (upper panel) and an atrial flutter, note the normal P wave<br />

polarity on a 12-lead <strong>ECG</strong>.<br />

Atrioventricular nodal reentrant tachycardia<br />

(AVNRT)<br />

AV nodal reentrant tachycardia accounts for 50-<br />

69% <strong>of</strong> all regular NCTs (excluding those associated<br />

with pre-excitation) 10,39 . AVNRT depends on socalled<br />

“dual AV node physiology,” which indicates<br />

that the AV node has two distinct tracts capable <strong>of</strong><br />

conducting impulses, one <strong>of</strong> which conducts slowly<br />

but has a short refractory period, and the other<br />

<strong>of</strong> which conducts rapidly but has a relatively<br />

longer refractory period. During sinus rhythm, impulses<br />

are typically carried by the “fast” (also<br />

known as “beta”) pathway, and the “slow” (also<br />

known as “alpha”) pathway is unused. Common<br />

AVNRT is initiated when a premature atrial impulse<br />

finds the fast pathway refractory and instead uses<br />

the slow pathway to conduct to the His-Purkinje<br />

system. By the time the impulse reaches the ventricles,<br />

the fast pathway has repolarized, and the<br />

impulse is carried by this tract in a retrograde fashion.<br />

This pattern continues in order to produce<br />

“common” AVNRT (also known as typical AVNRT<br />

or slow-fast AVNRT). A premature ventricular impulse<br />

may also initiate this rhythm if the impulse is<br />

blocked in the retrograde direction by the slow<br />

pathway and follows the fast pathway. The impulse<br />

then proceeds via the slow pathway in the<br />

antegrade direction and back up the fast pathway<br />

for retrograde transmission.<br />

In 3-10% <strong>of</strong> cases, the fast pathway may have<br />

a shorter refractory period than the slow pathway,<br />

allowing for reversal <strong>of</strong> the circuit 9,39-42 . “Uncommon”<br />

AVNRT (also known as atypical AVNRT or<br />

fast-slow AVNRT) occurs when antegrade conduction<br />

follows the fast pathway and retrograde conduction<br />

is carried by the slow pathway. It is generally<br />

initiated by a premature ventricular<br />

impulse 40 .<br />

Because <strong>of</strong> the rapid retrograde transmission <strong>of</strong><br />

the impulse in common AVNRT, the P wave is<br />

Figure 6. It shows a sinus tachycardia with a ventricular rate <strong>of</strong> 150 bpm. In conrast to atrial flutter,<br />

note the normal P wave polarity on a 12-lead <strong>ECG</strong>.<br />

372 Emergencias 2010; 22: 369-380


<strong>ECG</strong> DIFFERENTIAL DIAGNOSIS OF NARROW <strong>QRS</strong> COMPLEX TACHYCARDIA IN THE EMERGENCY DEPARTMENT<br />

Figure 7. It shows an atrioventricular nodal reentrant tachycardia<br />

on <strong>ECG</strong>. Note the P wave is hidden by the <strong>QRS</strong> <strong>complex</strong>.<br />

hidden by the <strong>QRS</strong> <strong>complex</strong> in 69% <strong>of</strong> cases (Figure<br />

6A) 39 . In the remainder <strong>of</strong> cases, the P wave<br />

immediately follows the <strong>QRS</strong> <strong>complex</strong> (Figure 6B),<br />

at times obscuring the terminal portion <strong>of</strong> the<br />

<strong>complex</strong> and resulting in “pseudo deflections”<br />

(discussed below). In contrast, because retrograde<br />

conduction in uncommon AVNRT occurs via a<br />

slow pathway, the ventricles are activated long<br />

before the atria, so the P wave appears closer to<br />

the subsequent <strong>QRS</strong> <strong>complex</strong> than to that which<br />

precedes it.<br />

Patients with common AVNRT may report a<br />

sensation <strong>of</strong> pounding in the neck, which correlates<br />

with concomitant atrial and ventricular contraction,<br />

elevated right atrial pressures, and flow<br />

reversal from the right atrium to the systemic venous<br />

system. In a study by Gürsoy et al 43 , this<br />

finding was reported by 50 <strong>of</strong> 54 (93%) <strong>of</strong> patients<br />

with this rhythm and by none <strong>of</strong> the 190<br />

patients with other NCTs.<br />

Atrioventricular reentrant tachycardia (AVRT)<br />

Atrioventricular reentrant tachycardia mechanistically<br />

occurs via a reentrant circuit that involves<br />

both the AV node and an accessory atrioventricular<br />

pathway. AVRT may be divided into<br />

two principal categories designated by the direction<br />

<strong>of</strong> travel through the AV node and the accessory<br />

pathway: orthodromic and antidromic. Orthodromic<br />

AVRT indicates that antegrade<br />

conduction occurs through the AV node with retrograde<br />

conduction via the accessory pathway<br />

(Figure 7A), resulting in a <strong>narrow</strong> <strong>QRS</strong> <strong>complex</strong><br />

tachycardia. Conversely, antidromic AVRT occurs<br />

with antegrade conduction down the accessory<br />

pathway and retrograde conduction through the<br />

AV node, producing a wide <strong>QRS</strong> <strong>complex</strong> tachycardia.<br />

Onset <strong>of</strong> AVRT is abrupt and is typically initiated<br />

by a premature atrial or ventricular impulse<br />

3,10,12,13,25,33 . Rates typically range from 140-240<br />

bpm 25 . ST segment elevation is seen in lead aVR,<br />

due to retrograde atrial activation; this finding can<br />

be helpful in differentiating AVRT from AVNRT or<br />

AT with a right atrial focus 44 . The presence <strong>of</strong> AV<br />

block during tachycardia effectively excludes the<br />

<strong>diagnosis</strong> <strong>of</strong> AVRT 6,9,10,12,13,45-48 . Refer to Figure 7B for<br />

an example <strong>of</strong> orthodromic AVRT.<br />

Evaluation <strong>of</strong> Available Demographic<br />

and Electrocardiographic Features<br />

Demographics (Age and Gender)<br />

Investigators have attempted to identify age<br />

and gender differences among patients with<br />

supraventricular tachycardias in an effort to define<br />

specific characteristics that aid in determining the<br />

most likely mechanism 41,49-54 . While younger patients<br />

are more likely to experience paroxysmal<br />

supraventricular tachycardia (PSVT) in the absence<br />

<strong>of</strong> known cardiovascular disease and females are<br />

Figure 8. It shows an atrioventricular nodal reentrant tachycardia on a 12-lead <strong>ECG</strong>. Note he P wave<br />

immediately follows the <strong>QRS</strong> coomplex “pseudo deflections”.<br />

