01.07.2014 Views

Isolation and characterization of 14 polymorphic microsatellite loci in ...

Isolation and characterization of 14 polymorphic microsatellite loci in ...

Isolation and characterization of 14 polymorphic microsatellite loci in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Conservation Genet Resour (2011) 3:49–52<br />

DOI 10.1007/s12686-010-9284-4<br />

TECHNICAL NOTE<br />

<strong>Isolation</strong> <strong>and</strong> <strong>characterization</strong> <strong>of</strong> <strong>14</strong> <strong>polymorphic</strong> <strong>microsatellite</strong><br />

<strong>loci</strong> <strong>in</strong> the leatherback turtle (Dermochelys coriacea) <strong>and</strong> crossspecies<br />

amplification<br />

Suzanne E. Roden • Peter H. Dutton<br />

Received: 11 July 2010 / Accepted: 13 July 2010 / Published onl<strong>in</strong>e: 27 July 2010<br />

Ó US Government 2010<br />

Abstract Fourteen <strong>microsatellite</strong>s were isolated <strong>and</strong><br />

characterized from a small-<strong>in</strong>sert genomic DNA library<br />

from the leatherback turtle Dermochelys coriacea enriched<br />

for d<strong>in</strong>ucleotide <strong>microsatellite</strong> motifs. We tested primers<br />

on 207 leatherbacks sampled from St. Croix, US Virg<strong>in</strong><br />

Isl<strong>and</strong>s. Primer pairs yielded an average <strong>of</strong> 5.7 alleles per<br />

locus, an average observed heterozygosity <strong>of</strong> 0.47, <strong>and</strong><br />

average <strong>polymorphic</strong> <strong>in</strong>formation content <strong>of</strong> 0.43. Cross<br />

species amplification <strong>of</strong> these markers was performed on<br />

the six other extant species <strong>of</strong> mar<strong>in</strong>e turtles: olive ridley<br />

(Lepidochelys olivacea), Kemp’s ridley (Lepidochelys<br />

kempii), hawksbill (Eretmochelys imbricata), loggerhead<br />

(Caretta caretta), green (Chelonia mydas), <strong>and</strong> flatback<br />

(Natator depressus) turtles. Eleven <strong>of</strong> the markers worked<br />

<strong>in</strong> at least one <strong>of</strong> the species, <strong>and</strong> seven <strong>of</strong> these were<br />

<strong>polymorphic</strong>. These leatherback-specific <strong>microsatellite</strong><br />

markers will facilitate population genetic <strong>and</strong> ecological<br />

studies to aid <strong>in</strong> the conservation <strong>of</strong> this divergent species<br />

<strong>of</strong> mar<strong>in</strong>e turtle, <strong>and</strong> provide additional markers for the<br />

other species <strong>of</strong> cheloniids.<br />

Keywords Leatherback turtle Microsatellites <br />

Dermochelys coriacea Cross-species amplification<br />

The leatherback turtle, Dermochelys coriacea, the most<br />

divergent <strong>of</strong> the seven species <strong>of</strong> mar<strong>in</strong>e turtles, is distributed<br />

worldwide <strong>in</strong> tropical <strong>and</strong> subtropical waters. This<br />

is a species <strong>of</strong> great conservation concern. Despite the<br />

S. E. Roden P. H. Dutton (&)<br />

Southwest Fisheries Science Center, National Mar<strong>in</strong>e Fisheries<br />

Service, National Oceanic <strong>and</strong> Atmospheric Adm<strong>in</strong>istration,<br />

3333 North Torrey P<strong>in</strong>es Court, La Jolla, CA 92037, USA<br />

e-mail: Peter.Dutton@noaa.gov<br />

efforts <strong>of</strong> conservations <strong>and</strong> scientists over the last few<br />

decades, most leatherback populations cont<strong>in</strong>ue to decl<strong>in</strong>e<br />

(Chan <strong>and</strong> Liew 1996; Spotila et al. 1996). Currently,<br />

D. coriacea is listed as Critically Endangered by the<br />

International Union for the Conservation <strong>of</strong> Nature (IUCN)<br />

Red List <strong>of</strong> Threatened Species (Sarti-Mart<strong>in</strong>ez 2000).<br />

Major threats <strong>in</strong>clude fisheries by-catch mortality, direct<br />

harvest <strong>of</strong> eggs or turtles, <strong>and</strong> nest<strong>in</strong>g beach destruction.<br />

