01.07.2014 Views

Species, sex, size and male maturity composition of ... - Seaturtle.org

Species, sex, size and male maturity composition of ... - Seaturtle.org

Species, sex, size and male maturity composition of ... - Seaturtle.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Journal <strong>of</strong> Fish Biology (2012)<br />

doi:10.1111/j.1095-8649.2011.03210.x, available online at wileyonlinelibrary.com<br />

<strong>Species</strong>, <strong>sex</strong>, <strong>size</strong> <strong>and</strong> <strong>male</strong> <strong>maturity</strong> <strong>composition</strong><br />

<strong>of</strong> previously unreported elasmobranch l<strong>and</strong>ings<br />

in Kuwait, Qatar <strong>and</strong> Abu Dhabi Emirate<br />

A. B. M. Moore*†‡, I. D. McCarthy*, G. R. Carvalho§ <strong>and</strong> R. Peirce‖<br />

*School <strong>of</strong> Ocean Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59<br />

5AB, U.K., †RSK Environment Ltd., Spring Lodge, 172 Chester Road, Helsby, Cheshire, WA6<br />

0AR, U.K., §Molecular Ecology & Fisheries Genetics Laboratory, Environment Centre for<br />

Wales, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, U.K. <strong>and</strong> ‖Shark<br />

Conservation Society, Dulverton House, 8 Crooklets, Bude, Cornwall, EX23 8NE, U.K.<br />

This paper presents data from the first major survey <strong>of</strong> the diversity, biology <strong>and</strong> fisheries <strong>of</strong> elasmobranchs<br />

in the Persian (Arabian) Gulf. Substantial l<strong>and</strong>ings <strong>of</strong> elasmobranchs, usually as gillnet<br />

by-catch, were recorded in Kuwait, Qatar <strong>and</strong> the Emirate <strong>of</strong> Abu Dhabi (part <strong>of</strong> the United Arab<br />

Emirates), although larger elasmobranchs from targeted line fisheries were l<strong>and</strong>ed in Abu Dhabi. The<br />

elasmobranch fauna recorded was distinctive <strong>and</strong> included species that are undescribed, rare <strong>and</strong> have<br />

a highly restricted known distribution. Numerical abundance was dominated by sharks (c. 80%),<br />

<strong>of</strong> which carcharhinids were by far the most important. The milk shark Rhizoprionodon acutus<br />

<strong>and</strong> whitecheek shark Carcharhinus dussumieri together comprised just under half <strong>of</strong> all recorded<br />

individuals. Around 90% <strong>of</strong> recorded sharks were small (50–90 cm total length, L T ) individuals,<br />

most <strong>of</strong> which were mature individuals <strong>of</strong> species with a small maximum <strong>size</strong> (


2 A. B. M. MOORE ET AL.<br />

29°<br />

Iraq<br />

Kuwait<br />

Sharq<br />

Fahaheel<br />

Shatt al Arab<br />

Iran<br />

Iraq<br />

Saudi Arabia<br />

Red Sea<br />

Yemen<br />

Gulf <strong>of</strong> Aden<br />

Iran<br />

Pakistan<br />

Gulf<br />

Oman<br />

Gulf <strong>of</strong> Oman<br />

Arabian Sea<br />

26°<br />

Bahrain<br />

Saudi Arabia<br />

Doha<br />

Qatar<br />

Al Khor<br />

The<br />

Gulf<br />

Abu Dhabi<br />

Strait <strong>of</strong> Hormuz<br />

Gulf <strong>of</strong><br />

Oman<br />

0 50 100<br />

km<br />

200<br />

U.A.E.<br />

Oman<br />

49° 53° 56°<br />

Fig. 1. Map <strong>of</strong> The Gulf showing political boundaries <strong>and</strong> the locations sampled during the current survey.<br />

research is lacking in the Indian Ocean, despite high <strong>and</strong> increasing reported l<strong>and</strong>ings<br />

(Anderson & Simpfendorfer, 2005). In Arabian waters, Oman has led the efforts to<br />

characterize the diversity, biology <strong>and</strong> fisheries <strong>of</strong> its elasmobranch fauna in the Gulf<br />

<strong>of</strong> Oman <strong>and</strong> the Arabian Sea, both through l<strong>and</strong>ings-based <strong>and</strong> fisheries-independent<br />

data (Henderson et al., 2006, 2007, 2009; Henderson & Reeve, 2011). The elasmobranchs<br />

<strong>of</strong> The Gulf (Fig. 1) have received little attention, however, <strong>and</strong> are poorly<br />

understood (Moore, 2011). A number <strong>of</strong> concerns about Gulf elasmobranchs have<br />

been highlighted including the role <strong>of</strong> the Islamic Republic <strong>of</strong> Iran <strong>and</strong> the United<br />

Arab Emirates (U.A.E.) as major contributors to global elasmobranch l<strong>and</strong>ings <strong>and</strong><br />

shark-fin exports, respectively, a possible increase in dem<strong>and</strong> for meat <strong>and</strong> cartilage<br />

locally, as well as a possible fisheries-related change in elasmobranch community<br />

<strong>composition</strong> along the Iranian coast since the 1970s (Moore, 2011).<br />

In addition to research efforts, since 1999, the United Nations Food <strong>and</strong> Agriculture<br />

Organisation (FAO) has encouraged all states catching elasmobranchs in either<br />

targeted or by-catch fisheries to voluntarily participate in the International Plan <strong>of</strong><br />

Action for the Conservation <strong>and</strong> Management <strong>of</strong> Sharks (IPOA-Sharks) <strong>and</strong> to have<br />

developed a ‘Shark-Plan’ by 2001 (FAO, 1999). The IPOA-Sharks is aimed at ensuring<br />

the sustainable use <strong>of</strong> all chondrichthyans <strong>and</strong> places particular emphasis on the<br />

importance <strong>of</strong> catch data to support this aim (FAO, 1999). All <strong>of</strong> The Gulf states (i.e.<br />

Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia <strong>and</strong> the U.A.E.; excluding Oman<br />

here, whose coastline is largely non-Gulf) operate a range <strong>of</strong> fisheries for teleosts<br />

<strong>and</strong> invertebrates, including extensive gillnetting (Bishop, 2002). In addition, there<br />

are some reports <strong>of</strong> targeted elasmobranch fisheries in Gulf waters <strong>of</strong> the U.A.E.<br />

(Anderson & Simpfendorfer, 2005). As such, all Gulf states can be assumed to be<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 3<br />

catching elasmobranchs to some degree in their fishing activities, although to date<br />

none have adopted a Shark-Plan (FAO, 2011a). Kuwait <strong>and</strong> Qatar have either not<br />

reported elasmobranch l<strong>and</strong>ings or reported zero values to the FAO (FAO, 2011b).<br />

The U.A.E. has reported l<strong>and</strong>ings to the FAO since 1986 (FAO, 2011b), <strong>and</strong> Abu<br />

Dhabi Emirate publishes data on elasmobranch l<strong>and</strong>ings (by port, gear <strong>and</strong> vessel<br />

type, <strong>and</strong> month) as part <strong>of</strong> annual fisheries statistics (Environmental Research &<br />

Wildlife Development Agency, 2005; Environment Agency Abu Dhabi, 2010). The<br />

value <strong>of</strong> these data in assessing the <strong>composition</strong> <strong>of</strong> elasmobranch l<strong>and</strong>ings is compromised,<br />

however, by broad <strong>and</strong> unspecified reporting, such as <strong>of</strong> ‘sharks <strong>and</strong> rays’<br />

or similar broad taxonomic groupings.<br />

Given the concerns noted above <strong>and</strong> the paucity <strong>of</strong> data <strong>and</strong> management locally,<br />

there is a clear need for basic information on the diversity, <strong>size</strong> <strong>composition</strong>, reproductive<br />

biology <strong>and</strong> fisheries <strong>of</strong> Gulf elasmobranchs (Moore, 2011). Surveys <strong>of</strong> fish<br />

markets <strong>and</strong> l<strong>and</strong>ing sites have provided a rapid <strong>and</strong> relatively inexpensive source <strong>of</strong><br />

important data for elasmobranchs elsewhere on a range <strong>of</strong> aspects including reproductive<br />

biology, fisheries <strong>and</strong> new species (White & Dharmadi, 2007; Bizarro et al.,<br />

2009; Last et al., 2010a). In order to address local data gaps, the current paper reports<br />

species, <strong>size</strong> <strong>and</strong> <strong>sex</strong> <strong>composition</strong>, <strong>male</strong> <strong>maturity</strong> <strong>and</strong> fisheries <strong>of</strong> elasmobranchs<br />

recorded at l<strong>and</strong>ing sites <strong>and</strong> markets at three locations approximately equidistant<br />

along the Arabian coastline <strong>of</strong> The Gulf, i.e. Kuwait (north-western Gulf), Qatar<br />

(southern) <strong>and</strong> Abu Dhabi Emirate, <strong>of</strong> the U.A.E. (south-eastern) (Fig. 1). The results<br />

comprise the first major survey <strong>of</strong> elasmobranch diversity, biology <strong>and</strong> fisheries in<br />

The Gulf <strong>and</strong> form an important addition to knowledge on the relatively poorly<br />

known status <strong>of</strong> elasmobranchs in the western Indian Ocean.<br />

STUDY REGION<br />

MATERIALS AND METHODS<br />

The Gulf (Fig. 1) is a shallow (average depth 35 m), semi-enclosed <strong>of</strong>fshoot <strong>of</strong> the northwest<br />

Indian Ocean, connected to the much deeper Gulf <strong>of</strong> Oman (>3000 m), <strong>and</strong> subsequently<br />

the Arabian Sea, through the narrow Strait <strong>of</strong> Hormuz. The Gulf is a harsh environment,<br />

<strong>and</strong> in some cases can be subject to extremes <strong>of</strong> water temperature (4–39 ◦ C) <strong>and</strong> salinity<br />

(brackish to >70); the single major freshwater input discharges into the north-west Gulf<br />

through the Shatt al Arab near northern Kuwait (Sheppard et al., 1992; Carpenter et al.,<br />

1997). In general, coastal waters <strong>of</strong> Qatar <strong>and</strong> the Emirate <strong>of</strong> Abu Dhabi (the largest in the<br />

U.A.E.) are characterized by extensive shallows <strong>of</strong>


4 A. B. M. MOORE ET AL.<br />

E); in Qatar (12–29 April 2009) at Corniche, Doha (25 ◦ 17 ′ N; 51 ◦ 32 ′ E), Doha main<br />

wholesale market (25 ◦ 17 ′ N; 51 ◦ 32 ′ E) <strong>and</strong> Al Khor (25 ◦ 41 ′ N; 51 ◦ 31 ′ E); <strong>and</strong> in the<br />

U.A.E. (Abu Dhabi Emirate) (5–11 April 2010) at Abu Dhabi City (Mina Zayed) (24 ◦ 30 ′<br />