Emergencias 2010; 22: 369-380 373


M. P. Borloz et al.<br />

Aurícula<br />

Nodo<br />

sinusal<br />

Vía<br />

accesoria<br />

Ventrículos<br />

Sistema<br />

HIS-<br />

Purkinje<br />

Figure 9. It shows a diagram <strong>of</strong> atrioventricular reentrant<br />

tachycardia’s mechanism.<br />

more than twice as likely as males to be diagnosed<br />

with PSVT (70%), no definitive conclusions<br />

can be made regarding the influence <strong>of</strong> age or<br />

gender on the mechanism <strong>of</strong> the tachycardia 49 . In<br />

a population <strong>of</strong> 485 patients with NCT without<br />

overt electrocardiographic evidence <strong>of</strong> pre-excitation,<br />

investigators determined that AVNRT was<br />

the most common mechanism <strong>of</strong> supraventricular<br />

tachycardia in all age groups, from teenage to<br />

elderly, and that age was not a reliable predictor<br />

<strong>of</strong> tachycardia mechanism 50 .<br />

With regard to gender, overall PSVT incidence<br />

is relatively evenly distributed between men and<br />

women; however, in the specific case <strong>of</strong> AVNRT,<br />

there appears to be a higher prevalence <strong>of</strong> disease<br />

among female patients, ranging from 68-76% as<br />

observed in three separate studies 41,51,54 . While the<br />

reason for this unbalanced gender distribution is<br />

unclear, one study has demonstrated that women<br />

tend to have a shorter AV nodal block cycle<br />

length and enhanced ventriculoatrial conduction,<br />

C<br />

D<br />

A<br />

B<br />

as compared to men, thus potentially facilitating<br />

the mechanism <strong>of</strong> AVNRT 53 .<br />

With respect to the Wolff-Parkinson-White<br />

(WPW) syndrome, there appears to be a male<br />

preponderance, shown to be approximately tw<strong>of</strong>old<br />

in both a population study and a study <strong>of</strong> patients<br />

referred for electrophysiologic analysis 41,52 .<br />

Another investigator proposes that the reason for<br />

this is the presence <strong>of</strong> a longer AV conduction delay<br />

in males versus females 53 . This longer delay favors<br />

pre-excitation via active accessory AV pathways.<br />

Approximately 50% <strong>of</strong> patients with<br />

accessory AV pathways will experience their first<br />

episode <strong>of</strong> tachycardia before age 20, as opposed<br />

to patients with AVNRT and atrial tachycardia,<br />

who are more likely to initially present after 20<br />

years <strong>of</strong> age 41,51 .<br />

Rate<br />

In general, the ventricular rate <strong>of</strong> the tachycardia<br />

is rarely helpful in differentiating one type <strong>of</strong><br />

NCT from another. One exception to this is in the<br />

case <strong>of</strong> type I atrial flutter, which exhibits an atrial<br />

rate between 250-350 bpm and frequently conducts<br />

with 2:1 AV block, yielding a ventricular<br />

rate around 150 bpm. A 3:1 AV block with a ventricular<br />

rate <strong>of</strong> 100 bpm is also common 3,33 . Whatever<br />

the ventricular rate, the R-R interval should<br />

show little or no beat-to-beat variation in the absence<br />

<strong>of</strong> medications or vagal maneuvers 3,25 .<br />

In an electrophysiologic study which included<br />

100 patients with either AVNRT or AVRT and 27<br />

patients with atrial “ectopic” tachycardia, the<br />

mean atrial rate varied from 167-170 bpm. Several<br />

other studies have also failed to demonstrate<br />

Figure 10. It shows an atrioventricular reentrant tachycardia on a 12 lead-<strong>ECG</strong>.<br />

374 Emergencias 2010; 22: 369-380


<strong>ECG</strong> DIFFERENTIAL DIAGNOSIS OF NARROW <strong>QRS</strong> COMPLEX TACHYCARDIA IN THE EMERGENCY DEPARTMENT<br />

significant differences in atrial or ventricular rates<br />

among these same tachycardia types 55,56 . Despite a<br />

higher mean rate in AVRT versus AVNRT, Kay et<br />

al 57 found that, after multivariate analysis, higher<br />

rates were not predictive <strong>of</strong> AVRT. In general, rate<br />

alone is not a reliable predictor <strong>of</strong> tachycardia<br />

mechanism.<br />

Regularity<br />

The regularity <strong>of</strong> the rhythm can be remarkably<br />

helpful in differentiating the mechanisms <strong>of</strong><br />

various NCTs. Specifically, the finding <strong>of</strong> a clearly<br />

irregular rhythm significantly <strong>narrow</strong>s the list <strong>of</strong><br />

potential diagnoses. Just as atrial fibrillation is “irregularly<br />

irregular,” atrial fibrillation with rapid<br />

ventricular response may be similarly described.<br />

An irregularly irregular NCT with definite P waves<br />

is likely multifocal atrial tachycardia (MAT). Note<br />

that the <strong>diagnosis</strong> <strong>of</strong> MAT formally requires<br />

demonstration <strong>of</strong> three discrete P wave morphologies.<br />

PR intervals differ from beat to beat due to<br />

the variable location <strong>of</strong> the inciting atrial impulse<br />

3,11 . MAT may be confused with atrial fibrillation<br />

9,23,58 .<br />

The presence <strong>of</strong> regular periods <strong>of</strong> tachycardia<br />

punctuated by apparent pauses, so called “group<br />

beatings,” indicates atrial flutter or ectopic atrial<br />

tachycardia with variable AV block 59 . Differentiation<br />

<strong>of</strong> these may be facilitated by searching for<br />

“flutter” waves in the former and discrete P waves<br />

(although non-sinus) in the latter, though this is<br />

<strong>of</strong>ten difficult due to fast ventricular rates, which<br />

may obscure interpretation <strong>of</strong> atrial activity 60 .<br />

The finding <strong>of</strong> a regular rhythm includes every<br />

other mechanism <strong>of</strong> NCT, so the clinician is advised<br />

to focus on alternative discriminating characteristics<br />

for further <strong>diagnosis</strong>. It should be mentioned<br />

that although sinus tachycardia is typically<br />

considered a regular rhythm, it may be mildly irregular<br />

3,59 .<br />

P Wave (Presence, Axis, and Morphology)<br />

The presence <strong>of</strong> discrete P waves may be difficult<br />

to determine with fast atrial and ventricular<br />

rates. When present, however, the location <strong>of</strong> the<br />

P wave relative to the <strong>QRS</strong> <strong>complex</strong> is quite helpful<br />