Its broad oceanic distribution <strong>and</strong> highly migratory<br />

nature make the leatherback turtle’s movements <strong>and</strong> life<br />

cycle difficult to study. Genetic studies <strong>of</strong> stock structure<br />

us<strong>in</strong>g mtDNA control region sequences reveal restricted<br />

dispersal <strong>of</strong> female leatherback turtles between rookeries<br />

<strong>in</strong>dicat<strong>in</strong>g natal hom<strong>in</strong>g (Dutton et al.1999, 2007). In order<br />

to def<strong>in</strong>e the appropriate conservation units <strong>and</strong> fully<br />

underst<strong>and</strong> the population genetics, mat<strong>in</strong>g strategies, <strong>and</strong><br />

connectivity <strong>in</strong> leatherbacks it will be necessary to use<br />

nDNA markers (<strong>microsatellite</strong>s) to supplement the mtDNA<br />

studies (Bowen <strong>and</strong> Karl 2007; Lee 2008).<br />

It has been difficult to use primers designed from the<br />

cheloniid turtles with divergent leatherbacks, where null<br />

alleles or reduced polymorphism relative to the source<br />

species have been problematic (FitzSimmons et al. 1995;<br />

Monzón-Argüello et al. 2007; Shambl<strong>in</strong> et al. 2009). We<br />

address the need to develop an array <strong>of</strong> leatherback-specific<br />

<strong>microsatellite</strong> markers <strong>and</strong> tested these markers on the<br />

other species to further conservation genetics research tools<br />

for mar<strong>in</strong>e turtles.<br />

Microsatellite markers were developed from a small<strong>in</strong>sert<br />

DNA library <strong>of</strong> D. coriacea that was subsequently<br />

enriched for d<strong>in</strong>ucleotide motifs as described <strong>in</strong> Westerman<br />

et al. (2005). Three enriched libraries conta<strong>in</strong><strong>in</strong>g GT : CA,<br />

CT : GA, GATA : CTAT <strong>microsatellite</strong> <strong>loci</strong> were produced<br />

by hybridization <strong>of</strong> s<strong>in</strong>gle-str<strong>and</strong>ed copies <strong>of</strong> the library<br />

to streptavid<strong>in</strong> coated paramagnetic particles preabsorbed<br />

123


50 Conservation Genet Resour (2011) 3:49–52<br />

Table 1 Characteristics <strong>of</strong> <strong>14</strong> <strong>microsatellite</strong> <strong>loci</strong> developed for D. coriacea<br />

Locus Primer sequence (5 0 –3 0 ) H O H E Repeat<br />

motif<br />

T a (8C) Mg 2?<br />

(mM)<br />

A<br />

Size<br />

range<br />

PIC<br />

GenBank<br />

accession no.<br />

LB99 F: CACCCATTTTTTCCCATTG 0.599 0.599 (TG) 11 55 2.0 7 113–133 0.554 HM217007<br />

R: ATTTGAGCATAAGTTTTCGTGG<br />

<strong>14</strong>-5 F: GTTTGCTGATTACACGTCC 0.636 0.624 (GT) 18 53 2.0 8 196–230 0.587 HM217006<br />

R: CTATGTTGAGTTGTTTATAAAGC<br />

LB106 F: GGAGGAGGTTTAGGTTCCAGG 0.824 0.791 (TG) 13 57 1.5 10 138–162 0.759 HM217008<br />

R: AACCAAGCTTCACAATCATTGC<br />

LB110 F: TAGCAACTGCAGGAGC 0.302 0.290 (CT) 15 47 2.0 3 182–198 0.253 HM217009<br />

R: CATTCCCTAAGATTATCACC<br />

LB128 F: AAGCATGGAGGAGAAGG 0.488 0.483 (GT) 11 55 2.0 4 157–165 0.396 HM217012<br />

R: GGTTCTTTGCCCCAGTA<br />

LB<strong>14</strong>1 F: CATCCTCATGTTCCCATC 0.729 0.704 (TC) 20 (AC) 9 55 2.0 6 166–192 0.663 HM2170<strong>14</strong><br />

R: CATTGCCTCATAATAAGAGAAA<br />

LB<strong>14</strong>2 F: GGCCAACTTTCCTTTCTTATTA 0.578 0.555 (CA) 16 55 2.0 6 219–237 0.522 HM217015<br />