N; 54 ◦ 22 ′ E) (Fig. 1). Elasmobranchs were openly sold in Kuwait in 2008, but in 2011,<br />

the Public Authority for Agriculture <strong>and</strong> Fisheries (PAAFR) was actively enforcing a ban on<br />

their sale in the market, so most sampling was performed at the quayside. Further brief SCS<br />

visits were made to Qatar (Doha wholesale market) in April <strong>of</strong> both 2010 <strong>and</strong> 2011, although<br />

these were not sampled <strong>and</strong> only photographs were taken for later evaluation <strong>of</strong> broad species<br />

<strong>composition</strong>. A planned SCS market survey to Bahrain in April 2011 was postponed as a<br />

result <strong>of</strong> political unrest.<br />

All specimens were identified <strong>and</strong> measured to the nearest cm using total length (L T , upper<br />

caudal fin lobe straightened along the body axis) for sharks <strong>and</strong> guitarfishes (i.e. Rhinidae, Rhinobatidae<br />

<strong>and</strong> Rhynchobatidae), or disk width (W D ) for rays (i.e. all non-guitarfish batoids).<br />

Sex was recorded <strong>and</strong> apart from a few instances [including eight pregnant whitecheek shark<br />

Carcharhinus dussumieri (Müller & Henle, 1839)], <strong>male</strong> <strong>and</strong> fe<strong>male</strong> elasmobranchs were not<br />

routinely dissected for macroscopic examination <strong>of</strong> the reproductive tract owing to logistical<br />

constraints. For <strong>male</strong> sharks, <strong>maturity</strong> was categorized based on a slightly adapted version<br />

<strong>of</strong> the scale in Henderson et al. (2006) but using only external examination <strong>of</strong> claspers. The<br />

classes used were juvenile (i.e. claspers undeveloped, not extending beyond posterior tips<br />

<strong>of</strong> pelvic fins), maturing (extending beyond posterior margin <strong>of</strong> pelvic fin, but flexible <strong>and</strong><br />

not fully calcified) <strong>and</strong> mature (much longer than pelvic-fin rear margin, rigid). From this, a<br />

<strong>male</strong> <strong>maturity</strong> <strong>size</strong> range was derived for each species, from the <strong>size</strong> <strong>of</strong> the smallest maturing<br />

individual to the <strong>size</strong> above which all <strong>male</strong>s were mature. These data were also used to construct<br />

<strong>maturity</strong> ogives <strong>and</strong> L T at 50% <strong>maturity</strong> (L T50 ). For rays, only the <strong>size</strong> above which<br />

all individuals were deemed mature (i.e. fully developed, rigid claspers) is presented here;<br />

<strong>male</strong> <strong>maturity</strong> data for guitarfishes are not presented as claspers can remain flexible in mature<br />

animals (A. Henderson, pers. comm.).<br />

DATA ANALYSIS<br />

For those species where a total <strong>of</strong> >100 individuals were recorded (seven sharks <strong>and</strong> three<br />

batoids) the <strong>size</strong>-frequency distributions for each <strong>sex</strong> were tested to see if data conformed<br />

to a normal distribution using an Anderson–Darling test. Dependent on whether data were<br />

distributed normally or not, intergender <strong>size</strong> differences were then investigated using either<br />

a two-tailed t-test or a Mann–Whitney U-test, to test for possible <strong>sex</strong>-based differences<br />

in fisheries l<strong>and</strong>ings. The Mann–Whitney U-test was further used to investigate possible<br />

geographic <strong>and</strong> temporal differences in l<strong>and</strong>ed <strong>size</strong> for both <strong>sex</strong>es between sampling events<br />

in the two most commonly recorded species, i.e. milk shark Rhizoprionodon acutus (Rüppell,<br />

1837) <strong>and</strong> C. dussumieri. Size-frequency distributions <strong>of</strong> <strong>male</strong>s <strong>and</strong> fe<strong>male</strong>s were compared<br />

using a χ 2 contingency test with the <strong>size</strong> distribution divided up into 5 or 10 cm <strong>size</strong> class<br />

intervals as appropriate to the L T <strong>of</strong> the species under consideration. To test the null hypothesis<br />

<strong>of</strong> <strong>sex</strong> ratios being at parity for each sampling event, a χ 2 test was performed for each species.<br />

For <strong>male</strong> sharks with a sample <strong>size</strong> <strong>of</strong> >200, L T50 was calculated using the logistic equation<br />

Y = x + (z − x)(1 + e −K(L T−L T50 ) ) −1 ,whereY is the percentage <strong>of</strong> <strong>male</strong>s mature in the L T<br />

<strong>size</strong> class (cm) <strong>and</strong> K, x <strong>and</strong> z are constants. The equation was fitted using the non-linear<br />

curve fitting programme in Minitab v14 (www.minitab.com). The relationships between C.<br />

dussumieri maternal L T <strong>and</strong> both litter <strong>size</strong> <strong>and</strong> mean embryo L T were investigated using<br />

correlation analysis.<br />

RESULTS<br />

IDENTIFICATION AND TAXONOMY<br />

A total <strong>of</strong> 4649 elasmobranchs were examined during the survey (Table I). The<br />

vast majority <strong>of</strong> individuals were successfully identified to species level, with two<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 5<br />

Table I. Elasmobranch taxa recorded in surveys <strong>of</strong> markets <strong>and</strong> harbours during April in Kuwait (2008 <strong>and</strong> 2011), Qatar (2009) <strong>and</strong> Abu Dhabi<br />

(2010): number, percentage <strong>of</strong> total <strong>of</strong> all species, <strong>size</strong> range by <strong>sex</strong> (sharks <strong>and</strong> guitarfishes LT, raysWD; mean ± S.D. cm) <strong>and</strong> <strong>male</strong> <strong>maturity</strong>.<br />

For sharks, the range <strong>of</strong> the smallest maturing <strong>size</strong> above which all <strong>male</strong>s were mature, excluding anomalous outliers, <strong>and</strong> for rays, only the <strong>size</strong><br />

above which all <strong>male</strong>s were mature are presented<br />

Taxon<br />

Kuwait<br />

2008<br />

Number <strong>of</strong> individuals<br />

(% total <strong>of</strong> all species combined)<br />

Kuwait<br />

2011 Qatar<br />

Abu<br />

Dhabi<br />

Total all<br />

sites<br />

Male (♂) <strong>and</strong> fe<strong>male</strong> (♀) <strong>size</strong> range<br />

(mean ± s.d. cm)<br />

Male<br />

<strong>maturity</strong><br />

(cm)<br />

Sharks<br />

Hemiscyllidae<br />

Chiloscyllium arabicum 20<br />

(1·32)<br />

Triakidae<br />

Mustelus mosis 15<br />

(0·99)<br />

Hemigaleidae<br />

Chaenogaleus macrostoma 39<br />

(2·57)<br />

Hemipristis elongata 1<br />

(0·07)<br />

Paragaleus r<strong>and</strong>alli 5<br />

(0·33)<br />

Carcharhinidae<br />

Carcharhinus spp. A 62<br />

(4·09)<br />

Carcharhinus amblyrhynchoides 5<br />

(0·33)<br />

105<br />

(15·02)<br />

12<br />

(1·72)<br />

17<br />

(2·43)<br />

5<br />

(0·25)<br />

2<br />

(0·10)<br />

30<br />

(1·49)<br />

— 1<br />

(0·05)<br />

5<br />

(0·72)<br />

35<br />

(1·73)<br />

— 2<br />

(0·10)<br />

3<br />

(0·43)<br />

— 130<br />

(2·80)<br />

5<br />

(1·20)<br />

1<br />

(0·24)<br />

34<br />

(0·73)<br />

87<br />

(1·87)<br />

— 2<br />

(0·04)<br />

23<br />

(5·54)<br />

68<br />

(1·46)<br />

— 64<br />

(1·38)<br />

— — 8<br />

(0·17)<br />

♂ 56–77 (68·6 ± 4·4)<br />

♀ 56–80 (68·8 ± 4·9)<br />

♂ 65–84 (72·3 ± 4·9)<br />

♀ 63–83 (76·0 ± 5·0)<br />

♂ 70–90 (78·1 ± 5·2)<br />

♀ 58–92 (80·3 ± 7·8)<br />

♂ NA<br />

♀ 117–119 (118·0 ± 1·4)<br />

♂ 61–81 (73·2 ± 4·5)<br />

♀ 56–83·6 (70·3 ± 8·3)<br />

♂ 67–130 (84·1 ± 19·4)<br />

♀ 63–140 (86·4 ± 15·3)<br />

♂ 80–88 (85·4 ± 4·8)<br />

♀ 82–166 (100·0 ± 36·9)<br />

62–68<br />

NAmin –65<br />

NAmin –70<br />

NA<br />

61–64<br />

NA<br />

NA<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


6 A. B. M. MOORE ET AL.<br />

Table I. Continued<br />

Number <strong>of</strong> individuals<br />

(% total <strong>of</strong> all species combined)<br />

Taxon<br />

Kuwait<br />

2008<br />

Kuwait<br />

2011 Qatar<br />

Abu<br />

Dhabi<br />

Total all<br />

sites<br />

Carcharhinus amboinensis 32<br />

(2·11)<br />

Carcharhinus brevipinna 23<br />

(1·52)<br />

Carcharhinus dussumieri 338<br />

(22·30)<br />

13<br />

(1·86)<br />

1<br />

(0·14)<br />

139<br />

(19·89)<br />

3<br />

(0·15)<br />

22<br />

(5·30)<br />

— 5<br />

(1·20)<br />

525<br />

(26·00)<br />

Carcharhinus falciformis — — — 1 B<br />

Carcharhinus leiodon 25<br />

(1·65)<br />

Carcharhinus leucas 26<br />

(1·72)<br />

Carcharhinus limbatus 32<br />

(2·11)<br />

Carcharhinus macloti 16<br />

(1·06)<br />

7<br />

(1·00)<br />

16<br />

(2·29)<br />

20<br />

(2·86)<br />

7<br />

(1·00)<br />

2<br />

(0·48)<br />

(0·24)<br />

70<br />

(1·51)<br />

29<br />

(0·62)<br />

1004<br />

(21·60)<br />

1<br />

(0·02)<br />

— — 32<br />

(0·69)<br />

1<br />

(0·05)<br />

27<br />

(1·34)<br />

— 43<br />

(0·92)<br />

39<br />

(9·40)<br />

— 6<br />

(1·45)<br />

Carcharhinus melanopterus — — — 1<br />

(0·24)<br />

Carcharhinus sorrah 179<br />

(11·81)<br />

5<br />

(0·72)<br />

79<br />

(3·91)<br />

Loxodon macrorhinus — — 63<br />

(3·12)<br />

25<br />

(6·02)<br />

155<br />

(37·35)<br />

118<br />

(2·54)<br />

29<br />

(0·62)<br />

1<br />

(0·02)<br />

288<br />

(6·19)<br />

218<br />

(4·69)<br />

Male(♂) <strong>and</strong> fe<strong>male</strong> (♀) <strong>size</strong> range<br />