(refer to the discussion <strong>of</strong> P wave location).<br />

Conversely, the absence <strong>of</strong> P waves with an irregularly<br />

irregular ventricular rate greater than 100<br />

bpm strongly suggests atrial fibrillation with rapid<br />

ventricular response. Fibrillatory waves are seen<br />

on the baseline and represent disorganized atrial<br />

electrical activity 3,5 . A particular pattern <strong>of</strong> P wave,<br />

the “flutter wave,” is seen in place <strong>of</strong> typical P<br />

waves in patients with atrial flutter, most <strong>of</strong>ten at<br />

an atrial rate <strong>of</strong> 250-350 bpm. These flutter<br />

waves, which give the baseline the classic “sawtooth”<br />

appearance, are most easily identified in<br />

the inferior leads (i.e., II, III, aVF) and in lead<br />

3,5,6,33<br />

V 1 .<br />

Examination <strong>of</strong> the P wave axis may yield additional<br />

information regarding the etiology <strong>of</strong><br />

the NCT, particularly in the case <strong>of</strong> unifocal atrial<br />

tachycardia. Determining the P wave axis involves<br />

identifying the polarity <strong>of</strong> the P wave as<br />

positive, negative, or biphasic in particular leads.<br />

Rhythms that originate from the SA node, located<br />

in the superior right atrial myocardium (i.e.,<br />

sinus tachycardia [Figure 5B], sinus node reentrant<br />

tachycardia), will show upright P waves in<br />

leads I, II, III, and aVF 5-7 and a biphasic 7,8 or negative<br />

5 P wave in lead V 1. Ectopic atrial tachycardias<br />

originating from tissue adjacent to the SA node<br />

are difficult to distinguish from those arising<br />

from the node itself using a standard 12-lead<br />

<strong>ECG</strong>. Ectopic atrial tachycardias and atrial reentrant<br />

tachycardias arising from sites distant from<br />

SA nodal tissue, however, will have variable P<br />

wave axes and morphologies 12 . Tang et al 61<br />

showed that leads aVL and V1 were most useful<br />

in differentiating a right atrial focus from a left<br />

atrial focus. A positive or biphasic P wave in lead<br />

aVL correlates with a right atrial focus (sensitivity<br />

88%, specificity 79%), while a positive P wave in<br />

lead V 1 supports a left atrial focus (sensitivity<br />

93%, specificity 88%). In addition, negative P<br />

waves in the inferior leads (i.e., leads II, III, aVF)<br />

correlate with an inferior atrial focus, while positive<br />

P waves in these leads indicate a superior focus.<br />

Not all NCTs with negative P waves in the<br />

inferior leads originate from an inferior atrial focus,<br />

however, as this P wave axis deviation can<br />

also be due to retrograde atrial conduction from<br />

an AV junction focus, as may be seen in AVNRT.<br />

In summary, the primary strength <strong>of</strong> P wave axis<br />

determination lies in the <strong>diagnosis</strong> <strong>of</strong> both ectopic<br />

left atrial foci and MAT, the former demonstrating<br />

positive P waves in lead V1, the latter<br />

exhibiting variable P wave axes and morphologies<br />

in a single lead.<br />

P Wave Location (RP Interval)<br />

The RP interval describes the duration from the<br />

<strong>QRS</strong> <strong>complex</strong> to the subsequent P wave. This duration<br />

is compared to the PR interval <strong>of</strong> the<br />

rhythm, and based on their relative values, a<br />

rhythm may be called a “short RP” or “long RP”<br />

Emergencias 2010; 22: 369-380 375


M. P. Borloz et al.<br />

tachycardia. A short RP tachycardia is one in<br />

which the RP interval is shorter than the PR interval.<br />

One may think <strong>of</strong> this as the P wave following<br />

the <strong>QRS</strong> <strong>complex</strong> instead <strong>of</strong> preceding it. Examples<br />

<strong>of</strong> short RP tachycardias are common AVNRT<br />

(Figure 6B) and orthodromic AVRT (Figure 7B)<br />

with a rapidly conducting accessory pathway. A<br />

short RP tachycardia may also be seen with atrial<br />

tachycardia in the presence <strong>of</strong> a long PR interval,<br />

usually at higher rates. Long RP tachycardias,<br />

which represent the “normal” P wave to <strong>QRS</strong><br />

<strong>complex</strong> relationship, include sinus tachycardia<br />

(ST), sinus node reentrant tachycardia (SNRT),<br />

atrial tachycardias, uncommon AVNRT, and orthodromic<br />

AVRT with a slowly conducting accessory<br />

pathway. This classification is <strong>of</strong>ten helpful in understanding<br />

NCT mechanisms and diagnosing<br />

these rhythms from the surface <strong>ECG</strong>.<br />

In some cases, the P wave may be hidden<br />

within the <strong>QRS</strong> <strong>complex</strong>, representing a subtype<br />

<strong>of</strong> the short RP tachycardias. This finding almost<br />

exclusively occurs during common AVNRT, and<br />

has been found to be the single most useful observation<br />

on 12-lead <strong>ECG</strong> analysis that can distinguish<br />

AVNRT from AVRT. Conversely, AVNRT can<br />

present as a short RP tachycardia in up to 30% <strong>of</strong><br />

cases, thus mimicking AVRT, making the absence<br />

<strong>of</strong> <strong>QRS</strong> masking relatively non-specific 10-<br />

12,39,42,45,57,62,63<br />

. Some investigators have attempted to<br />

define a specific value for the RP interval in comparing<br />

common AVNRT and AVRT. Zhong et al 64<br />

demonstrated mean values <strong>of</strong> 89 ± 13 msec and<br />

134 ± 29 msec, respectively. In an attempt to validate<br />

an algorithm designed for pediatric patients<br />

by Jaeggi et al 65 , Arya et al 66 looked at a specific<br />

cut<strong>of</strong>f <strong>of</strong> 100 msec to discriminate AVRT from<br />

common AVNRT in a population <strong>of</strong> adult patients.<br />

Sensitivity and specificity for this finding were<br />

73% and 88%, respectively. As might be expected,<br />

with a decrease in the cut<strong>of</strong>f value to 80<br />

msec, the investigators noted increased sensitivity<br />

(85%) but decreased specificity (69%).<br />

AV Block<br />

The presence <strong>of</strong> AV block during an episode <strong>of</strong><br />

NCT greatly <strong>narrow</strong>s the <strong>differential</strong> <strong>diagnosis</strong>. AV<br />

block is not possible with a rhythm that employs<br />

the normal atrioventricular conduction pathway<br />

for antegrade conduction and an accessory pathway<br />

for retrograde conduction because this tachycardia<br />

is dependent on a “patent” AV tract. As a<br />

result, orthodromic AVRT may be eliminated from<br />

the <strong>differential</strong> if AV block is present 6,9,10,12,13,45-48 .<br />