R: CTGTGTGTATCTGCACCCA<br />

LB<strong>14</strong>5 F: GGCCTCCACACAAATAAATAAA 0.620 0.668 (AC) 28 55 2.0 7 121–197 0.634 HM217017<br />

R: CATTCACCTTACGCAGAAGAA<br />

LB<strong>14</strong>3 F: CCTATGGGCCACTGCAATGACA 0.231 0.2<strong>14</strong> (GT) 10 Tdown 2.0 4 181–197 0.205 HM217016<br />

(60–45, 55)<br />

R: CAGCTGGAGGGATGCAAGATGT<br />

LB133 F: AGAGGCAGCAGAGCAAGG 0.660 0.677 (AC) 13 55 1.5 11 156–200 0.625 HM217013<br />

R: GGCTGAGGGTGGTGAGG<br />

LB123 F: TGTAGTCaGGTGTCCAATG 0.398 0.435 (GT) 12 51 2.0 4 170–186 0.357 HM217010<br />

R: CCAAGCCAAAGAAAGAA<br />

LB125 F: AACTAATGCCTTACAGAG 0.296 0.345 (AC) 13 Tdown 2.0 3 182–196 0.303 HM217011<br />

(60–45, 55)<br />

R: CCTTAGAGGGAGAATCT<br />

LB157 F: GGCATGAGTGTGAGTGA 0.168 0.163 (AC) 13 50 2.0 4 72–102 0.151 HM217018<br />

R: CCTGGTTAAAGCTGTCTC<br />

LB158 F: AGGACAAGGCATTCTAGC 0.018 0.03 (CA) 12 55 2.0 3 162–178 0.030 HM217019<br />

R: ATGTACTTGCCCATCTGC<br />

Locus name; forward (F) <strong>and</strong> reverse (R) primer sequence (5 0 –3 0 ), H O <strong>and</strong> H E observed <strong>and</strong> expected heterozygosity; T a anneal<strong>in</strong>g temperature;<br />

A, number <strong>of</strong> alleles<br />

with 5 0 biot<strong>in</strong>ylated oligonucletides ([GT] 10 , [CT] 10 , or<br />

[GATA] 10 .<br />

A total <strong>of</strong> 178 putative <strong>microsatellite</strong> clones were<br />

screened us<strong>in</strong>g 48-well slot blots <strong>and</strong> autoradiography with<br />

32 P-labelled oligonucleotides specific to the repeat motif<br />

design. Microsatellites were <strong>in</strong>dicated <strong>in</strong> approximately<br />

71% [(GT) n ], 13% [(CT) n ], <strong>and</strong> 0% [(GATA) n ] <strong>of</strong> the<br />

colonies screened based on autoradiographic analyses.<br />

Colonies positive for <strong>microsatellite</strong>s were sequenced <strong>in</strong><br />

both directions us<strong>in</strong>g dye-term<strong>in</strong>ator fluorescent chemistry<br />

with T3/T7 primers as described <strong>in</strong> Westerman et al. (2005).<br />

Sequence data were used to design primers based on flank<strong>in</strong>g<br />

sequence for 73% [(GT) n ] <strong>and</strong> 60% [(CT) n ] colonies us<strong>in</strong>g<br />

Oligo 6 (Molecular Biology Insights, CO, USA).<br />

Follow<strong>in</strong>g PCR optimization, two [(CT) n ] <strong>and</strong> twelve<br />

[(GT) n ] <strong>microsatellite</strong> <strong>loci</strong> were found to be <strong>polymorphic</strong><br />

across a screen<strong>in</strong>g panel <strong>of</strong> eight Pacific <strong>and</strong> eight Atlantic<br />

nest<strong>in</strong>g leatherbacks represent<strong>in</strong>g the geographic range <strong>of</strong><br />

this species.<br />

A total <strong>of</strong> 207 D. coriacea samples from nest<strong>in</strong>g females<br />

<strong>in</strong> St. Croix, USVI were genotyped with fourteen <strong>polymorphic</strong><br />

<strong>microsatellite</strong> <strong>loci</strong>. PCR was performed <strong>in</strong> 25 ll<br />

total reaction volume. Reaction conditions per sample<br />

conta<strong>in</strong>ed 2.5 ll 109 buffer [500 mM KCl, 200 mM Tris–<br />

HCl (pH = 8.4)] (Invitrogen, CA, USA) 2.0 mM MgCl 2<br />

(Invitrogen, CA, USA) 0.6 mM <strong>of</strong> dNTP mixture (100 lM<br />

each), <strong>and</strong> 0.3 lM each <strong>of</strong> forward (5 0 fluorescent label)<br />