(cm) (mean ± s.d. cm)<br />

Male<br />

<strong>maturity</strong><br />

(cm)<br />

♂ 57–227 (119·0 ± 47·6)<br />

♀ 69–246 (129·7 ± 44·5)<br />

♂ 71–214 (100·9 ± 46·1)<br />

♀ 72–92 (83·4 ± 6·4)<br />

♂ 36–96 (76·0 ± 10·5)<br />

♀ 36–100 (75·5 ± 14·2)<br />

206–227<br />

NAmin –204<br />

63–80<br />

♀∼60 NA<br />

♂ 66–132 (80·6 ± 21·1)<br />

♀ 68–142 (88·6 ± 24·3)<br />

♂ 75–158 (109·6 ± 18·2)<br />

♀ 82–183 (113·8 ± 25·8)<br />

♂ 58–210 (113·4 ± 45·8)<br />

♀ 55–223 (119·9 ± 44·2)<br />

♂ 49–83 (62·1 ± 8·6)<br />

♀ 59–94 (71·8 ± 12·1)<br />

♂ NA<br />

♀ 73<br />

♂ 52–152 (82·4 ± 17·0)<br />

♀ 50–166 (90·4 ± 24·4)<br />

♂ 53–79 (68·8 ± 5·1)<br />

♀ 53–84 (69·3 ± 6·2)<br />

NAmin –123<br />

NA<br />

164–184<br />

75–83<br />

NA<br />

85–110<br />

61–71<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 7<br />

Table I. Continued<br />

Number <strong>of</strong> individuals<br />

(% total <strong>of</strong> all species combined)<br />

Taxon<br />

Kuwait<br />

2008<br />

Kuwait<br />

2011 Qatar<br />

Abu<br />

Dhabi<br />

Total all<br />

sites<br />

Rhizoprionodon acutus 185<br />

(12·20)<br />

Rhizoprionodon oligolinx 172<br />

(11·35)<br />

18<br />

(2·58)<br />

54<br />

(7·73)<br />

931<br />

(46·11)<br />

112<br />

(26·99)<br />

1246<br />

(26·80)<br />

— — 226<br />

(4·86)<br />

Sphyrnidae<br />

Sphyrna lewini — — — 1<br />

(0·24)<br />

Sphyrna mokarran 20<br />

(1·32)<br />

— 3<br />

(0·15)<br />

Guitarfish<br />

Rhinidae<br />

Rhina ancylostoma — — — 1<br />

(0·24)<br />

Rhynchobatidae<br />

Rhynchobatus cf. djiddensis C 7<br />

(0·46)<br />

Rhinobatidae<br />

Rhinobatos granulatus 13<br />

(0·86)<br />

10<br />

(1·43)<br />

130<br />

(18·60)<br />

2<br />

(0·10)<br />

1<br />

(0·02)<br />

— 23<br />

(0·49)<br />

1<br />

(0·02)<br />

— 19<br />

(0·41)<br />

— — 143<br />

(3·08)<br />

Rhinobatos halavi — — — 13<br />

(3·13)<br />

13<br />

(0·28)<br />

Male(♂) <strong>and</strong> fe<strong>male</strong> (♀) <strong>size</strong> range<br />

(cm) (mean ± s.d. cm)<br />

♂ 47–88 (65·1 ± 7·0)<br />

♀ 43–89 (64·1 ± 10·1)<br />

♂ 45–64 (57·8 ± 4·5)<br />

♀ 45–85 (66·4 ± 5·4)<br />

♂ NA<br />

♀ 87<br />

♂ 72–137 (102·0 ± 31·7)<br />

♀ 72–214 (144·5 ± 42·2)<br />

♂ NA<br />

♀ 180<br />

♂ 81–177 (138·2 ± 25·6)<br />

♀ 73–149 (91·2 ± 32·4)<br />

♂ 47–120 (74·7 ± 17·7)<br />

♀ 39–175 (107·8 ± 45·3)<br />

♂ 67–94 (81·8 ± 9·0)<br />

♀ 76–94 (81·7 ± 8·7)<br />

Male<br />

<strong>maturity</strong><br />

(cm)<br />

54–68<br />

45–53<br />

NA<br />

NA<br />

NA<br />

NA<br />

NA<br />

NA<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


8 A. B. M. MOORE ET AL.<br />

Table I. Continued<br />

Number <strong>of</strong> individuals<br />

(% total <strong>of</strong> all species combined)<br />

Taxon<br />

Kuwait<br />

2008<br />

Kuwait<br />

2011 Qatar<br />

Abu<br />

Dhabi<br />

Total all<br />

sites<br />

Rhinobatos cf. punctifer — 1<br />

(0·14)<br />

3<br />

(0·15)<br />

Rays<br />

Dasyatidae<br />

Himantura fai — — — 1<br />

(0·24)<br />

Himantura imbricata 3<br />

(0·20)<br />

Himantura sp. B 17<br />

(1·12)<br />

Himantura uarnak species complex 14<br />

(0·92)<br />

Pastinachus sephen 72<br />

(4·75)<br />

Gymnuridae<br />

Gymnura cf. poecilura 9<br />

(0·59)<br />

Myliobatidae<br />

Aetobatus flagellum 13<br />

(0·86)<br />

Aetobatus cf. ocellatus 7<br />

(0·46)<br />

11<br />

(1·57)<br />

42<br />

(6·01)<br />

9<br />

(1·29)<br />

26<br />

(3·72)<br />

15<br />

(2·15)<br />

23<br />

(3·29)<br />

2<br />

(0·10)<br />

118<br />

(5·84)<br />

1<br />

(0·05)<br />

4<br />

(0·20)<br />

6<br />

(0·30)<br />

— 3<br />

(0·15)<br />

— 4<br />

(0·09)<br />

1<br />

(0·02)<br />

— 16<br />

(0·34)<br />

— 177<br />

(3·81)<br />

1<br />

(0·24)<br />

25<br />

(0·54)<br />

— 102<br />

(2·19)<br />

— 30<br />

(0·65)<br />

— — 36<br />

(0·77)<br />

— 10<br />

(0·22)<br />

Male(♂) <strong>and</strong> fe<strong>male</strong> (♀) <strong>size</strong> range<br />

(cm) (mean ± s.d. cm)<br />

♂ NA<br />

♀ 77–87 (82·0 ± 4·0)<br />

♂ NA<br />

♀ 124<br />

♂ 15–23 (19·3 ± 2·8)<br />

♀ 14–26 (19·9 ± 4·0)<br />

♂ 24–54 (41·9 ± 7·9)<br />

♀ 25–62 (40·6 ± 10·9)<br />

♂ 45–106 (87·8 ± 13·0)<br />

♀ 40–121(88·4 ± 20·1)<br />

♂ 35–96 (50·2 ± 11·0)<br />

♀ 32–89 (56·3 ± 11·2)<br />

♂ 33–69 (54·7 ± 7·9)<br />

♀ 37–94 (61·3 ± 19·2)<br />

♂ 27–58 (42·1 ± 9·7)<br />

♀ 33–74 (54·3 ± 14·5)<br />

♂ 105–155 (124·0 ± 15·5)<br />

♀ 61–125 (90·7 ± 32·3)<br />

Male<br />

<strong>maturity</strong><br />

(cm)<br />

NA<br />

NA<br />

18<br />

43<br />

84<br />

54<br />

48<br />

53<br />

119<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 9<br />

Table I. Continued<br />

Number <strong>of</strong> individuals<br />

(% total <strong>of</strong> all species combined)<br />

Taxon<br />

Kuwait<br />

2008<br />

Kuwait<br />

2011 Qatar<br />

Abu<br />

Dhabi<br />

Total all<br />

sites<br />

Male(♂) <strong>and</strong> fe<strong>male</strong> (♀) <strong>size</strong> range<br />

(cm) (mean ± s.d. cm)<br />

Aetomylaeus cf. milvus 16<br />

(1·06)<br />

Aetomylaeus nich<strong>of</strong>ii 24<br />

(1·58)<br />

— 9<br />

(0·45)<br />

1<br />

(0·14)<br />

Rhinopteridae<br />

Rhinoptera javanica — 2<br />

(0·29)<br />

Rhinoptera jayakari 5<br />

(0·33)<br />

Rhinoptera spp. 121<br />

(7·98)<br />

6<br />

(0·86)<br />

1<br />

(0·14)<br />

69<br />

(3·42)<br />

— 25<br />

(0·54)<br />

— 94<br />

(2·02)<br />

— — 2<br />

(0·04)<br />

2<br />

(0·10)<br />

91<br />

(4·51)<br />

Mobulidae<br />

Mobula cf. eregoodootenkee — — 2<br />

(0·10)<br />

All species combined 1516<br />

(100)<br />

699<br />

(100)<br />

2019<br />

(100)<br />

— 13<br />

(0·28)<br />

1<br />

(0·24)<br />

214<br />

(4·60)<br />

— 2<br />

(0·04)<br />

415<br />

(100)<br />

4649<br />

(100)<br />

♂ 48–90 (68·7 ± 14·1)<br />

♀ 47–123 (76·0 ± 25·9)<br />

♂ 35–72 (45·6 ± 6·1)<br />

♀ 24–72 (51·1 ± 11·8)<br />

♂ NA<br />

♀ 99–122<br />

(110·5 ± 16·3)<br />

♂ 58–60 (63·5 ± 7·8)<br />

♀ 43–116 (80·2 ± 17·5)<br />

♂ 45–85 (69·6 ± 11·0)<br />

♀ 43–96 (77·1 ± 11·6)<br />

♂ 105<br />

♀ ∼100<br />

NA, not applicable; NAmin, minimum <strong>size</strong> not available.<br />

A Probably comprising C. amblyrhynchoides –C. leiodon –C. limbatus <strong>and</strong> C.limbatus –C. brevipinna not accurately identified.<br />

B Excised embryo.<br />

C Un<strong>sex</strong>ed specimens <strong>of</strong> c. 140–200 cm L T recorded.<br />

Male<br />

<strong>maturity</strong><br />

(cm)<br />

69<br />

40<br />

NA<br />

NA<br />

71<br />

105<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


10 A. B. M. MOORE ET AL.<br />

exceptions: (1) two subtly different species <strong>of</strong> cownose rays Rhinoptera sp., for<br />

which field identification characters (Last et al., 2010b) only became available at the<br />

end <strong>of</strong> the survey, <strong>and</strong> (2) a number <strong>of</strong> morphologically similar Carcharhinus species<br />

in the initial part <strong>of</strong> the first survey (Kuwait in 2008). Undescribed taxa [whipray<br />

