03.07.2014 Views

Investigation of PVD TiN Process for 28nm Hi-K PMOS ... - Sematech

Investigation of PVD TiN Process for 28nm Hi-K PMOS ... - Sematech

Investigation of PVD TiN Process for 28nm Hi-K PMOS ... - Sematech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Investigation</strong> <strong>of</strong> <strong>PVD</strong> <strong>TiN</strong> <strong>Process</strong> <strong>for</strong><br />

<strong>28nm</strong> <strong>Hi</strong>-K K <strong>PMOS</strong> Effective Work<br />

Function Enhancement<br />

UMC/ ATD_AM/ Adv.TF Department<br />

Kun-Hsien<br />

Lin, Chi-Mao Hsu, Hsin-Fu Huang, Tzung-Ying<br />

Lee, Min-Chuan Tsai, J. F Lin, Chan-Lon Yang, J.Y. Wu<br />

2010 AMC, Oct. 7, 2010


HK MG CMOS Flow<br />

Advanced Metallization Conference - 2010<br />

STI<br />

Well Imp<br />

Gate dielectric<br />

Gate Patterning<br />

Spacer 1<br />

LDD imp<br />

SiGe<br />

Spacer 2<br />

S/D imp /Anneal<br />

NiSi<br />

Dummy ILD<br />

Replacement Gate<br />

Contact<br />

BEoL<br />

P. 2


Replacement Gate Loop<br />

SiN CMP<br />

Anneal scheme split<br />

Advanced Metallization Conference - 2010<br />

Dummy Poly Strip<br />

Sel. Etch Stop Barrier Dep.<br />

(TaN)<br />

<strong>PMOS</strong> WF Metal Dep.<br />

(<strong>TiN</strong>)<br />

NMOS LT<br />

Oxygen Anneal<br />

Oxygen Anneal<br />

Oxygen Anneal<br />

WF Metal Etch on NMOS<br />

NMOS WF Metal + Al<br />

Al CMP<br />

P. 3


Experiment Apparatus<br />

Advanced Metallization Conference - 2010<br />

RF power<br />

supply<br />

DC power<br />

supply<br />

Wafer Bias on Capacitance<br />

tuning position ( ACT% )<br />

CT Curve<br />

200<br />

150<br />

100<br />

50<br />

Voltage (V)<br />

0<br />

0<br />

-50<br />

10 20 30 40 50 60 70 80 90 100<br />

-100<br />

-150<br />

Capacitance<br />

tuning box<br />

-200<br />

-250<br />

ACT Setting (%)<br />

Center Tap Bias<br />

üUtilize the capacitance tuning underneath wafer to<br />

build up various wafer bias, <strong>for</strong> film stress modulation.<br />

P. 4


Advanced Metallization Conference - 2010<br />

<strong>PVD</strong> Wafer Bias and <strong>TiN</strong> Film Stress<br />

CT Curve<br />

200<br />

150<br />

100<br />

Wafer Bias<br />

Voltage (V)<br />

50<br />

0<br />

-50<br />

-100<br />

0 10 20 30 40 50 60 70 80 90 100<br />

-150<br />

-200<br />

Center Tap Bias<br />

-250<br />

A B C<br />

ACT Setting (%)<br />

-0.14 GPa<br />

Film Stress<br />

-1.7 GPa<br />

-4.1GPa<br />

üControl <strong>PVD</strong> wafer bias to modulate the <strong>TiN</strong> film stress.<br />

P. 5


Advanced Metallization Conference - 2010<br />

XPS Composition <strong>of</strong> <strong>TiN</strong> Stress Split<br />

counts/sec<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

390 395 400 405 410 415<br />

binding energy (eV)<br />

N<br />

N-1s@4/1_0.14GPa<br />

<strong>TiN</strong>-A<br />

<strong>TiN</strong>-B<br />

N-1s@4/1_1.7GPa<br />

N-1s@4/1_4.2GPa<br />

<strong>TiN</strong>-C<br />

counts/sec<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

440 450 460 470 480<br />

binding energy(eV)<br />

Ti<br />

Ti-2p@4/1_0.14GPa<br />

<strong>TiN</strong>-A<br />

<strong>TiN</strong>-B<br />

Ti-2p@4/1_1.7GPa<br />

Ti-2p@4/1_4.1GPa<br />

<strong>TiN</strong>-C<br />

count/sec<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

520 530 540 550<br />

binding energy (eV)<br />

O<br />

O-1s@4/1_0.14GPa<br />

O-1s@4/1_1.7GPa<br />

<strong>TiN</strong>-A<br />

<strong>TiN</strong>-B<br />

O-1s@4/1_4.1GPa<br />

<strong>TiN</strong>-C<br />

(L)<br />

(M)<br />

(H)<br />

counts/sec<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

90 95 100 105 110 115<br />

binding energy (eV)<br />

Si<br />

Si-2p@4/1_0.17GPa<br />

Si-2p@4/1_1.7GPa<br />

<strong>TiN</strong>-A<br />

<strong>TiN</strong>-B<br />

Si-2p@4/1_4.1GPa<br />

<strong>TiN</strong>-C<br />

ü<strong>TiN</strong>-C (<strong>Hi</strong>-stress) is with lower oxygen content, but N, Ti<br />

species are the same <strong>for</strong> various stress <strong>of</strong> <strong>TiN</strong>.<br />