While 2:1 AV block is possible with both common<br />

and uncommon AVNRT, it is exceedingly rare and,<br />

when present, typically appears at the initiation <strong>of</strong><br />

the rhythm and does not persist 10,12,25,46,47 .<br />

AV block in NCT then indicates either sinus<br />

tachycardia (ST) or reentrant and automatic atrial<br />

tachycardias (including MAT, atrial fibrillation, and<br />

atrial flutter) 6,9,12,13 . Some degree <strong>of</strong> AV block, typically<br />

2:1 or 3:1, is nearly always present with atrial<br />

flutter, as the AV node is incapable <strong>of</strong> sustaining<br />

atrioventricular conduction at the typical atrial<br />

rate <strong>of</strong> 300 bpm, though 1:1 conduction may exist<br />

for a short period 3,33 . Because <strong>of</strong> this, a consistent<br />

ventricular rate <strong>of</strong> 150 or 100 bpm should<br />

alert the clinician to look closer for flutter waves<br />

in the inferior leads and lead V 1 . Atrial fibrillation,<br />

which exhibits atrial rates <strong>of</strong> over 400 bpm, similarly<br />

does not allow for 1:1 conduction through<br />

the AV node, but the degree <strong>of</strong> AV block is not<br />

predictable, and an irregular rhythm results 3 .<br />

<strong>QRS</strong> Alternans<br />

<strong>QRS</strong> alternans describes a beat-to-beat variation<br />

in the morphology <strong>of</strong> the <strong>QRS</strong> <strong>complex</strong>,<br />

most easily seen as a difference in amplitude from<br />

one beat to the next. While this finding is most<br />

<strong>of</strong>ten associated with accessory pathway-mediated<br />

NCTs, such as orthodromic AVRT 45,55,67 ,some authors<br />

have suggested that this is solely a rate-related<br />

phenomenon and is independent <strong>of</strong> tachycardia<br />

mechanism 5768,69 . In summary, its use as a<br />

discriminating factor is limited.<br />

Lead aVR<br />

Often ignored in the evaluation <strong>of</strong> the 12-lead<br />

<strong>ECG</strong>, lead aVR may indeed provide some useful<br />

diagnostic information in differentiating NCTs 44,64,70-72 .<br />

Ho et al 71 found that ST segment elevation in lead<br />

aVR was helpful in differentiating AVRT from AVN-<br />

RT and AT with a right atrial origin. In other<br />

words, the presence <strong>of</strong> ST segment elevation in<br />

lead aVR is suggestive <strong>of</strong> AVRT (Figure 7B). The ST<br />

segment elevation in this lead is thought to be<br />

due to deformation <strong>of</strong> the ST segment by retrograde<br />

atrial activation rather than from a true repolarization<br />

abnormality 64,71 . While additional details<br />

about the specific location <strong>of</strong> the accessory<br />

pathway may be gleaned from this finding, their<br />

relevance to care in the ED is limited.<br />

ST Segment – T Wave Abnormalities<br />

Several investigators have shown that ST segment<br />

depression is a rate-related phenomenon<br />

376 Emergencias 2010; 22: 369-380


<strong>ECG</strong> DIFFERENTIAL DIAGNOSIS OF NARROW <strong>QRS</strong> COMPLEX TACHYCARDIA IN THE EMERGENCY DEPARTMENT<br />

during PSVT and that it provides no <strong>differential</strong><br />

diagnostic information regarding the mechanism<br />

<strong>of</strong> the tachycardia 71,73,74 . In addition, it is not indicative<br />

<strong>of</strong> underlying coronary artery disease or<br />

concurrent ischemia among patients with AVRT or<br />

AVNRT 73,74 . Arya et al 66 indicated that while ST-segment<br />

depression alone is not helpful in determining<br />

tachycardia type, in combination with an RP<br />

interval < 100 msec or no visible P wave, the absence<br />

<strong>of</strong> ST-segment depression effectively rules<br />

out AVRT. In other words, this finding had a high<br />

negative predictive value (NPV = 95%) for AVRT.<br />

Without the caveats <strong>of</strong> an absent P wave or RP interval<br />

< 100 msec, the NPV was only 56%. Based<br />

on their data, the authors also posit that ST-segment<br />

depression 3 mm in five or more leads<br />

(including limb leads and precordial leads) strongly<br />

suggests AVRT as the tachycardia mechanism.<br />

In summary, while data are somewhat conflicting,<br />

ST-T abnormalities may be helpful when other<br />

factors fail to indicate a definitive <strong>diagnosis</strong>.<br />

Tachycardia Onset<br />

If the clinician is fortunate enough to witness<br />

the onset <strong>of</strong> the tachycardia, determining the<br />

mechanism becomes somewhat easier. A gradual<br />

“ramping up” <strong>of</strong> the atrial rate is characteristic <strong>of</strong><br />

ST 4,7,9 and automatic atrial tachycardia 3,25 , while<br />

the sudden onset <strong>of</strong> tachycardia is indicative <strong>of</strong> a<br />

reentrant mechanism, including AVNRT 6,25 , AVRT<br />

using a rapidly conducting bypass tract 25 , SNRT 4-7,9 ,<br />

and atrial reentrant tachycardias 25 .<br />

The initiating stimulus is also helpful. Premature<br />

atrial impulses are typically responsible for<br />

the onset <strong>of</strong> AVNRT 3,4,6,9,10,12,13,25,33 , AVRT with a rapidly<br />

conducting bypass tract 3,10,12,13,25,33 , and sinus<br />

node 5,12 and atrial reentrant 12,25 tachycardias. With<br />

common AVNRT, which uses the slow pathway for<br />

antegrade conduction and the fast pathway for<br />

retrograde conduction, the initiating premature<br />

impulse will show a significantly lengthened PR<br />

interval as antegrade conduction shifts from the<br />

fast pathway (during sinus rhythm) to the slow<br />

pathway in order to set up the reentrant circuit.<br />

While some initial PR prolongation may be seen in<br />

AVRT using a concealed bypass tract, this is not as<br />

marked as with AVNRT 10 . Premature ventricular<br />

impulses may also initiate AVNRT 12,13 or AVRT 10,12,25 ,<br />

although this is less commonly the case. Neither<br />

PACs nor PVCs are implicated in the initiation <strong>of</strong><br />

ST 9 , automatic atrial tachycardias 3,12 , or AVRT using<br />

a slowly conducting bypass tract 10 , which all display<br />

a gradual acceleration in the atrial rate.<br />

Pseudo Deflections<br />

When a retrograde P wave occurs at the terminal<br />

end <strong>of</strong> the <strong>QRS</strong> <strong>complex</strong>, a “pseudo” deflection<br />