Himantura sp. B sensu Manjaji, 2004; guitarfish Rhinobatos cf. punctifer (‘RHY’<br />

sensu Henderson et al., 2007)] were also recorded, as was a cryptic species complex<br />

[Himantura uarnak (Gmelin 1789)]. Preliminary examination <strong>of</strong> barcode data,<br />

photographs <strong>and</strong> specimens indicates that taxonomic clarification is also required for<br />

several more batoid species collected in this survey (White et al., 2010; R. D. Ward,<br />

W. White, P. Last, pers. comms.).<br />

TAXONOMIC COMPOSITION<br />

A total <strong>of</strong> 39 elasmobranch species (including the H. uarnak species complex)<br />

were recorded during the survey, comprising 21 shark, five guitarfish <strong>and</strong> 13 ray<br />

species (Table I). These belonged to a total <strong>of</strong> 13 families, <strong>of</strong> which the most<br />

species-rich were whaler sharks (Carcharhinidae, 14 species) <strong>and</strong> stingrays (Dasyatidae,<br />

five species). The vast majority (c. 80%) <strong>of</strong> elasmobranchs were sharks, with<br />

rays comprising c. 16%; guitarfishes were relatively unimportant overall (c. 4%).<br />

Amongst the sharks, carcharhinids dominated (c. 73% <strong>of</strong> total individuals), with<br />

weasel sharks (Hemigaleidae) <strong>and</strong> carpetsharks (Hemiscyllidae) comprising c. 3%<br />

each. Houndsharks (Triakidae) <strong>and</strong> hammerhead sharks (Sphyrnidae) each comprised<br />


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 11<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

Fig. 2. Broad taxonomic <strong>composition</strong> <strong>of</strong> elasmobranchs recorded at each sampling event: (a) Kuwait 2008,<br />

(b) Qatar 2009, (c) Abu Dhabi 2010 <strong>and</strong> (d) Kuwait 2011. , Chiloscyllium arabicum; , Triakids &<br />

Hemigaleids; , small (100 cm maximum<br />

L T ) carcharhinids <strong>and</strong> sphyrnids; , guitarfishes; ,rays.<br />

further species was recorded beyond approximately three quarters (c. 1500) <strong>of</strong> the<br />

total individuals recorded, suggesting that these surveys adequately recorded species<br />

richness <strong>of</strong> l<strong>and</strong>ings at the time <strong>of</strong> the survey. Conversely, new taxa were recorded<br />

throughout the much smaller survey in Abu Dhabi, indicating that species richness<br />

was insufficiently sampled at this location.<br />

SIZE, MATURITY AND SEX COMPOSITION<br />

Table I presents details <strong>of</strong> species abundance, <strong>size</strong> ranges for <strong>male</strong>s <strong>and</strong> fe<strong>male</strong>s<br />

<strong>and</strong> <strong>male</strong> <strong>maturity</strong> for the individuals sampled in the 2008–2011 surveys. The vast<br />

majority (c. 90%) <strong>of</strong> all sharks recorded were small with an L T between 50 <strong>and</strong><br />

90 cm, <strong>and</strong> this pattern was broadly consistent across the four sampling events<br />

(Kuwait 2008 c. 85%; Qatar c. 94%; Abu Dhabi c. 87%; Kuwait 2011 c. 87%)<br />

(Fig. 2). The sample comprised mostly <strong>of</strong> species with a small reported maximum<br />

<strong>size</strong> <strong>of</strong> 200 cm L T [comprising<br />

pigeye Carcharhinus amboinensis (Müller & Henle 1839), spinner Carcharhinus<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


12 A. B. M. MOORE ET AL.<br />

(a)<br />

100<br />

Small<br />

non-carcharhinids<br />

75<br />

50<br />

Larger sharks<br />

Common small<br />

100 cm max L T<br />

Mature <strong>male</strong>s (%)<br />

(b)<br />

25<br />

0<br />

C. arabicum (64)<br />

M. mosis (19)<br />

C. macrostoma (36)<br />

P. r<strong>and</strong>alli (39)<br />

100<br />

Benthic<br />

R. acutus (901)<br />

R. oligolinx (92)<br />

L. macrorhinus (151)<br />

C. dussumieri (732)<br />

C. macloti (15)<br />

C. amblyrhynchoides (3)<br />

C. brevipinna (14)<br />

C. leucas (20)<br />

C. amboinensis (26)<br />

C. leiodon (14)<br />

C. limbatus (52)<br />

C. sorrah (150)<br />

Carcharhinus spp. (36)<br />

S. mokarran (6)<br />

Bentho-pelagic<br />

75<br />

50<br />

25<br />

0<br />

H. sp. B (110)<br />

P. sephen (36)<br />

H. uarnak complex (21)<br />

G. cf. poecilura (19)<br />

A. flagellum (22)<br />

A. cf. ocellatus (7)<br />

A. nich<strong>of</strong>ii (47)<br />

A. cf. milvus (15)<br />

Rhinoptera spp. (83)<br />

Fig. 3. Percentage <strong>of</strong> <strong>male</strong> (a) sharks <strong>and</strong> (b) rays (see Table I) that were assessed as mature ( )orimmature<br />

( ). The number <strong>of</strong> <strong>male</strong>s assessed for each species are presented in parentheses. L T , total length.<br />

brevipinna (Müller & Henle 1839), blacktip shark Carcharhinus limbatus (Müller<br />

& Henle 1839) <strong>and</strong> great hammerhead Sphyrna mokarran (Rüppell 1837)] were relatively<br />

unimportant in terms <strong>of</strong> overall abundance (


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 13<br />

Table II. Sex ratios <strong>of</strong> elasmobranchs recorded in surveys <strong>of</strong> markets <strong>and</strong> harbours at locations<br />

in The Gulf deviating significantly from parity in favour <strong>of</strong> one <strong>sex</strong><br />

<strong>Species</strong> Male Fe<strong>male</strong><br />

Mustelus mosis Kuwait 2011***<br />

Chaenogaleus macrostoma Kuwait 2011* Qatar**<br />

Carcharhinus dussumieri Kuwait 2008***, Qatar***<br />

Loxodon macrorhinus<br />

Abu Dhabi***<br />

Rhizoprionodon acutus<br />

Kuwait 2008***, Qatar***<br />

Rhizoprionodon oligolinx Kuwait 2011***<br />

Himantura sp. B Qatar**, Kuwait 2011*<br />

Pastinachus sephen Kuwait 2008**<br />

Gymnura cf. poecilura Kuwait 2011*<br />

Aetobatus flagellum Kuwait 2011*<br />

Aetomylaeus nich<strong>of</strong>ii Kuwait 2008** Qatar*<br />

Rhinoptera spp. Qatar*** Kuwait 2008***,<br />

Kuwait 2011*<br />

*P


14 A. B. M. MOORE ET AL.<br />

100<br />

(a)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

41–50<br />

80<br />

(b)<br />

70<br />

51–60<br />

61–70<br />

71–80<br />

81–90<br />

91–100<br />

101–110<br />

111–120<br />

121–130<br />

131–140<br />

141–150<br />

151–160<br />

161–170<br />

60<br />

Frequency<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

25<br />

(c)<br />

31–35<br />

36–40<br />

41–45<br />

46–50<br />

51–55<br />

56–60<br />

61–65<br />

66–70<br />

71–75<br />

76–80<br />

81–85<br />

86–90<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0–10<br />

11–20<br />

21–30<br />

31–40<br />

41–50<br />

51–60<br />

61–70<br />

71–80<br />

81–90<br />

91–100<br />

101–110<br />

111–120<br />

L T (cm)<br />

121–130<br />

131–140<br />

141–150<br />

151–160<br />

161–170<br />

171–180<br />

181–190<br />

191–200<br />

Fig. 4. Total length (L T )-frequency distributions for <strong>male</strong> ( ) <strong>and</strong> fe<strong>male</strong> ( ) elasmobranchs for<br />

(a) Carcharhinus sorrah, (b) Rhizoprionodon oligolinx <strong>and</strong> (c) Rhinobatus granulatus.<br />

The l<strong>and</strong>ed <strong>size</strong> <strong>of</strong> both <strong>sex</strong>es <strong>of</strong> the commonest shark species varied between sampling<br />

events. Males <strong>of</strong> C. dussumieri l<strong>and</strong>ed in Qatar were significantly larger compared<br />

to those in Kuwait in both 2008 <strong>and</strong> 2011 (Mann-Whitney U-test, P


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 15<br />

Mature <strong>male</strong>s (%)<br />

100 (a)<br />

100<br />

(b)<br />

90<br />

90<br />

80<br />

80<br />

70<br />

70<br />

60<br />

60<br />

50<br />

50<br />

40<br />

40<br />

30<br />

30<br />

20<br />

20<br />

10<br />

10<br />

0<br />

0<br />

30 35 40 45 50 55 60 65 70 75 80 85 90 95 50 55 60 65 70 75 80<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

(c)<br />

50 55 60 65 70 75 80<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

(d)<br />

40 45 50 55 60 65 70<br />

L T (cm)<br />

Fig. 5. Male <strong>maturity</strong> ogives for (a) Carcharhinus dussumieri, (b)Loxodon macrorhinus, (c)Rhizoprionodon<br />

acutus <strong>and</strong> (d) Rhizoprionodon oligolinx. The sample <strong>size</strong> (n), total length (L T ) at 50% <strong>maturity</strong> (L T50 )<br />

<strong>and</strong> coefficients for the logistic model Y = x + (z − x)(1 + e −K(L T −L T50 ) ) −1 used to determine L T50 are<br />

(a) n = 730, L T50 = 72·1 cm,K = 0·619, x = 0·5, z = 99·6(r 2 = 0·991); (b) n = 147, L T50 = 64·0 cm,<br />

K = 0·441, x =−3·2, z = 100·2 (r 2 = 0·947); (c) n = 811, L T50 = 61·7 cm,K = 0·714, x = 0·1, z =<br />

99·1 (r 2 = 0·993); (d) n = 92, L T50 = 53·0, K = 18·45, x =−4·7, z = 97·0 (r 2 = 0·990).<br />

those in the same location in 2008 (Mann–Whitney U-test, P


16 A. B. M. MOORE ET AL.<br />

between maternal L T <strong>and</strong> litter <strong>size</strong> (Pearson r = 0·785, n = 8, P0·05).<br />

The L T <strong>of</strong> the embryos <strong>and</strong> that <strong>of</strong> the smallest animals recorded in l<strong>and</strong>ings indicate<br />

that birth <strong>size</strong> locally is c. 36–38 cm L T . A fe<strong>male</strong> R. oligolinx <strong>of</strong> 67·4 cmL T<br />

contained three embryos (<strong>male</strong>s <strong>of</strong> 23·6 <strong>and</strong> 28·2 <strong>and</strong> a fe<strong>male</strong> <strong>of</strong> 26·2 cmL T ).<br />