<strong>and</strong> reverse primers per sample, <strong>and</strong> 1.5 units <strong>of</strong> Taq<br />

polymerase (New Engl<strong>and</strong> Biolabs, MA, USA). Microsatellite<br />

<strong>loci</strong> were amplified us<strong>in</strong>g approximately 100 ng<br />

template DNA. Thermocycl<strong>in</strong>g conditions (for LB158,<br />

LB128, LB133, LB99, <strong>14</strong>-5, LB123, LB<strong>14</strong>1, LB<strong>14</strong>5,<br />

123


Conservation Genet Resour (2011) 3:49–52 51<br />

Table 2 Cross-species<br />

amplification success <strong>and</strong> allele<br />

size (bp) for <strong>14</strong> <strong>microsatellite</strong><br />

<strong>loci</strong> <strong>in</strong> six mar<strong>in</strong>e turtle species<br />

NA no amplification<br />

Locus L. olivacea E. imbricata L. kempii C. carretta C. mydas N. depressus<br />

LB99 NA NA 119 121 133 125–131<br />

<strong>14</strong>-5 NA 183–187 190 NA NA 150<br />

LB106 NA NA NA NA NA NA<br />

LB110 167 169 167 170 171 165<br />

LB128 NA NA 167 167 NA NA<br />

LB<strong>14</strong>1 NA NA NA NA 158–168 152<br />

LB<strong>14</strong>2 213 213–241 213 213 229–247 233<br />

LB<strong>14</strong>5 121 121 121 123–125 NA NA<br />

LB<strong>14</strong>3 178 180 178 186–188 178 NA<br />

LB133 NA NA NA NA NA NA<br />

LB123 NA NA NA NA NA 179–189<br />

LB125 NA NA 180–186 198 200 NA<br />

LB157 NA NA NA NA 76 NA<br />

LB158 NA NA NA 182 168 NA<br />

LB106, <strong>and</strong> LB<strong>14</strong>2) were denaturation for 2 m<strong>in</strong> at 94°C<br />

followed by 50 cycles for 10 s at 94°C, 10 s at anneal<strong>in</strong>g<br />

temperature, <strong>and</strong> 10 s at 72°C. A f<strong>in</strong>al extension was<br />

carried out for 5 m<strong>in</strong> at 72°C. A touchdown cycl<strong>in</strong>g program<br />

was used for <strong>loci</strong> LB125, LB157 <strong>and</strong> LB<strong>14</strong>3: 94°C<br />

for 2 m<strong>in</strong>; 60 cycles <strong>of</strong> 94°C for 30 s, anneal<strong>in</strong>g for 30 s,<br />

<strong>and</strong> 72°C for 30 s; <strong>and</strong> a f<strong>in</strong>al extension step <strong>of</strong> 72°C for<br />

5 m<strong>in</strong>. The anneal<strong>in</strong>g step <strong>in</strong> the touchdown program<br />

decreased 0.5°C per cycle from 60 to 45°C for 30 cycles<br />

<strong>and</strong> the rema<strong>in</strong><strong>in</strong>g 30 cycles cont<strong>in</strong>ued with a 55°C<br />

anneal<strong>in</strong>g temperature. LB110 cycl<strong>in</strong>g conditions consisted<br />

<strong>of</strong> a 2 m<strong>in</strong> denaturation at 94°C, followed by 10 cycles for<br />

10 s at 94°C, 10 s at 47°C, <strong>and</strong> 10 s at 72°C, followed by<br />

45 cycles, 10 s per step with an anneal<strong>in</strong>g temperature <strong>of</strong><br />

52°C. Microsatellite products were diluted 1:5 <strong>and</strong> electrophoresed<br />

on an ABI Prism 3100 Genetic Analyzer<br />

(Applied Biosystems, Foster City, CA, USA) with ROX<br />

molecular weight size st<strong>and</strong>ard. Microsatellite sizes were<br />

determ<strong>in</strong>ed us<strong>in</strong>g an ABI 3730 Genetic Analyzer <strong>and</strong><br />

scored with GenemapperÒ 4.0 s<strong>of</strong>tware (Applied Biosystems,<br />

Foster City, CA, USA). Microsatellite alleles were<br />

characterized by a mean number <strong>of</strong> alleles value <strong>of</strong> 5.7<br />