can be seen. When seen in lead V 1 , it is<br />

called a “pseudo r'” wave, and when seen in the<br />

inferior leads (as an inverted P wave), it is termed<br />

a “pseudo S” wave. The presence <strong>of</strong> either a<br />

“pseudo r'” deflection in lead V 1 or a “pseudo S”<br />

deflection in the inferior leads is highly specific for<br />

AVNRT 55,75 . It should be noted that a rate-related<br />

right ventricular conduction delay can produce a<br />

false positive pseudo r' wave, independent <strong>of</strong> the<br />

underlying rhythm, as might be seen in incomplete<br />

right bundle branch block.<br />

Diagnostic Maneuvers<br />

Classification <strong>of</strong> NCTs into AV node-dependent<br />

and AV node-independent is helpful when considering<br />

various diagnostic measures, both pharmacologic<br />

and non-pharmacologic. The AV node-dependent<br />

NCTs include AVNRT and AVRT, whereas<br />

the AV node-independent NCTs are ST, SNRT,<br />

reentrant and automatic atrial tachycardias, atrial<br />

fibrillation and flutter, and MAT 4,25 . Vagal maneuvers,<br />

most commonly carotid sinus massage<br />

(CSM), increase vagal tone to decrease sinus automaticity<br />

and slow or block conduction through<br />

the AV node 25,63 . If vagal maneuvers cause AV<br />

block without termination <strong>of</strong> the tachycardia,<br />

both AVNRT and AVRT may be eliminated from<br />

the <strong>differential</strong>. Indeed, up to 30% <strong>of</strong> reentrant<br />

AV node-dependent tachycardias are terminated<br />

with vagal maneuvers alone 25 .<br />

In contrast, effective vagal maneuvers in AV<br />

node-independent NCTs will produce AV block,<br />

but typically do not cause termination <strong>of</strong> the dysrhythmia.<br />

In the case <strong>of</strong> atrial flutter, increasing<br />

the degree <strong>of</strong> AV block clearly reveals the “sawtooth”<br />

morphology <strong>of</strong> the flutter waves. Slowing,<br />

but not termination, <strong>of</strong> the tachycardia is seen<br />

with ST, atrial fibrillation, and both unifocal (nonreentrant)<br />

and multifocal atrial tachycardia 9,12,25 .<br />

However, as the exception to the rule, sinus and<br />

atrial reentrant tachycardias may terminate or<br />

even show transient acceleration with vagal maneuvers<br />

6,7,12 .<br />

Adenosine is <strong>of</strong>ten advocated as the pharmacologic<br />

diagnostic agent <strong>of</strong> choice in the setting<br />

<strong>of</strong> undifferentiated NCT. Intravenous administration<br />

<strong>of</strong> adenosine causes inhibition <strong>of</strong> adenylyl cyclase<br />

in the myocardium, resulting in negative<br />

chronotropic and dromotropic (conduction veloci-<br />

Emergencias 2010; 22: 369-380 377


M. P. Borloz et al.<br />

ty) effects on the SA node and AV node, respectively<br />

25,76 . The resultant effects on various NCTs are<br />

similar to those seen with vagal maneuvers 3,5-<br />

7,9,15,25,77<br />

. A 12 mg dose <strong>of</strong> adenosine, administered<br />

intravenously in rapid fashion, terminates the<br />

nodal-dependent NCTs (i.e., AVRT and AVNRT)<br />

over 90% <strong>of</strong> the time 78 . Higher doses <strong>of</strong> adenosine<br />

may be needed for refractory cases.<br />

An additional diagnostic maneuver that has<br />

been shown to be <strong>of</strong> benefit by Accardi et al 60 is<br />

to double the speed <strong>of</strong> the <strong>ECG</strong> to 50 mm/sec in<br />

order to increase the distance between adjacent<br />

components <strong>of</strong> the tracing, allowing for easier visualization.<br />

These investigators demonstrated a<br />

significant increase in diagnostic accuracy from<br />

63% to 71% among emergency physicians evaluating<br />

NCT <strong>ECG</strong>s. As this technique poses no risk<br />

<strong>of</strong> harm to the patient, it would be difficult to<br />

reason against its use in challenging cases.<br />

References<br />

1 Orejarena LA, Vidaillet H, DeStefano F, Nordstrom DL, Vierkant RA,<br />

Smith PN, et al. Paroxysmal supraventricular tachycardia in the general<br />

population. J Am Coll Cardiol. 1998;31:150-7.<br />

2 Hayes JJ, Stewart RB, Greene L, Bardy GH. Narrow <strong>QRS</strong> ventricular<br />

tachycardia. Ann Intern Med. 1991;114:460-3.<br />

3 Stahmer SA, Cowan R. Tachydysrhythmias. Emerg Med Clin N Am.<br />

2006;24:11-40.<br />

4 Kazzi AA, Wong H. Other supraventricular tachydysrhythmias. In:<br />

Chan TC, Brady WJ, Harrigan RA, Ornato JP, Rosen P, editors. <strong>ECG</strong> in<br />

emergency medicine and acute care. 1st ed. Filadelfia: Elsevier;<br />

2005. p. 104-11.<br />

5 Carnell J, Singh A. An evidence-based approach to supraventricular<br />

tachydysrhythmias. Emerg Med Pract. 2008;10:1-26.<br />

6 Pieper SJ, Stanton MS. Narrow <strong>QRS</strong> <strong>complex</strong> tachycardias. Mayo<br />

Clin Proc. 1995;70:371-5.<br />

7 Wathen MS, Klein GJ, Yee R, Natale A. Classification and terminology<br />

<strong>of</strong> supraventricular tachycardia. Diagnosis and management <strong>of</strong> the<br />

atrial tachycardias. Cardiol Clin. 1993;11:109-20.<br />

8 Chan TC. P wave. In: Chan TC, Brady WJ, Harrigan RA, Ornato JP,<br />

Rosen P, editors. <strong>ECG</strong> in emergency medicine and acute care. 1st<br />

ed. Filadelfia: Elsevier; 2005. p. 48-52.<br />

9 Xie B, Thakur RK, Shah CP, Hoon VK. Clinical differentiation <strong>of</strong> <strong>narrow</strong><br />

<strong>QRS</strong> <strong>complex</strong> tachycardias. Emerg Med Clin N Am.<br />