An 83·5 cm L T M. mosis from Abu Dhabi contained 11 fully formed embryos<br />

(six <strong>male</strong>s 25·5–28·4 cmL T ; five fe<strong>male</strong>s 26·5–26·7 cmL T ). In addition to five<br />

embryos, the right uterus also contained a yolk-coloured oval ovum <strong>of</strong> solid waxy<br />

material c. 5 cm long, which is unusual (A. Henderson, pers. comm.). Other notable<br />

opportunistic observations from fe<strong>male</strong>s <strong>of</strong> elasmobranch species whose biology is<br />

poorly known were an aborted recently formed c<strong>and</strong>le (i.e. eggs within a common<br />

shell) from a 180 cm L T bowmouth guitarfish Rhina ancylostoma Bloch & Schneider<br />

1801 (Abu Dhabi); mature oocytes <strong>of</strong> ≤1·4 cm diameter in a 23·2 cmW D scaly<br />

whipray Himantura imbricata (Bloch & Schneider 1801) in Qatar; several fe<strong>male</strong><br />

cowtail stingray Pastinachus sephen (Forsskål 1775) <strong>of</strong> ≥61 cm W D with emergent<br />

fully formed embryos (Kuwait 2008); several fe<strong>male</strong>s <strong>of</strong> Rhinoptera sp. (probably<br />

Rhinoptera jayakari Boulenger 1895) <strong>of</strong> ≥80 cm W D with emergent fully formed<br />

embryos <strong>and</strong> aborted embryos <strong>of</strong> 22·5–28·5 cmW D (Kuwait 2008).<br />

FISHERIES, BY-CATCH, DISCARDING AND UTILIZATION<br />

The majority <strong>of</strong> elasmobranchs recorded in this study were l<strong>and</strong>ed by small<br />

(c. 7–10 m) open speedboats operating gillnets to target teleosts in local, coastal<br />

waters. In addition to small gillnetters, larger (c. 15–20 m) dhows also operated, targeting<br />

teleosts with either hemispherical wire fish traps (gargoor) or gillnets, but these<br />

vessels appeared to contribute less to the overall elasmobranch l<strong>and</strong>ings recorded.<br />

In Abu Dhabi, these dhows (reportedly operating in Gulf waters) also l<strong>and</strong>ed large<br />

elasmobranchs from hook-<strong>and</strong>-line fishing as a targeted but apparently supplementary<br />

activity. While all quayside l<strong>and</strong>ings recorded at Abu Dhabi were caught in The<br />

Gulf, the retail market sold both locally caught elasmobranchs <strong>and</strong> those imported<br />

overl<strong>and</strong> originating from the Gulf <strong>of</strong> Oman. A small number <strong>of</strong> small sharks at each<br />

survey location had apparently been caught by h<strong>and</strong>line, presumably opportunistically<br />

during gillnetting. In addition, recent footage from Bahrain demonstrated that<br />

large gargoor (c. 250 cm height) can occasionally capture quite large (c. 150 cm L T )<br />

rhynchobatids (A. B. M. Moore & R. Peirce, pers. obs.).<br />

All elasmobranchs recorded were l<strong>and</strong>ed <strong>and</strong> marketed whole, with no direct evidence<br />

<strong>of</strong> removal <strong>of</strong> fins at sea. Fins were observed being removed from sharks<br />

<strong>and</strong> guitarfishes in Kuwait <strong>and</strong> Qatar both by fishers at the quayside <strong>and</strong> by stallholders<br />

upon sale for consumption, apparently for onward sale. Large sharks <strong>and</strong><br />

guitarfishes l<strong>and</strong>ed whole in Abu Dhabi were transported overl<strong>and</strong> to other Emirates<br />

for processing, presumably for the fin market (A. B. M. Moore pers. obs.; R. Jabado<br />

pers. comm.). While prices were not recorded, sharks were marketed at relatively<br />

low prices compared to teleosts. Rays appeared to be <strong>of</strong> particularly low value <strong>and</strong><br />

catches in Kuwait were commonly observed being discarded for disposal (either<br />

back at sea, in the harbour or in refuse), although rays picked from the gillnets <strong>of</strong><br />

incoming vessels at Doha Corniche, Qatar, were always marketed. Rhynchobatid<br />

guitarfishes were the only commonly encountered batoid taxa that were apparently<br />

<strong>of</strong> some value, both as meat <strong>and</strong> apparently for fins. Weather conditions appeared<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 17<br />

to have a notable effect on elasmobranch discarding practices in Kuwait, with the<br />

unsettled weather in April 2011 resulting in nets being emptied at the quayside rather<br />

than at sea. This factor is likely to explain the high number <strong>of</strong> low-value C. arabicum<br />

<strong>and</strong> R. granulatus recorded in 2011.<br />

OVERVIEW<br />

DISCUSSION<br />

The current study is the first detailed, large-scale survey <strong>of</strong> the diversity, biology<br />

<strong>and</strong> fisheries <strong>of</strong> Gulf elasmobranchs <strong>and</strong> provides a foundation for more refined<br />

characterization. This is despite its limitations in terms <strong>of</strong> seasonal coverage <strong>and</strong> relatively<br />

small sample <strong>size</strong> compared with other recent works sampling elasmobranch<br />

l<strong>and</strong>ings at (sub-) tropical locations (White & Dharmadi, 2007; Bizarro et al., 2009).<br />

Detailed assessment <strong>of</strong> reproductive status was not recorded in this study. The findings<br />

confirm that the elasmobranch l<strong>and</strong>ings in the parts <strong>of</strong> The Gulf covered by this<br />

survey are dominated by a few species <strong>of</strong> common, small carcharhinids which are<br />

caught largely as by-catch, <strong>and</strong> the species <strong>and</strong> <strong>size</strong> <strong>composition</strong> <strong>of</strong> these l<strong>and</strong>ings<br />

are notably different from those reported in adjacent Oman, which also has targeted<br />

fisheries for large pelagic species (Henderson et al., 2007, 2009). These data also<br />

confirm regional differences in the reproductive biology <strong>of</strong> common fisheries species,<br />

as well as <strong>sex</strong>-based <strong>and</strong> sampling event-based differences in the l<strong>and</strong>ed <strong>size</strong> <strong>of</strong> some<br />

common species, which may be due to fisheries or biological factors. Together, these<br />

highlight the need for local characterizations <strong>of</strong> elasmobranch fisheries in the western<br />

Indian Ocean.<br />

This study further confirms that significant numbers <strong>of</strong> multiple species <strong>of</strong> elasmobranchs<br />

are l<strong>and</strong>ed in Kuwait <strong>and</strong> Qatar, although the FAO does not list any l<strong>and</strong>ings<br />

<strong>of</strong> elasmobranchs from these countries. Furthermore, Kuwait, Qatar <strong>and</strong> the U.A.E.<br />

routinely catch <strong>and</strong> l<strong>and</strong> elasmobranchs <strong>and</strong> should therefore strive to develop a<br />

shark plan, although it should be noted that all other Gulf states (Bahrain, Iran, Iraq<br />

<strong>and</strong> Saudi Arabia) have some documentary evidence <strong>of</strong> elasmobranchs occurring<br />

in fisheries, particularly as by-catch (Moore, 2011). Given the multiple nations that<br />

surround The Gulf, a shark plan may be best achieved with a regional approach, as<br />

was done for the Mediterranean Sea (UNEP, 2003).<br />

TAXONOMY AND SPECIES RECORDS<br />

The current study has provided valuable information on the diversity <strong>of</strong> elasmobranchs<br />

in the north-western Indian Ocean, an area which is in general poorly<br />

sampled despite indications that its elasmobranch fauna has significant biogeographic<br />

<strong>and</strong> taxonomic interest (Moore, 2011). While 39 taxa were recorded, many <strong>of</strong> these<br />

occurred infrequently, <strong>and</strong> the commercial harvest was dominated by a small number<br />

<strong>of</strong> small-<strong>size</strong>d sharks. The surveys provided a number <strong>of</strong> new records, the most<br />

notable <strong>of</strong> which was the rediscovery <strong>of</strong> C. leiodon in Kuwait, previously known<br />

only from a single specimen collected over 100 years ago from 3000 km away in<br />

Yemen (Moore et al., 2011). The surveys also provided significant range extensions<br />

for a number <strong>of</strong> shark (Moore et al., 2010) <strong>and</strong> batoid species, including the first<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


18 A. B. M. MOORE ET AL.<br />

substantiated record <strong>of</strong> a devil ray (Mobulidae) from The Gulf (unpubl. data). In<br />

addition, the surveys provided material <strong>and</strong> data on several taxa in need <strong>of</strong> description<br />

or taxonomic resolution that will contribute to an improved underst<strong>and</strong>ing <strong>of</strong><br />

Indo-Pacific Ocean elasmobranch diversity.<br />

PATTERNS OF DIVERSITY AND DISTRIBUTION<br />

Local patterns <strong>of</strong> diversity from this study are difficult to compare quantitatively<br />

when based on samples <strong>of</strong> differing <strong>size</strong>s from l<strong>and</strong>ings <strong>of</strong> different fleets. Based on<br />

a qualitative comparison <strong>of</strong> the data (<strong>and</strong> excluding those species recorded on only a<br />

h<strong>and</strong>ful <strong>of</strong> occasions), Kuwait was notable in that a number <strong>of</strong> species (C. leiodon,<br />

R. oligolinx, R. granulatus <strong>and</strong> A. flagellum) were only recorded there, which may<br />

be due to the proximity <strong>of</strong> the Shatt al Arab. These data <strong>and</strong> those from other studies<br />

indicate geographical differences in the abundance <strong>of</strong> common small carcharhinid<br />

species such as the prevalence <strong>of</strong> C. dussumieri along the coasts <strong>of</strong> Kuwait, Qatar<br />

(this study) <strong>and</strong> Iran (Blegvad, 1944 as Carcharias menisorrah), but relative rarity<br />

<strong>of</strong>f the Omani coast (Henderson et al., 2007; A. Henderson, pers. comm.). Loxodon<br />

macrorhinus was absent from Kuwait in both 2008 <strong>and</strong> 2011 but relatively abundant<br />

in Qatar, Abu Dhabi (this study) <strong>and</strong> in Oman’s l<strong>and</strong>ings (Henderson et al., 2007).<br />

This may be related to this species apparently preferring low turbidity environments<br />

(Gutteridge et al., 2011). Rhizoprionodon oligolinx was only recorded (but relatively<br />

abundant) in Kuwait, where the morphologically similar L. macrorhinus was absent.<br />

Excluding two species recorded as single individuals from Abu Dhabi that had<br />

probably originated from the Gulf <strong>of</strong> Oman [silky shark Carcharhinus falciformis<br />

(Müller & Henle 1839) <strong>and</strong> scalloped hammerhead Sphyrna lewini (Griffith & Smith<br />

