Miller Effect Cascode BJT Amplifier

Miller Effect Cascode BJT Amplifier Miller Effect Cascode BJT Amplifier

seas.upenn.edu
from seas.upenn.edu More from this publisher

ESE319 Introduction to Microelectronics<br />

<strong>Miller</strong> <strong>Effect</strong><br />

<strong>Cascode</strong> <strong>BJT</strong> <strong>Amplifier</strong><br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

1


ESE319 Introduction to Microelectronics<br />

Prototype Common Emitter Circuit<br />

Ignore “low frequency”<br />

capacitors<br />

High frequency model<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

2


ESE319 Introduction to Microelectronics<br />

Multisim Simulation<br />

∣A v ∣=g m<br />

R C<br />

=40 mS ∗5.1k =20446.2 dB<br />

Mid-band gain<br />

Half-gain point<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

3


ESE319 Introduction to Microelectronics<br />

Introducing the <strong>Miller</strong> <strong>Effect</strong><br />

The feedback connection of C between base and collector<br />

causes it to appear to the amplifier like a large capacitor 1−K C <br />

has been inserted between the base and emitter terminals. This<br />

phenomenon is called the “<strong>Miller</strong> effect” and the capacitive multiplier<br />

“1 – K ” acting on C <br />

equals the common emitter amplifier mid-band<br />

gain, i.e. K =−g m R C .<br />

Common base and common collector amplifiers do not suffer<br />

from the <strong>Miller</strong> effect, since in these amplifiers, one side of<br />

is connected directly to ground.<br />

C <br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

4


ESE319 Introduction to Microelectronics<br />

High Frequency CC and CB Models<br />

B<br />

C<br />

ground<br />

B<br />

C<br />

E<br />

E<br />

Common Collector<br />

C is in parallel with R B<br />

.<br />

Common Base<br />

C is in parallel with R C<br />

.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

5


I Z<br />

+ +<br />

- -<br />

ESE319 Introduction to Microelectronics<br />

<strong>Miller</strong>'s Theorem<br />

<br />

I 1 =I I 2 =I<br />

+ +<br />

Z 1<br />

Z 2<br />

V 1<br />

V 2 =K V 1<br />

- -<br />

V 1 V 2 =K V 1<br />

if K >> 1<br />

I = V 1−V 2<br />

Z<br />

= V 1−K V 1<br />

= V 1<br />

Z Z<br />

1−K<br />

=><br />

Z 1 = V 1<br />

= V 1<br />

I 1 I = Z<br />

1−K<br />

Z 1<br />

≈<br />

1<br />

j 2 f C <br />

1−K <br />

=><br />

Z 2 = V 2<br />

= V 2<br />

−I 2 −I =−<br />

Z =<br />

Z<br />

1<br />

K −1 1− 1 ≈Z<br />

K<br />

Let's examine <strong>Miller</strong>'s Theorem as it applies to the HF model<br />

for the <strong>BJT</strong> CE amplifier.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

6


ESE319 Introduction to Microelectronics<br />

Common Emitter <strong>Miller</strong> <strong>Effect</strong> Analysis<br />

Determine effect of C :<br />

B<br />

V <br />

C<br />

V o<br />

I C<br />

I RC<br />

I RC<br />

=−g m<br />

V <br />

I C <br />

Using phasor notation:<br />

or<br />

Note: The current through<br />

depends only on !<br />

V <br />

E<br />

g m<br />

V <br />

C <br />

V o<br />

=−g m<br />

V <br />

I C R C<br />

where<br />

I C <br />

=V <br />

−V o sC <br />

V o<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

7


ESE319 Introduction to Microelectronics<br />

Common Emitter <strong>Miller</strong> <strong>Effect</strong> Analysis II<br />

From slide 7:<br />

I C <br />

=V <br />

g m V <br />

R C −I C <br />

R C s C <br />

Collect terms for and :<br />

I C <br />

V <br />

1s R C C I C <br />

=1g m R C sC <br />

V <br />

I C <br />

= 1g m R C sC <br />

1s R C C <br />

V <br />

= s 1g m R C C <br />

1s R C C <br />

V <br />

<strong>Miller</strong> Capacitance C eq<br />

: C eq<br />

=1−K C <br />

=1g m<br />

R C<br />

<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

8


ESE319 Introduction to Microelectronics<br />

Common Emitter <strong>Miller</strong> <strong>Effect</strong> Analysis III<br />

C eq =1g m R C C <br />

For our example circuit:<br />

1g m<br />

R C<br />

=10.040⋅5100=205<br />

C eq<br />

=205⋅2 pF≈410 pF<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

9


ESE319 Introduction to Microelectronics<br />

Apply <strong>Miller</strong>'s Theorem to <strong>BJT</strong> CE <strong>Amplifier</strong><br />