1998;16:295-330.<br />

10 Josephson ME, Wellens HJJ. Differential <strong>diagnosis</strong> <strong>of</strong> supraventricular<br />

tachycardia. Cardiol Clin. 1990;8:411-42.<br />

11 Ganz LI, Friedman PL. Supraventricular tachycardia. N Engl J Med.<br />

1995;332:162-73.<br />

12 Wu D. Supraventricular tachycardias. JAMA. 1983;249:3357-60.<br />

13 Benditt DG, Goldstein MA, Reyes WJ, Milstein S. Supraventricular<br />

tachycardias: mechanisms and therapies. Hosp Pract (Off Ed).<br />

1988;23:161-73.<br />

14 Sanders WE, Sorrentino RA, Greenfield RA, Shenasa H, Hamer ME,<br />

Wharton JM. Catheter ablation <strong>of</strong> sinoatrial node reentrant tachycardia.<br />

J Am Coll Cardiol. 1994;23:926-34.<br />

15 Kadish A, Passman R. Mechanisms and management <strong>of</strong> paroxysmal<br />

supraventricular tachycardia. Cardiol Rev. 1999;7:254-64.<br />

16 Wu D, Denes P. Mechanisms <strong>of</strong> paroxysmal supraventricular tachycardia.<br />

Arch Intern Med. 1975;135:437-43.<br />

17 Kumar UN, Rao RK, Scheinman MM. The 12-lead electrocardiogram<br />

in supraventricular tachycardia. Cardiol Clin. 2006;24:427-37.<br />

18 Phillips J, Spano J, Burch G. Chaotic atrial mechanism. Am Heart J.<br />

1969;78:171-9.<br />

19 Scher DL, Arsura EL. Multifocal atrial tachycardia: mechanisms, clinical<br />

correlates, and treatment. Am Heart J. 1989;118:574-80.<br />

20 McCord J, Borzak S. Multifocal atrial tachycardia. Chest. 1998;113:203-9.<br />

21 Schwartz M, Rodman D, Lowenstein SR. Recognition and treatment<br />

<strong>of</strong> multifocal atrial tachycardia: a critical review. J Emerg Med.<br />

1994;12:353-60.<br />

22 Wrenn K. Wandering atrial pacemaker and multifocal atrial tachycardia. In:<br />

Chan TC, Brady WJ, Harrigan RA, Ornato JP, Rosen P, editors. <strong>ECG</strong> in emergency<br />

medicine and acute care. 1st ed. Filadelfia: Elsevier; 2005. p. 101-3.<br />

23 Kastor JA. Multifocal atrial tachycardia. N Engl J Med.<br />

1990;322:1713-7.<br />

24 Kothari SA, Apiyasawat S, Asad N, Spodick DH. Evidence supporting<br />

a new rate threshold for multifocal atrial tachycardia. Clin Cardiol.<br />

2005;28:561-3.<br />

25 Sager PT, Bhandari AK. Narrow <strong>complex</strong> tachycardia. Differential<br />

<strong>diagnosis</strong> and management. Cardiol Clin. 1991;9:619-40.<br />

26 Kannel WB, Benjamin EJ. Status <strong>of</strong> the epidemiology <strong>of</strong> atrial fibrillation.<br />

Med Clin N Am. 2008;92:17-40.<br />

27 McDonald AJ, Pelletier AJ, Ellinor PT, Camargo CA. Increasing US<br />

emergency department visit rates and subsequent hospital admissions<br />

for atrial fibrillation from 1993 to 2004. Ann Emerg Med.<br />

2008;51:58-65.<br />

28 Crozier I, Melton I, Pearson S. Management <strong>of</strong> atrial fibrillation in<br />

the emergency department. Int Med J. 2003;33:182-5.<br />

29 Bettoni M, Zimmerman M. Autonomic tone variations before the<br />

onset <strong>of</strong> paroxysmal atrial fibrillation. Circulation. 2002;105:2753-9.<br />

30 Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G,<br />

et al. Spontaneous initiation <strong>of</strong> atrial fibrillation by ectopic beats originating<br />

in the pulmonary veins. N Engl J Med. 1998;339:659-66.<br />

31 Keating L, Morris FP, Brady WJ. Electrocardiographic features <strong>of</strong><br />

Wolff-Parkinson-White syndrome. Emerg Med J. 2003;20:491-3.<br />

32 Rosner MH, Brady WJ, Kefer MP, Martin ML. Electrocardiography in<br />

the patient with the Wolff-Parkinson-White syndrome: diagnostic<br />

and initial therapeutic issues. Am J Emerg Med. 1999;17:705-14.<br />

33 Lowenstein SR, Halperin BD, Reiter MJ. Paroxysmal supraventricular<br />

tachycardias. J Emerg Med. 1996;14:39-51.<br />

34 Thurmann M, Janney JG Jr. The diagnostic importance <strong>of</strong> fibrillatory<br />

wave size. Circulation. 1962;25:991-4.<br />

35 Michael JA, Stiell IG, Agarwal S, Mandavia DP. Cardioversion <strong>of</strong> paroxysmal<br />

atrial fibrillation in the emergency department. Ann Emerg<br />

Med. 1999;33:379-87.<br />

36 Wrenn K. Atrial fibrillation and atrial flutter. In: Chan TC, Brady WJ,<br />

Harrigan RA, Ornato JP, Rosen P, editors. <strong>ECG</strong> in emergency medicine<br />

and acute care. 1st ed. Filadelfia: Elsevier; 2005. p. 96-101.<br />

37 Weinberg KM, Denes P, Kadish AH, Goldberger JJ. Development and<br />

validation <strong>of</strong> diagnostic criteria for atrial flutter on the surface electrocardiogram.<br />

Ann Noninvasive Electrocardiol. 2008;13:145-54.<br />

38 Kawabata M, Hirao K, Higuchi K, Sasaki T, Furukawa T, Okada H, et<br />

al. Clinical and electrophysiological characteristics <strong>of</strong> patients having<br />

atrial flutter with 1:1 atrioventricular conduction. Europace.<br />

2008;10:284-8.<br />

39 Wu D, Denes P, Amat-Y-Leon F, Dhingra R, Wyndham CRC, Bauernfeind<br />

R, et al. Clinical, electrocardiographic and electrophysiological<br />

observations in patients with paroxysmal supraventricular tachycardia.<br />

Am J Cardiol. 1978;41:1045-51.<br />

40 Brugada P, Bär FWHM, Vanagt EJ, Friedman PL, Wellens HJJ. Observations<br />

in patients showing A-V junctional echoes with a shorter P-R<br />

than R-P interval. Am J Cardiol. 1981;48:611-22.<br />

41 Rodriguez LM, de Chillou C, Schläpfer J, Metzger J, Baiyan X, van<br />

den Dool A, et al. Age at onset and gender <strong>of</strong> patients with different<br />

types <strong>of</strong> supraventricular tachycardias. Am J Cardiol. 1992;70:1213-5.<br />