1834)] <strong>and</strong> the H. uarnak species complex, the number <strong>of</strong> elasmobranch species<br />

recorded in the current study from The Gulf was 36. Again, excluding H. uarnak,<br />

this is notably less than the 56 reported from Oman (Henderson & Reeve, 2011) <strong>and</strong><br />

largely reflects the lack <strong>of</strong> species associated with deeper waters in the shallow Gulf.<br />

Notable temporal differences were observed in the abundance <strong>of</strong> two species <strong>of</strong><br />

carcharhinid (R. acutus <strong>and</strong> C. sorrah) that were common in Kuwait in 2008 but<br />

were rare or absent at this location in 2011. This absence could be due to a large<br />

number <strong>of</strong> variables, possibly including windy conditions at sea in 2011 reducing<br />

gillnet catches <strong>of</strong> these species, or temporal variation in estuarine discharges affecting<br />

distribution. Surface water temperature was probably not a factor, being similar at<br />

the time <strong>of</strong> both surveys (22·2 ◦ C in 2008 <strong>and</strong> 21·4 ◦ C in 2011, measured at the<br />

same station <strong>of</strong>f east Failaka Isl<strong>and</strong>; F. Al-Yamani, unpubl. data).<br />

SHARK BIOLOGY<br />

There was a highly significant bias towards (mostly mature) <strong>male</strong>s for both<br />

C. dussumieri <strong>and</strong> R. acutus, in both Kuwait in 2008 <strong>and</strong> Qatar. This may be related<br />

to spatial segregation from <strong>male</strong>s by birthing or near-term pregnant fe<strong>male</strong>s, as both<br />

species are reported as having peaks in parturition in spring or summer in the region<br />

(Assadi, 2001; Henderson et al., 2006). Interpretation <strong>of</strong> elasmobranch <strong>sex</strong> ratio data<br />

from l<strong>and</strong>ings is, however, problematic, as any significant differences may be due<br />

to a number <strong>of</strong> confounding factors (e.g. gear bias) as well as natural segregation,<br />

which is commonly reported in elasmobranchs (reviewed in Sims, 2005).<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 19<br />

Carcharhinus dussumieri in this study attained the maximum reported L T <strong>of</strong><br />

100 cm (Compagno et al., 2005), consistent with previous work locally <strong>of</strong>f Iran<br />

(Blegvad, 1944, as C. menisorrah) <strong>and</strong> larger than the maximum <strong>of</strong> 93·7 cmL T<br />

recorded <strong>of</strong>f Indonesia (White, 2007). Male <strong>maturity</strong> <strong>size</strong> range <strong>of</strong> C. dussumieri in<br />

the current study was 63–80 cm L T (all mature animals ≥66 cm L T <strong>and</strong> an L T50<br />

<strong>of</strong> 72·1 cm) <strong>and</strong> broadly consistent with <strong>male</strong> <strong>size</strong> at first <strong>maturity</strong> (67 cm L T ) <strong>and</strong><br />

L T50 (69 cm) recorded <strong>of</strong>f Iran’s Gulf <strong>of</strong> Oman coast (Assadi, 2001) but slightly<br />

smaller than that <strong>of</strong> c. 74cmL T reported from Indonesia (White, 2007).<br />

The <strong>size</strong> at <strong>male</strong> <strong>maturity</strong> recorded for C. sorrah in this study (i.e. all mature<br />

by c. 110 cm L T ) is broadly consistent with that for Indonesia <strong>and</strong> most other<br />

locations [recorded <strong>and</strong> reviewed by White, 2007)]. One fe<strong>male</strong> C. sorrah from<br />

Qatar <strong>of</strong> 166 cm L T extends the reported maximum <strong>size</strong> for this species (160 cm<br />

L T ; Compagno et al., 2005; White, 2007, Henderson et al., 2009). L<strong>and</strong>ings <strong>of</strong> this<br />

species were conspicuous in their dominance by juveniles <strong>of</strong> the 70–85 cm <strong>size</strong><br />

class (c. 77% <strong>of</strong> all C. sorrah recorded), indicating that this group is particularly<br />

vulnerable to capture locally in spring. Given a reported birth <strong>size</strong> <strong>of</strong> 45–60 cm<br />

(Compagno et al., 2005) <strong>and</strong> rapid growth <strong>of</strong> neonates <strong>of</strong> c. 20 cm in the first year<br />

<strong>of</strong>f northern Australia (Davenport & Stevens, 1988), it is probable that this group<br />

represents individuals in their first year or so <strong>of</strong> life.<br />

In Chiloscyllium arabicum maximum L T has been reported as 70 cm (Compagno<br />

et al., 2005), yet, in this study, <strong>male</strong>s <strong>and</strong> fe<strong>male</strong>s were <strong>of</strong>ten larger than this (≤77 <strong>and</strong><br />

≤80 cm L T , respectively) which accords with 78 cm L T reported in an earlier study<br />

from The Gulf (Goubanov & Shleib, 1980). Maturity in this species was reported to<br />

occur between 44·6 <strong>and</strong> 54·1 cmL T (Dingerkus & DeFino, 1983 as C. confusum,<br />

<strong>sex</strong> not specified), yet in this study all stages were notably larger than this (juvenile<br />

56 <strong>and</strong> 62 cm L T , n = 2; maturing 62 <strong>and</strong> 68 cm L T , n = 2; mature 60–77 cm L T ,<br />

n = 60). In this study, C. arabicum was notable in that it was the only species whose<br />

<strong>size</strong> frequency distribution (pooled samples for both <strong>male</strong>s <strong>and</strong> fe<strong>male</strong>s) was normal,<br />

indicating that a wide range <strong>of</strong> life stages are vulnerable to capture locally in April.<br />

Loxodon macrorhinus <strong>size</strong> ranges from the current study are similar to those<br />

recorded from Oman (Henderson et al., 2009), although the maximum reported <strong>size</strong><br />

from both <strong>of</strong> these studies is smaller than that <strong>of</strong> 99 cm L T recorded in Indonesia<br />

(White, 2007). Further regional differences in the biology <strong>of</strong> this species are the<br />

<strong>size</strong> at <strong>male</strong> <strong>maturity</strong>, which in this study (61–71 cm L T ;64·0 L T50 ) is notably<br />

smaller than that recorded from Indonesia (80–83 cm L T ,81·9 cmL T50 ; White,<br />

2007) <strong>and</strong> southern Africa (73–75 cm L T ; Bass et al., 1975). The highly significant<br />

bias towards (large, mature) <strong>male</strong>s in the April sample at Abu Dhabi is consistent<br />

with notable <strong>sex</strong> <strong>and</strong> <strong>size</strong> segregation reported for this species from longline surveys<br />

in the Maldives (Anderson & Ahmed, 1993).<br />

The average <strong>size</strong> <strong>of</strong> R. acutus at Abu Dhabi (probably originating from the Gulf<br />

<strong>of</strong> Oman) was significantly greater than at other locations, <strong>and</strong> the mean <strong>size</strong> for<br />

both <strong>male</strong>s <strong>and</strong> fe<strong>male</strong>s <strong>of</strong> R. acutus from Oman (Henderson et al., 2009) was also<br />

greater than that found in this study. While this may simply represent gear bias,<br />

it may also indicate that populations <strong>of</strong> this species from The Gulf <strong>and</strong> the Gulf<br />

<strong>of</strong> Oman have different <strong>size</strong> characteristics. The L T50 for <strong>male</strong>s <strong>of</strong> R. acutus from<br />

the current study (61·7 cmL T ) was also smaller than that from Oman (64·7 cmL T ;<br />

Henderson et al., 2006), Indonesia (71·8 cmL T ) <strong>and</strong> other locations in the Indo-West<br />

Pacific (White, 2007). Maximum <strong>size</strong> <strong>of</strong> R. acutus in this study (89 cm L T ) is at<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


20 A. B. M. MOORE ET AL.<br />

least c. 5 cm smaller than that recorded in several other Indo-West Pacific Ocean<br />

locations (Henderson et al., 2009).<br />

Rhizoprionodon oligolinx has few published studies on its biology. Males from<br />

this study were found to mature at a notably larger <strong>size</strong> (45–53 L T , with L T50<br />

at 53 cm) than previously reported (i.e. in Indonesia, 43–45 cm L T , with L T50 at<br />

44·6 cm; White, 2007; 29–38 cm L T , Compagno et al., 2005). Furthermore, fe<strong>male</strong>s<br />

from this study attained a greater maximum <strong>size</strong> (85 cm L T ) than previously reported<br />

(70 cm L T ; Compagno et al., 2005). The near-term embryo 28·2 cmL T recorded is<br />

<strong>of</strong> a similar <strong>size</strong> to the smallest mature individuals reported elsewhere (Compagno<br />

et al., 2005). The average <strong>size</strong> <strong>of</strong> fe<strong>male</strong>s <strong>of</strong> this species was significantly larger<br />

than <strong>male</strong>s, <strong>and</strong> in Kuwait in 2011, fe<strong>male</strong>s (at least some <strong>of</strong> which were pregnant)<br />

dominated recorded l<strong>and</strong>ings.<br />

All shark l<strong>and</strong>ings were dominated by individuals <strong>of</strong> 50–90 cm L T , with relatively<br />

few recorded above or below this <strong>size</strong>. The elasmobranch most commonly recorded<br />

(R. acutus) is known to have localized abundance <strong>of</strong> free-swimming neonates <strong>of</strong><br />


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 21<br />

were <strong>of</strong>ten discarded as unmarketable <strong>and</strong> took considerable effort to remove from<br />

gillnets by fishers (A. B. M. Moore, pers. obs.), suggesting that any measures developed<br />

to reduce this by-catch would be favourably received. Excluding guitarfishes,<br />

the rarity <strong>of</strong> rays encountered at Abu Dhabi is consistent with year-round fisheries<br />

statistics for this port (Environment Agency Abu Dhabi, 2010) <strong>and</strong> probably reflects<br />

bias from fisheries or discarding practices. <strong>Species</strong> <strong>composition</strong> <strong>of</strong> batoids in Iranian<br />

waters <strong>of</strong> the easternmost Gulf was reported by Vossoughi & Vosoughi (1999), who,<br />

notwithst<strong>and</strong>ing probable nomenclatural errors, found a broadly similar suite <strong>of</strong> taxa<br />

to that reported in this study.<br />

Although from separate years <strong>and</strong> potentially confounded by species identification,<br />

the highly significant <strong>sex</strong> biases recorded for Rhinoptera spp. towards fe<strong>male</strong>s<br />

(in Kuwait in 2008) <strong>and</strong> <strong>male</strong>s (Qatar) are <strong>of</strong> interest <strong>and</strong> may reflect real geographical<br />

differences. Indicative data from this study suggests <strong>male</strong> <strong>and</strong> fe<strong>male</strong> <strong>maturity</strong><br />

at c. 70 <strong>and</strong> 80 cm W D, respectively. Data from Kuwait in 2008 <strong>and</strong> Qatar are<br />

notable in that smaller (<strong>and</strong> probably immature) <strong>male</strong>s <strong>and</strong> fe<strong>male</strong>s <strong>of</strong> 75 cm W D <strong>of</strong> just one <strong>sex</strong> occurred. In<br />