(range 3–11), an average observed heterozygosity <strong>of</strong> 0.47<br />

(range 0.02–0.89), <strong>and</strong> average <strong>polymorphic</strong> <strong>in</strong>formation<br />

content (PIC) <strong>of</strong> 0.43 (range 0.03–0.86) (Table 1). We<br />

tested for Hardy–We<strong>in</strong>berg equilibrium (HWE) <strong>and</strong> pairwise<br />

l<strong>in</strong>kage disequilibrium (LD) us<strong>in</strong>g Arlequ<strong>in</strong> 3.11<br />

(Exc<strong>of</strong>fier et al. 2005). After a sequential Bonferroni correction<br />

for multiple comparisons, all <strong>loci</strong> showed HWE <strong>and</strong><br />

n<strong>in</strong>e locus pairs (10%) showed significant pairwise LD at<br />

P \ 0.0005. MICRO-CHECKER (Van Oosterhout et al.<br />

2004) analysis revealed no evidence for null alleles <strong>in</strong> any<br />

<strong>loci</strong>, except <strong>in</strong> locus LB158.<br />

Fourteen primer pairs were tested on L.olivacea<br />

(n = 32), E. imbricata (n = 32), L. kempii (n = 31),<br />

C. caretta (n = 29), C. mydas (n = 32) <strong>and</strong> N. depressus<br />

(n = 29) us<strong>in</strong>g Batched Analysis <strong>of</strong> Genotypes (BAGS)<br />

(LeDuc et al. 1995). Thermocycl<strong>in</strong>g conditions consisted <strong>of</strong><br />

a touchdown program: 94°C for 2 m<strong>in</strong>; 60 cycles <strong>of</strong> 94°C<br />

for 30 s, anneal<strong>in</strong>g for 30 s, <strong>and</strong> 72°C for 30 s; <strong>and</strong> a f<strong>in</strong>al<br />

extension step <strong>of</strong> 72°C for 5 m<strong>in</strong>. The anneal<strong>in</strong>g step <strong>in</strong> the<br />

touchdown program decreased 0.5°C per cycle from 60°C<br />

to 45°C for 30 cycles <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g 30 cycles cont<strong>in</strong>ued<br />

with a 55°C anneal<strong>in</strong>g temperature. Loci were tested for<br />

species compatibility by assess<strong>in</strong>g their PCR amplification<br />

success. Batched sample analysis either did not amplify or<br />

exhibited monomorphic or <strong>polymorphic</strong> characteristics<br />

depend<strong>in</strong>g on the locus/species comb<strong>in</strong>ation. Of the 84<br />

amplification tests, 39 markers amplified successfully while<br />

n<strong>in</strong>e were found to be <strong>polymorphic</strong> (Table 2).<br />

Acknowledgments This research was funded by NOAA—National<br />

Mar<strong>in</strong>e Fisheries Service-Southwest Fisheries Science Center. We<br />

would like to thank Lara Asato, Luana Galver, Lauren Hansen, Nicole<br />

Hedrick, Amy Jue, Carrie LeDuc, Janet Lowther <strong>and</strong> Mark<br />

Westerman for their technical assistance <strong>in</strong> the laboratory. We are<br />

grateful to the U.S. Fish <strong>and</strong> Wildlife Service at S<strong>and</strong>y Po<strong>in</strong>t National<br />

Wildlife Refuge, the West Indies Mar<strong>in</strong>e Animal Research <strong>and</strong><br />

Conservation Service (WIMARCS) <strong>and</strong> the USVI Department <strong>of</strong><br />

Plann<strong>in</strong>g <strong>and</strong> Natural Resources for facilitat<strong>in</strong>g collection <strong>of</strong> samples.<br />

References<br />

Bowen BW, Karl SA (2007) Population genetics <strong>and</strong> phylogeography<br />

<strong>of</strong> sea turtles. Mol Ecol 16:4886–4907<br />

Chan EH, Liew HC (1996) Decl<strong>in</strong>e <strong>of</strong> the leatherback populations <strong>in</strong><br />