42 Akhtar M, Jazayeri MR, Sra J, Blanck Z, Deshpande S, Dhala A. Atrioventricular<br />

nodal reentry. Clinical, electrophysiological, and therapeutic<br />

considerations. Circulation. 1993;88:282-95.<br />

43 Gürsoy S, Steurer G, Brugada J, Andries E, Brugada P. Brief report:<br />

the hemodynamic mechanism <strong>of</strong> pounding in the neck in atrioventricular<br />

nodal reentrant tachycardia. N Engl J Med. 1992;327:772-4.<br />

44 Gorgels APM, Engelen DJM, Wellens HJJ. Lead aVR, a mostly ignored<br />

but very valuable lead in clinical electrocardiography. J Am Coll Cardiol.<br />

2001;38:1355-6.<br />

45 Bär FW, Brugada P, Dassen WRM, Wellens HJJ. Differential <strong>diagnosis</strong><br />

<strong>of</strong> tachycardia with <strong>narrow</strong> <strong>QRS</strong> <strong>complex</strong> (shorter than 0.12 second).<br />

Am J Cardiol. 1984;54:555-60.<br />

46 Vassallo JA, Cassidy DM, Josephson ME. Atrioventricular nodal supraventricular<br />

tachycardia. Am J Cardiol. 1985;56:193-5.<br />

47 Wellens HJJ, Wesdorp JC, Düren DR, Lie KI. Second degree block during<br />

reciprocal atrioventricular nodal tachycardia. Circulation.<br />

1976;53:595-9.<br />

48 Ribas CS, Baranchuk A, Connolly SJ, Morillo CA. Narrow <strong>QRS</strong> tachycardia<br />

with long R-P. Int J Cardiol. 2008;127:57-60.<br />

49 Orejarena LA, Vidaillet H, DeStefano F, Nordstrom DL, Vierkant RA,<br />

Smith PN, et al. Paroxysmal supraventricular tachycardia in the general<br />

population. J Am Coll Cardiol. 1998;31:150-7.<br />

50 Brembilla-Perrot B, Houriez P, Beurrier D, Claudon O, Burger G, Vançon<br />

AC, et al. Influence <strong>of</strong> age on the electrophysiological mechanism<br />

<strong>of</strong> paroxysmal supraventricular tachycardias. Int J Cardiol.<br />

2001;78:293-8.<br />

378 Emergencias 2010; 22: 369-380


<strong>ECG</strong> DIFFERENTIAL DIAGNOSIS OF NARROW <strong>QRS</strong> COMPLEX TACHYCARDIA IN THE EMERGENCY DEPARTMENT<br />

51 Goyal R, Zivin A, Souza J, Shaikh SA, Harvey M, Bogun F, et al. Comparison<br />

<strong>of</strong> the ages <strong>of</strong> tachycardia onset in patients with atrioventricular<br />

nodal reentrant tachycardia and accessory pathway-mediated<br />

tachycardia. Am Heart J. 1996;132:765-7.<br />

52 Munger TM, Packer DL, Hammill SC, Feldman BJ, Bailey KR, Ballard<br />

DJ, et al. A population study <strong>of</strong> the natural history <strong>of</strong> the Wolff-Parkinson-White<br />

syndrome in Olmsted County, Minnesota, 1953-1989.<br />

Circulation. 1993;87:866-73.<br />

53 Liu S, Yuan S, Kongstad O, Olsson SB. Gender differences in the<br />

electrophysiological characteristics <strong>of</strong> atrioventricular conduction<br />

system and their clinical implications. Scand Cardiovasc J.<br />

2001;35:313-7.<br />

54 Jazayeri MR, Hempe SL, Sra JS, Dhala AA, Blanck Z, Deshpande SS,<br />

et al. Selective transcatheter ablation <strong>of</strong> the fast and slow pathways<br />

using radi<strong>of</strong>requency energy in patients with atrioventricular nodal<br />

reentrant tachycardia. Circulation. 1992;85:1318-28.<br />

55 Kalbfleisch SJ, El-Atassi R, Calkins H, Langberg JJ, Morady F. Differentiation<br />

<strong>of</strong> paroxysmal <strong>narrow</strong> <strong>QRS</strong> <strong>complex</strong> tachycardias using the<br />

12-lead electrocardiogram. J Am Coll Cardiol. 1993;21:85-9.<br />

56 Riva SI, Della Bella P, Fassini G, Carbucicchio C, Tondo C. Value <strong>of</strong><br />

analysis <strong>of</strong> ST segment changes during tachycardia in determining<br />

type <strong>of</strong> <strong>narrow</strong> <strong>QRS</strong> <strong>complex</strong> tachycardia. J Am Coll Cardiol.<br />

1996;27:1480-5.<br />

57 Kay GN, Pressley JC, Packer DL, Pritchett ELC, German LD, Gilbert<br />

MR. Value <strong>of</strong> the 12-lead electrocardiogram in discriminating atrioventricular<br />

nodal reciprocating tachycardia from circus movement<br />

atrioventricular tachycardia utilizing a retrograde accessory pathway.<br />

Am J Cardiol. 1987;59:296-300.<br />

58 Schwartz M, Rodman D, Lowenstein SR. Recognition and treatment<br />

<strong>of</strong> multifocal atrial tachycardia: a critical review. J Emerg Med.<br />

1994;12:353-60.<br />

59 Richmond HCT, Taylor L, Monroe MH, Littmann L. A new algorithm<br />

for the initial evaluation and management <strong>of</strong> supraventricular tachycardia.<br />

Am J Emerg Med. 2006;24:402-6.<br />

60 Accardi AJ, Miller R, Holmes JF. Enhanced <strong>diagnosis</strong> <strong>of</strong> <strong>narrow</strong> <strong>complex</strong><br />

tachycardias with increased electrocardiograph speed. J Emerg<br />

Med. 2002;22:123-6.<br />

61 Tang CW, Scheinman MM, Van Hare GF, Epstein LM, Fitzpatrick AP,<br />

Lee RJ, et al. Use <strong>of</strong> P wave configuration during atrial tachycardia to<br />

predict site <strong>of</strong> origin. J Am Coll Cardiol. 1995;26:1315-24.<br />