Kuwait in 2008, all animals >75 cm W D were fe<strong>male</strong> <strong>and</strong> were an order <strong>of</strong> magnitude<br />

more abundant than <strong>male</strong>s <strong>of</strong> any <strong>size</strong>. As several <strong>of</strong> these fe<strong>male</strong>s were<br />

pregnant with well-developed embryos, this observation may be related to parturition.<br />

In Rhinoptera species elsewhere, <strong>sex</strong>ual segregation <strong>of</strong> adults around the time <strong>of</strong><br />

parturition has been reported (Smith & Merriner, 1987), as has migration into areas<br />

at similar latitudes in April (Goodman et al., 2011) <strong>and</strong> large schools consisting<br />

mostly <strong>of</strong> pregnant fe<strong>male</strong>s <strong>of</strong>f southern India (James, 1962). The schooling nature<br />

<strong>of</strong> Rhinoptera species, as well as limiting life-history characters (e.g. low fecundity,<br />

Bizarro et al., 2006) may make them particularly vulnerable to fisheries impacts.<br />

FISHERIES MONITORING AND MANAGEMENT<br />

These data suggest that species, <strong>sex</strong> <strong>and</strong> <strong>size</strong> <strong>composition</strong> <strong>of</strong> elasmobranch l<strong>and</strong>ings<br />

in The Gulf can vary markedly both geographically <strong>and</strong> between years at the<br />

same location. Additionally, the wide range <strong>of</strong> water temperature in The Gulf means<br />

that seasonal variation in abundance <strong>and</strong> distribution is likely to occur (Moore, 2011).<br />

With a view to collating data for input to a shark plan, a starting point for basic<br />

<strong>and</strong> inexpensive elasmobranch monitoring by Gulf states could therefore be a similar<br />

survey approach to that <strong>of</strong> this study in each <strong>of</strong> the four seasons <strong>and</strong> on an<br />

annual basis, but with appropriate consideration <strong>of</strong> geographical scale where necessary<br />

(e.g. the extensive coastline <strong>of</strong> Iran). This might, however, still underestimate<br />

total fishing mortality by not recording at-sea factors such as discards, as well as possibly<br />

under-representing valuable large sharks that may be finned at sea <strong>and</strong> l<strong>and</strong>ed<br />

elsewhere. These data highlight that recording at a species level is essential in any<br />

future monitoring. While largely accurate in itself, reporting <strong>of</strong> higher taxa such as<br />

Carcharhinidae, as is done for Abu Dhabi (Environment Agency Abu Dhabi, 2010)<br />

will fail to differentiate between small species <strong>and</strong> juveniles <strong>of</strong> larger species that<br />

are likely to be more vulnerable to fisheries. <strong>Species</strong>-level identification locally is<br />

especially important as rare, threatened <strong>and</strong> geographically restricted species occur,<br />

such as <strong>of</strong> juveniles <strong>of</strong> C. leiodon, alongside abundant small carcharhinid species in<br />

Kuwait.<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


22 A. B. M. MOORE ET AL.<br />

The market surveys were supported in Kuwait in 2008 by the Kuwait Ministry <strong>of</strong> Interior<br />

(S. Al-Fahad <strong>and</strong> J. Failkawi), Y. Al-Khorafi, the Kuwait Scientific Centre, Gulf Telecom<br />

<strong>and</strong> the Kuwait Institute for Scientific Research (KISR); in Qatar by Qatar University Environmental<br />

Studies Centre (M. Al-Ansi, I. Al-Maslamani), Qatar Ministry <strong>of</strong> Environment,<br />

Department <strong>of</strong> Fisheries (M. Mohannadi); <strong>and</strong> in Kuwait in 2011 by the Kuwait Environmental<br />

Research <strong>and</strong> Awareness Centre (KERA) <strong>and</strong> H. Muraad (PAAFR). We thank W. White<br />

<strong>and</strong> P. Last (CMAR, Australia), A. Henderson (SQU, Oman), L. Compagno (Shark Research<br />

Center, Iziko-South African Museum) for confirming identifications <strong>of</strong> problematic specimens<br />

<strong>and</strong> informative discussions; A. Marriott (Bangor University) for statistical help; K. Samimi-<br />

Namin (Netherl<strong>and</strong>s Centre for Biodiversity Naturalis, Leiden) for the map <strong>and</strong> F. Al-Yamani<br />

(KISR) for temperature data. For invaluable assistance with market sampling, we thank<br />

D. Almojil <strong>and</strong> A. Alhafez (KERA), R. Jabado (U.A.E. University), A. Reeve (SCS/SQU<br />

Oman) <strong>and</strong> volunteers <strong>of</strong> the SCS (M. Barnes, T. Bennett, M. Boothman, S. Benzie, M.<br />

Bradfield, S. Collins, G. Gilgannon, D. Green, E.-L. Nichols, S. Nicholls, J. Peirce, C. Sayle,<br />

M. Sharl<strong>and</strong>, A. Sweeney <strong>and</strong> M. Webb). Finally, we thank the many fishers <strong>and</strong> market<br />

traders for their patience, humour <strong>and</strong> generous help <strong>and</strong> the editor <strong>and</strong> referees for their<br />

helpful comments on an earlier draft version <strong>of</strong> the paper. The contents <strong>of</strong> this paper do not<br />

necessarily represent the views <strong>of</strong> the RSK Group.<br />

References<br />

Anderson, R. C. & Ahmed, H. (1993). The Shark Fisheries <strong>of</strong> the Maldives. Male : Ministry<br />

<strong>of</strong> Fisheries <strong>and</strong> Agriculture.<br />

Anderson, R. C. & Simpfendorfer, C. A. (2005). Regional overview: Indian Ocean. In Sharks,<br />

Rays <strong>and</strong> Chimaeras:The Status <strong>of</strong> the Chondrichthyan Fishes (Fowler, S. L., Cavanagh,<br />

R. D., Camhi, M., Burgess, G. H., Cailliet, G. M., Fordham, S. V., Simpfendorfer,<br />

C. A. & Musick, J. A., eds), pp. 140–150. Cambridge: IUCN SSC Shark Specialist<br />

Group.<br />

Assadi, H. (2001). Some aspects <strong>of</strong> reproduction biology <strong>of</strong> white cheek shark (Carcharhinus<br />

dussumieri) in Hormozgan waters (Oman Sea). Iranian Scientific Fisheries Journal 19,<br />

1–18.<br />

Bass, A. J., D’Aubrey, J. D. & Kistnasamy, N. (1975). Sharks <strong>of</strong> the east coast <strong>of</strong> southern<br />

Africa. III. The families Carcharhinidae (excluding Mustelus <strong>and</strong> Carcharhinus)<br />

<strong>and</strong> Sphyrnidae. Investigational Report. Oceanographic Research Institute, Durban 38,<br />

1–100.<br />

Bishop, J. M. (2002). Fishing <strong>and</strong> mariculture. In The Gulf Ecosystem: Health <strong>and</strong> Sustainability<br />

(Khan, N. Y., Munawar, M. & Price, A. R. G., eds), pp. 253–277. Leiden:<br />

Backhuys.<br />

Bizarro, J. J., Smith, W. D., Marquez-Farias, J. F. & Hueter, R. E. (2006). Artisanal fisheries<br />

<strong>and</strong> reproductive biology <strong>of</strong> the golden cownose ray, Rhinoptera steindachneri<br />

Evermann <strong>and</strong> Jenkins, 1891, in the northern Mexican Pacific. Fisheries Research 84,<br />

137–146. doi: 10.1016/j.fishres.2006.10.1016<br />

Bizarro, J. J., Smith, W. D., Marquez-Farias, J. F., Tyminski, J. & Hueter, R. E. (2009). Temporal<br />

variation in the artisanal elasmobranch fishery <strong>of</strong> Sonora, Mexico. Fisheries<br />

Research 97, 103–117. doi: 10.1016/j.fishres.2009.01.009<br />

Blegvad, H. (1944). Danish Scientific Investigations in Iran, Part III. Fishes <strong>of</strong> the Iranian<br />

Gulf. Copenhagen: Einar Munksgaard.<br />

Carpenter, K. E., Krupp, F., Jones, D. A. & Zajonz, U. (1997). The Living Marine Resources<br />

<strong>of</strong> Kuwait, Eastern Saudi Arabia, Bahrain, Qatar, <strong>and</strong> the United Arab Emirates. Rome:<br />

FAO.<br />

Clarke, M. W. (2009). Sharks, skates <strong>and</strong> rays in the northeast Atlantic: population status,<br />

advice <strong>and</strong> management. Journal <strong>of</strong> Applied Ichthyology 25, 3–8. doi: 10.1111/j.1439-<br />

0426.2008.01069.x<br />

Compagno, L., D<strong>and</strong>o, M. & Fowler, S. (2005). A Field Guide to the Sharks <strong>of</strong> the World.<br />

London: Harper Collins.<br />

-<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


ELASMOBRANCHS IN KUWAIT, QATAR AND ABU DHABI 23<br />

Davenport, S. & Stevens, J. D. (1988). Age <strong>and</strong> growth <strong>of</strong> two commercially important sharks<br />

(Carcharhinus tilstoni <strong>and</strong> C. sorrah) from Northern Australia. Australian Journal <strong>of</strong><br />

Marine <strong>and</strong> Freshwater Research 39, 417–433. doi: 10.1071/MF9880417<br />

Dingerkus, G. & DeFino, T. (1983). A revision <strong>of</strong> the orectolobiform shark family Hemiscyllidae<br />

(Chondrichthyes, Selachii). Bulletin <strong>of</strong> the American Museum <strong>of</strong> Natural History<br />

176, 1–94.<br />

Dulvy, N. K., Baum, J. K., Clarke, S., Compagno, L. J. V., Cortes, E., Domingo, A., Fordham,<br />

S., Fowler, S., Francis, M. P., Gibson, C., Martinez, J., Musick, J. A., Soldo, A.,<br />

Stevens, J. D. & Valenti, S. (2008). You can swim but you can’t hide: the global status<br />

<strong>and</strong> conservation <strong>of</strong> oceanic pelagic sharks <strong>and</strong> rays. Aquatic Conservation – Marine<br />

<strong>and</strong> Freshwater Ecosystems 18, 459–482. doi: 10.1002/aqc.975<br />

Goodman, A. M., Conn, P. B. & Fitzpatrick, E. (2011). Seasonal occurrence <strong>of</strong> cownose rays<br />

(Rhinoptera bonasus) in North Carolina’s estuarine <strong>and</strong> coastal waters. Estuaries <strong>and</strong><br />