Terengganu, Malaysia, 1956–1995. Chelonian Conserv Biol 2:<br />

196–203<br />

Dutton PH, Bowen BW, Owens DW, Barragan A, Davis SK (1999)<br />

Global phylogeography <strong>of</strong> the leatherback turtle (Dermochelys<br />

coriacea). J Zool 248:397–409<br />

Dutton PH, Hitipeuw C, Ze<strong>in</strong> M, Benson SR, Petro G, Pita J, Rei V,<br />

Ambio L, Bakarbessy J (2007) Status <strong>and</strong> genetic structure <strong>of</strong><br />

123


52 Conservation Genet Resour (2011) 3:49–52<br />

nest<strong>in</strong>g populations <strong>of</strong> leatherback turtles (Dermochelys cariacea)<br />

<strong>in</strong> the western Pacific. Chelonian Conserv Biol 6:47–53<br />

Exc<strong>of</strong>fier L, Laval G, Schneider S (2005) Arelqu<strong>in</strong> ver. 3.0: an<br />

<strong>in</strong>tegrated s<strong>of</strong>tware package for population genetics data analysis.<br />

Evol Bio<strong>in</strong>form Onl<strong>in</strong>e 1:47–50<br />

FitzSimmons NN, Moritz C, Moore SS (1995) Conservation <strong>and</strong><br />

dynamics <strong>of</strong> <strong>microsatellite</strong> <strong>loci</strong> over 300 million years <strong>of</strong> mar<strong>in</strong>e<br />

turtle evolution. Mol Biol Evol 12:432–440<br />

LeDuc C, Miller P, Lichter J, Parry P (1995) Batched analysis <strong>of</strong><br />

genotypes. PCR Meth Appl 4:331–336<br />

Lee PLM (2008) Molecular ecology <strong>of</strong> mar<strong>in</strong>e turtles: new<br />

approaches <strong>and</strong> future directions. J Exp Mar Biol Ecol 356:<br />

25–42<br />

Monzón-Argüello C, Muñoz J, Marco A, Lopez-Jurado LF, Rico C<br />

(2007) Twelve new <strong>polymorphic</strong> markers from the loggerhead<br />

sea turtle (Caretta caretta) <strong>and</strong> cross-species amplification on<br />

other mar<strong>in</strong>e turtle species. Conserv Genet 9:1045–1049<br />

Sarti-Mart<strong>in</strong>ez AL (2000) Dermochelys coriacea. In: IUCN 2006.<br />

2006 IUCN Red List <strong>of</strong> Threatened Species. www.iucnredlist.org.<br />

Accessed <strong>14</strong> June 2010<br />

Shambl<strong>in</strong> BM, Faircloth BC, Dodd MG, Bagley DA, Ehrhart LM,<br />

Dutton PH, Frey A, Nairn CJ (2009) Tetranucleotide markers<br />

from the loggerhead sea turtle (Caretta caretta) <strong>and</strong> their crossamplification<br />

<strong>in</strong> other mar<strong>in</strong>e turtle species. Conserv Genet 10:<br />

577–580<br />

Spotila JR, Dunham AE, Leslie AJ, Steyermark AC, Plotk<strong>in</strong> PT,<br />

Palad<strong>in</strong>o FV (1996) Worldwide population decl<strong>in</strong>e <strong>of</strong><br />

Dermocheleys coriacea: are leatherback turtles go<strong>in</strong>g ext<strong>in</strong>ct?<br />

Chelonian Conserv Biol 2:209–222<br />

Van Oosterhout C, Hutch<strong>in</strong>son WF, Wills DPM, Shipley P (2004)<br />

MICRO-CHECKER: s<strong>of</strong>tware for identify<strong>in</strong>g <strong>and</strong> correct<strong>in</strong>g<br />

genotyp<strong>in</strong>g errors <strong>in</strong> <strong>microsatellite</strong> data. Mol Ecol Notes 4:<br />

535–538<br />

Westerman ME, Buonaccorsi VP, Stannard JA, Galver L, Taylor C,<br />

Lynn EA, Kimbrell CA, Vetter RD (2005) Clon<strong>in</strong>g <strong>and</strong><br />

<strong>characterization</strong> <strong>of</strong> novel <strong>microsatellite</strong> DNA markers for the<br />

grass rockfish, Sebastes rastrelliger, <strong>and</strong> cross-species amplification<br />

<strong>in</strong> 10 related Sebastes spp. Mol Ecol Notes 5:74–76<br />

123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!