P. 6


<strong>TiN</strong> Film Property on eWF Boost<br />

Advanced Metallization Conference - 2010<br />

1.2<br />

KSC4A - 12 Area 29 Sites per Area, <strong>PMOS</strong><br />

1<br />

Flat Band Voltage, Vfb [V]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

<strong>TiN</strong>-A<br />

Low stress 0.14GPa<br />

<strong>TiN</strong>-C<br />

<strong>Hi</strong>gh stress 4.2GPa<br />

60 mV<br />

0<br />

0 0.5 1 1.5 2 2.5 3<br />

EOT [nm]<br />

ü<strong>Hi</strong>gh compressive stress <strong>TiN</strong> boost <strong>PMOS</strong> eWF by 60mV.<br />

P. 7


Advanced Metallization Conference - 2010<br />

XPS Oxygen Depth Pr<strong>of</strong>iling _ <strong>TiN</strong><br />

<strong>TiN</strong>-A<br />

(Low-Stress)<br />

<strong>TiN</strong>-C<br />

(<strong>Hi</strong>gh-Stress)<br />

Surface<br />

N<br />

Surface<br />

N<br />

Ti<br />

Ti<br />

O<br />

O<br />

üBoth <strong>TiN</strong>-A&C show the oxygen concentration is higher<br />

in the film surface.<br />

üIt suggests the oxygen is from the contamination <strong>of</strong> air<br />

exposure.<br />

P. 8


Advanced Metallization Conference - 2010<br />

<strong>TiN</strong> _ Oxygen % v.s. Film Stress<br />

ü <strong>TiN</strong> O% track the inverse trend <strong>of</strong> film stress.<br />

ü Since the oxygen is proved from air exposure, the<br />

higher O% <strong>of</strong> <strong>TiN</strong> is with higher oxygen affinity.<br />

P. 9


<strong>TiN</strong> _ Vfb on Film Stress<br />

Advanced Metallization Conference - 2010<br />

<strong>TiN</strong>-C<br />

<strong>Hi</strong>gh stress<br />

Middle stress<br />

<strong>TiN</strong>-A<br />

Low stress<br />

üLow-stress with higher oxygen affinity, which get more<br />

oxygen from hi-k layer, and generate more oxygen<br />

vacancy and the Vfb is lower.<br />

P. 10


Advanced Metallization Conference - 2010<br />

Mechanism <strong>for</strong> <strong>PMOS</strong> EWF Boost by<br />

Oxygen Anneal<br />

Oxygen Anneal<br />

( ref. : SEMATECH PAG meeting Y2009)<br />

üBenchmark showed oxygen vacancy passivation ( by<br />

oxygen anneal) could boost Vfb <strong>of</strong> <strong>PMOS</strong>.<br />

P. 11


Advanced Metallization Conference - 2010<br />

Oxygen Anneal <strong>for</strong> eWF Boost (<strong>PMOS</strong>)<br />

Flat Band Voltage, Vfb [V]<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1<br />

2<br />

3<br />

KSC0T - 6 Area 29 Sites per Area, <strong>PMOS</strong><br />

<strong>TiN</strong>100A/ O2 100% PMA/ TaN10A/ <strong>TiN</strong>(0/60) 20A/ HfOx<br />

Oxy Anneal after TaN<br />

O2 100% PMA /<strong>TiN</strong>100A/ TaN10A/ <strong>TiN</strong>(0/60) 20A/ HfOx<br />

Oxy Anneal after <strong>TiN</strong><br />

<strong>TiN</strong>100A/TaN10A/O2 100% PMA/<strong>TiN</strong>(0/60) 20A/HfOx<br />

Oxy Anneal after Poly Strip<br />

<strong>TiN</strong>100A/TaN10A/<strong>TiN</strong>(0/60) 20A/HfOx<br />

No Anneal (Control)<br />

0 0.5 1 1.5 2 2.5 3<br />

EOT [nm]<br />

üO2 anneal after dummy poly strip ( split #1 ), which can<br />

improve eWF by 230 mV.<br />

2<br />

3<br />

1<br />

P. 12


Summary :<br />

Advanced Metallization Conference - 2010<br />

1. Utilize <strong>PVD</strong> <strong>Process</strong> factors to control wafer bias and obtain<br />

different film stress level <strong>of</strong> <strong>TiN</strong>. Oxygen content track the<br />

inverse trend <strong>of</strong> stress level.<br />

2. Depth pr<strong>of</strong>iling confirm the oxygen content <strong>of</strong> <strong>TiN</strong> is from the<br />

oxygen contamination when air exposure.<br />

3. Oxygen content <strong>of</strong> <strong>TiN</strong> track the inverse trend <strong>of</strong> film stress,<br />

hence, the film stress can be an indicator <strong>of</strong> oxygen affinity.<br />

4. <strong>TiN</strong> <strong>of</strong> high oxygen affinity will getter more oxygen and generate<br />

more Vo ( oxygen vacancy), Vfb become lower.<br />

5. Optimized Oxygen anneal scheme can efficiently passivate Vo<br />

in HK layer and boost the eWF <strong>of</strong> <strong>PMOS</strong>.<br />

P. 13


Advanced Metallization Conference - 2010<br />

Thank You!<br />

P. 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!