Coasts 34, 640–651. doi: 10.1007/s12237-010-9355-5<br />

Goubanov, E. P. & Shleib, N. A. (1980). Sharks <strong>of</strong> the Arabian Gulf. Kuwait: Ministry <strong>of</strong><br />

Public Works, Agricultural Department, Fisheries Division.<br />

Gutteridge, A. N., Bennett, M. B., Huveneers, C. & Tibbetts, I. R. (2011). Assessing the<br />

overlap between the diet <strong>of</strong> a coastal shark <strong>and</strong> the surrounding prey communities in a<br />

sub-tropical embayment. Journal <strong>of</strong> Fish Biology 78, 1405–1422. doi: 10.1111/j.1095-<br />

8649.2011.02945.x<br />

Henderson, A. C. & Reeve, A. J. (2011). Noteworthy elasmobranch records from Oman.<br />

African Journal <strong>of</strong> Marine Science 33, 171–175. doi: 10.2989/1814232X.2011.572380<br />

Henderson, A. C., McIlwain, J. L., Al-Oufi, H. S. & Ambu-Ali, A. (2006). Reproductive biology<br />

<strong>of</strong> the milk shark Rhizoprionodon acutus <strong>and</strong> the bigeye houndshark Iago omanensis<br />

in the coastal waters <strong>of</strong> Oman. Journal <strong>of</strong> Fish Biology 68, 1662–1678. doi:<br />

10.1111/j.1095-8649.2006.01011.x<br />

Henderson, A. C., McIlwain, J. L., Al-Oufi, H. S. & Al-Sheili, S. (2007). The Sultanate <strong>of</strong><br />

Oman shark fishery: species <strong>composition</strong>, seasonality <strong>and</strong> diversity. Fisheries Research<br />

86, 159–168. doi: 10.1016/jfishres.2007.05.012<br />

Henderson, A. C., McIlwain, J. L., Al-Oufi, H. S., Al-Sheili, S. & Al-Abri, N. (2009). Size<br />

distributions <strong>and</strong> <strong>sex</strong> ratios <strong>of</strong> sharks caught by Oman’s artisanal fishery. African Journal<br />

<strong>of</strong> Marine Science 31, 233–239. doi: 10.2989/AJMS.2009.31.2.11.883<br />

James, P. S. B. R. (1962). Observations on shoals <strong>of</strong> the Javanese cownose ray Rhinoptera<br />

javanica Müller & Henle from the Gulf <strong>of</strong> Mannar, with additional notes on the species.<br />

Journal <strong>of</strong> the Marine Biological Association <strong>of</strong> India 4, 217–223.<br />

Last, P. R., White, W. T., Caira, J. N., Dharmadi, Jensen, K., Lim, A. K., Manjaji-<br />

Matsumoto, B. M., Naylor, G. J. P., Pogonoski, J. J., Stevens, J. D., Yearsley, G. K.<br />

& Fahmi. (2010b). Sharks <strong>and</strong> Rays <strong>of</strong> Borneo. Melbourne: CSIRO Publishing.<br />

Manjaji, B. M. (2004). Taxonomy <strong>and</strong> phylogenetic systematics <strong>of</strong> the stingray genus Himantura<br />

(Family Dasyatidae). PhD Thesis, University <strong>of</strong> Tasmania, Australia.<br />

Moore, A. B. M. (2011). Elasmobranchs <strong>of</strong> the Persian (Arabian) Gulf: ecology, human<br />

aspects <strong>and</strong> research priorities for their improved management. Reviews in Fish Biology<br />

<strong>and</strong> Fisheries. doi: 10.1007/s11160-011-9222-x (in press).<br />

Moore, A. B. M., White, W. T. & Peirce, R. (2010). Additions to the shark fauna <strong>of</strong> the Persian<br />

(Arabian) Gulf (Carcharhiniformes: Hemigaleidae <strong>and</strong> Carcharhinidae). Zoology<br />

in the Middle East 50, 83–88.<br />

Moore, A. B. M., White, W. T., Ward, R. D., Naylor, G. J. P. & Peirce, R. (2011). Rediscovery<br />

<strong>and</strong> redescription <strong>of</strong> the smoothtooth blacktip shark Carcharhinus leiodon<br />

(Carcharhinidae), from Kuwait, with notes on its possible conservation status. Marine<br />

<strong>and</strong> Freshwater Research 62, 528–539. doi: 10.1071/MF10159<br />

Raje, S. G. (2003). Some aspects <strong>of</strong> biology <strong>of</strong> four species <strong>of</strong> rays <strong>of</strong>f Mumbai water. Indian<br />

Journal <strong>of</strong> Fisheries 50, 89–96.<br />

Raje, S. G. & Zacharia, P. U. (2009). Investigations on fishery <strong>and</strong> biology <strong>of</strong> nine species<br />

<strong>of</strong> rays in Mumbai waters. Indian Journal <strong>of</strong> Fisheries 56, 95–101.<br />

Sheppard, C., Price, A. & Roberts, C. (1992). Marine Ecology <strong>of</strong> the Arabian Region: Patterns<br />

<strong>and</strong> Processes in Extreme Tropical Environments. London: Academic Press.<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x


24 A. B. M. MOORE ET AL.<br />

Simpfendorfer, C. A., Heupel, M. R., White, W. T. & Dulvy, N. K. (2011). The importance<br />

<strong>of</strong> research <strong>and</strong> public opinion to conservation management <strong>of</strong> sharks <strong>and</strong> rays: a<br />

synthesis. Marine <strong>and</strong> Freshwater Research 62, 518–527. doi:10.1071/MF11086<br />

Sims, D. W. (2005). Differences in habitat selection <strong>and</strong> reproductive strategies <strong>of</strong> <strong>male</strong> <strong>and</strong><br />

fe<strong>male</strong> sharks. In Sexual Segregation in Vertebrates: Ecology <strong>of</strong> the Two Sexes (Ruckstuhl,<br />

K. E. & Neuhaus, P., eds), pp. 127–147. Cambridge: University Press.<br />

Smith, J. W. & Merriner, J. V. (1987). Age <strong>and</strong> growth, movements <strong>and</strong> distribution <strong>of</strong> the<br />

cownose ray, Rhinoptera bonasus, in Chesapeake Bay. Estuaries 10, 153–164. doi:<br />

10.2307/1352180<br />

Vossoughi, G. H. & Vosoughi, A. R. (1999). Study <strong>of</strong> batoid fishes in northern part <strong>of</strong> Hormoz<br />

Strait, with emphasis on some species new to the Persian Gulf <strong>and</strong> Sea <strong>of</strong> Oman. Indian<br />

Journal <strong>of</strong> Fisheries 46, 301–306.<br />

White, W. T. (2007). Catch <strong>composition</strong> <strong>and</strong> reproductive biology <strong>of</strong> whaler sharks (Carcharhiniformes:<br />

Carcharhinidae) caught by fisheries in Indonesia. Journal <strong>of</strong> Fish<br />

Biology 71, 1512–1540. doi: 10.1111/j/1095-8649.2007.01623.x<br />

White, W. T. & Dharmadi (2007). <strong>Species</strong> <strong>and</strong> <strong>size</strong> <strong>composition</strong> <strong>and</strong> reproductive biology<br />

<strong>of</strong> rays (Chondrichthyes, Batoidea) caught in target <strong>and</strong> non-target fisheries in eastern<br />

Indonesia. Journal <strong>of</strong> Fish Biology 70, 1809–1837. doi: 10.1111/j/1095-8649.2007.<br />

01458.x<br />

White, W. T., Last, P. R., Naylor, G. J. P., Jensen, K. & Caira, J. N. (2010). Clarification <strong>of</strong><br />

Aetobatus ocellatus (Kuhl, 1823) as a valid species, <strong>and</strong> a comparison with Aetobatus<br />

narinari (Euphrasen, 1790) (Rajiformes: Myliobatidae). In Descriptions <strong>of</strong> New Sharks<br />

<strong>and</strong> Rays from Borneo (Last, P. R., White, W. T., Pogonoski, J. J., eds), pp. 141–164.<br />

CSIRO Marine <strong>and</strong> Atmospheric Research Paper No. 032.<br />

Electronic References<br />

Environment Agency Abu Dhabi (2010). Annual Fisheries Statistics Report for Abu Dhabi<br />

Emirate 2009. Available at http://www.ead.ae/en/portal/fisheries.report.<strong>and</strong>.bulletin.<br />

aspx/ (last accessed 9 July 2011).<br />

Environmental Research & Wildlife Development Agency (2005). Annual Fisheries Statistics<br />

Report for Abu Dhabi Emirate 2004. Available at http://www.ead.ae/en/portal/fisheries.<br />

report.<strong>and</strong>.bulletin.aspx/ (last accessed 9 July 2011).<br />

FAO (1999). International Plan <strong>of</strong> Action For the Conservation <strong>and</strong> Management <strong>of</strong> Sharks.<br />

Rome: FAO. Available at ftp://ftp.fao.<strong>org</strong>/docrep/fao/006/x3170e/X3170E00.pdf (last<br />

accessed 9 July 2011).<br />

FAO (2011a). International Plan <strong>of</strong> Action For the Conservation <strong>and</strong> Management <strong>of</strong> Sharks:<br />

National Plans <strong>of</strong> Action. Available at http://www.fao.<strong>org</strong>/fishery/ipoa-sharks/npoa/en/<br />

(last accessed 9 July 2011).<br />

FAO (2011b). Online Query: Global Capture Production 1950-2009. Available at http://www.<br />

fao.<strong>org</strong>/figis/servlet/TabSelector#lastnodeclicked/ (last accessed 9 July 2011).<br />

IUCN (2011). The IUCN Red List <strong>of</strong> Threatened <strong>Species</strong>. Available at http://www.iucnredlist.<br />

<strong>org</strong>/ (last accessed 9 July 2011).<br />

Last, P. R., White, W. T. & Pogonoski, J. J., Eds (2010a). Descriptions <strong>of</strong> new sharks <strong>and</strong> rays<br />

from Borneo. CSIRO Marine <strong>and</strong> Atmospheric Research Paper No. 032. Available at<br />

http://www.cmar.csiro.au/publications/cmarseries/CSIRO_sharks-rays-borneo-032.pdf<br />

UNEP (2003). Action Plan for the Conservation <strong>of</strong> Cartilaginous Fishes (Chondrichthyans) in<br />

the Mediterranean Sea. Tunis: UNEP Regional Activity Centre for Special Protection<br />

Areas. Available at http://www.rac-spa.<strong>org</strong>/sites/default/files/action_plans/elasmo.pdf<br />

© 2012 The Authors<br />

Journal <strong>of</strong> Fish Biology © 2012 The Fisheries Society <strong>of</strong> the British Isles, Journal <strong>of</strong> Fish Biology 2012, doi:10.1111/j.1095-8649.2011.03210.x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!