62 Josephson ME. Paroxysmal supraventricular tachycardia: an electrophysiologic<br />

approach. Am J Cardiol. 1978;41:1123-6.<br />

63 Delacrétaz E. Supraventricular tachycardia. N Engl J Med.<br />

2006;354:1039-51.<br />

64 Zhong YM, Guo JH, Hou AJ, Chen SJ, Wang Y, Zhang HC. A modified<br />

electrocardiographic algorithm for differentiating typical atrioventricular<br />

node re-entrant tachycardia from atrioventricular reciprocating<br />

tachycardia mediated by concealed accessory pathway. Int J<br />

Clin Pract. 2006;60:1371-7.<br />

65 Jaeggi ET, Gilljam T, Bauersfeld U, Chiu C, Gow R. Electrocardiographic<br />

differentiation <strong>of</strong> typical atrioventricular node reentrant tachycardia<br />

from atrioventricular reciprocating tachycardia mediated by<br />

concealed accessory pathway in children. Am J Cardiol.<br />

2003;91:1084-9.<br />

66 Arya A, Kottkamp H, Piorkowski C, Schirdewahn P, Tanner H, Kobza R, et<br />

al. Differentiating atrioventricular nodal reentrant tachycardia from tachycardia<br />

via concealed accessory pathway. Am J Cardiol. 2005;95:875-8.<br />

67 Green M, Heddle B, Dassen W, Wehr M, Abdollah H, Brugada P, et al.<br />

Value <strong>of</strong> <strong>QRS</strong> alternation in determining the site <strong>of</strong> origin <strong>of</strong> <strong>narrow</strong><br />

<strong>QRS</strong> supraventricular tachycardia. Circulation. 1983;68:368-73.<br />

68 Morady F, DiCarlo LA, Baerman JM, de Buitleir, Kou WH. Determinants<br />

<strong>of</strong> <strong>QRS</strong> alternans during <strong>narrow</strong> <strong>QRS</strong> tachycardia. J Am Coll<br />

Cardiol. 1987;9:489-99.<br />

69 Morady F. Significance <strong>of</strong> <strong>QRS</strong> alternans during <strong>narrow</strong> <strong>QRS</strong> tachycardias.<br />

Pacing Clin Electrophysiol. 1991;14:2193-8.<br />

70 Pahlm US, Pahlm O, Wager GS. The standard 11-lead <strong>ECG</strong>. J Electrocardiol.<br />

1996;29 Suppl:270-4.<br />

71 Ho YL, Lin LY, Lin JL, Chen MF, Chen WJ, Lee YT. Usefulness <strong>of</strong> ST-segment<br />

elevation in lead aVR during tachycardia for determining the mechanism<br />

<strong>of</strong> <strong>narrow</strong> <strong>QRS</strong> <strong>complex</strong> tachycardia. Am J Cardiol. 2003;92:1424-8.<br />

72 Williamson K, Mattu A, Plautz CU, Binder A, Brady WJ. Electrocardiographic<br />

applications <strong>of</strong> lead aVR. Am J Emerg Med. 2006;24:864-74.<br />

73 Nelson SD, Kou WH, Annesley T, de Buitleir M, Morady F. Significance<br />

<strong>of</strong> ST segment depression during paroxysmal supraventricular<br />

tachycardia. J Am Coll Cardiol. 1988;12:383-7.<br />

74 Kim YN, Sousa J, El-Atassi R, Calkins H, Langberg JJ, Morady F. Magnitude<br />

<strong>of</strong> ST segment depression during paroxysmal supraventricular<br />

tachycardia. Am Heart J. 1991;122:1486-7.<br />

75 Tai CT, Chen SA, Chiang CE, Lee SH, Wen ZC, Chiou CW, et al. A<br />

new electrocardiographic algorithm using retrograde P waves for differentiating<br />

atrioventricular node reentrant tachycardia from atrioventricular<br />

reciprocating tachycardia mediated by concealed accessory<br />

pathway. J Am Coll Cardiol. 1997;29:394-402.<br />

76 DiMarco JP, Sellers TD, Lerman BB, Greenberg ML, Berne RM, Belardinelli<br />

L. Diagnostic and therapeutic use <strong>of</strong> adenosine in patients<br />

with supraventricular tachyarrhythmias. J Am Coll Cardiol.<br />

1985;6:417-25.<br />

77 Glatter KA, Cheng JC, Dorostkar P, Modin G, Talwar S, Al-Nimri M,<br />

et al. Electrophysiologic effects <strong>of</strong> adenosine in patients with supraventricular<br />

tachycardia. Circulation. 1999;99:1034-40.<br />

78 DiMarco JP, Miles W, Akhtar M, Milstein S, Sharma AD, Platia E, et<br />

al. The Adenosine for PSVT Study Group. Adenosine for paroxysmal<br />

supraventricular tachycardia: dose ranging and comparison with verapamil.<br />

Ann Intern Med. 1990;113:104-10.<br />

Emergencias 2010; 22: 369-380 379


M. P. Borloz et al.<br />

Diagnóstico diferencial electrocardiográfico de la taquicardia de complejo <strong>QRS</strong> estrecho<br />

en el servicio de urgencias: una revisión de ritmos frecuentes y sus características distintivas<br />

Borloz MP, Mark DG, Pines JM, Brady WJ<br />

El diagnóstico diferencial de las taquicardias de complejo <strong>QRS</strong> estrecho (T<strong>QRS</strong>E) es un dilema común en los pacientes<br />

adultos que acuden a los servicios de urgencias. Algunas T<strong>QRS</strong>E (ej.: taquicardia sinusal) son secundarias a los motivos<br />

que propiciaron su consulta (ej.: fiebre, ansiedad, dolor) y responderán al tratamiento apropiado de la patología subyacente.<br />

Por otro lado, otras T<strong>QRS</strong>E (ej.: fibrilación auricular, taquicardia de reentrada nodal AV) pueden ser verdaderamente<br />

el origen de la sintomatología principal (ej.: palpitaciones, mareo secundario a la hipoperfusión) y deben ser<br />

positivamente identificadas y tratadas. Para un correcto diagnóstico es necesario conocer las semejanzas y diferencias<br />

entre las distintas T<strong>QRS</strong>E. Este artículo comenta cuáles son las características demográficas, clínicas y electrocardiográficas<br />

que son de ayuda para identificar los siguientes ritmos: taquicardia sinusal, taquicardia de reentrada del nodo sinusal,<br />

taquicardia auricular unifocal, taquicardia auricular multifocal, fibrilación auricular, flutter auricular, taquicardia de<br />

reentrada del nodo auriculoventricular y taquicardia de reentrada auriculoventricular. Además, se realiza un comentario<br />

sobre las distintas maniobras diagnósticas, que vincluye la administración de adenosina. [Emergencias 2010;22:369-<br />

380]<br />

Palabras clave: Taquicardia de complejo <strong>QRS</strong>. Servicio de urgencias. Ritmos frecuentes.<br />

380 Emergencias 2010; 22: 369-380

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!