For the <strong>BJT</strong> CE <strong>Amplifier</strong>: Z = 1<br />

j C <br />

Z 1<br />

=<br />

Z<br />

1−K<br />

1<br />

=> Z 1<br />

=<br />

and Z<br />

j 1g m R C C 2<br />

=<br />

<br />

C eq =1g m R C C <br />

and K=−g m R C<br />

Z 2<br />

=<br />

Z<br />

1− 1 K<br />

1<br />

j 1 1 ≈ 1<br />

j C<br />

C <br />

g m<br />

R <br />

C<br />

<strong>Miller</strong>'s Theorem => important simplification to the HF <strong>BJT</strong> CE Model<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

10


ESE319 Introduction to Microelectronics<br />

Simplified HF Model<br />

R s<br />

C <br />

V s<br />

R B<br />

r <br />

C <br />

g m V <br />

r o<br />

R C<br />

R L<br />

V o<br />

V <br />

V <br />

C <br />

'<br />

R L<br />

'<br />

R s<br />

I C <br />

R L<br />

'<br />

=r o ∥R C ∥R L<br />

V s ' =V s<br />

R B ∥r <br />

R B<br />

∥r <br />

R sig<br />

'<br />

V s<br />

C <br />

'<br />

R L<br />

V o<br />

R s ' =r ∥ R B ∥R s <br />

Thevenin<br />

g m V <br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

11


ESE319 Introduction to Microelectronics<br />

Simplified HF Model<br />

'<br />

V s<br />

<strong>Miller</strong>'s Theorem<br />

'<br />

R s<br />

I C <br />

C in =C C eq<br />

'<br />

.=C <br />

C <br />

1g m R L <br />

V s<br />

'<br />

C <br />

C eq<br />

'<br />

R L<br />

V o<br />

(c)<br />

C in<br />

g m V <br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

12


ESE319 Introduction to Microelectronics<br />

Simplified HF Model<br />

'<br />

V s<br />

A v f = V '<br />

o −g m R L<br />

≈<br />

'<br />

V s 1 j 2 f C in R s<br />

f H<br />

=<br />

1<br />

2C in<br />

R s<br />

'<br />

∣ V o<br />

V s∣ dB<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

13


ESE319 Introduction to Microelectronics<br />

The <strong>Cascode</strong> <strong>Amplifier</strong><br />

A two transistor amplifier used to obtain simultaneously:<br />

1. Reasonably high input impedance.<br />

2. Reasonable voltage gain.<br />

3. Wide bandwidth.<br />

None of the conventional single transistor designs will meet<br />

all of the criteria above. The cascode amplifier will meet all<br />

of these criteria. a cascode is a combination of a common<br />

emitter stage cascaded with a common base stage. (In “olden<br />

days” the cascode amplifier was a cascade of grounded<br />

cathode and grounded grid vacuum tube stages – hence the<br />

name “cascode,” which has persisted in modern terminology.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

14


C byp<br />

v s<br />

R 1<br />

R 2<br />

ESE319 Introduction to Microelectronics<br />

The <strong>Cascode</strong> Circuit<br />

R 3<br />

i B1<br />

i E1<br />

i B2<br />

i C1<br />

R C<br />

i C2<br />

v-out<br />

i c2<br />

i b2<br />

i c1<br />

i e2<br />

i<br />

V b1<br />

CC<br />

R B<br />

i E2<br />

R E<br />

v o<br />

R B<br />

=R 2<br />

∥R 3<br />

CE Stage<br />

ac equivalent circuit<br />

Comments:<br />

1. R 1<br />

, R 2<br />

, R 3<br />

, and R C<br />

set the bias levels for both Q1 and Q2.<br />

2. Determine R E<br />

for the desired voltage gain.<br />

3. C b<br />

and C byp<br />

are to act as “open circuits” at dc and act as “short circuits”<br />

at all operating frequencies of interest, i.e. f f min .<br />

i e1<br />

CB Stage<br />

R s<br />

C b<br />

v s<br />

R s<br />

R E<br />

R C<br />

R in1 = v eg1<br />

i e1<br />

= v cg2<br />

i c2<br />

=low<br />

v o<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

15


ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Mid-Band Small Signal Model<br />

i b1<br />

R B<br />

r 1<br />

i e1<br />

i b2<br />

r 2<br />

i e2<br />

i c2<br />

i c1<br />

g m<br />

v be1<br />

R in1 =low<br />

Vout<br />

R s<br />

R<br />

g C<br />

m<br />

v be2<br />

v s<br />

R E<br />

v o<br />

1. Show reduction in <strong>Miller</strong> effect<br />

2. Evaluate small-signal voltage gain<br />

OBSERVATIONS<br />

a. The emitter current of the CB stage is<br />

the collector current of the CE stage. (This<br />

also holds for the dc bias current.)<br />

i e1 =i c2<br />

b. The base current of the CB stage is:<br />

g m1<br />

=g m2<br />

=g m<br />

r e1 =r e2 =r e<br />

r 1<br />

=r 2<br />

=r <br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

i b1 = i e1<br />

1 = i c2<br />

1<br />

c. Hence, both stages have about same<br />

collector current i c1<br />

≈i c2 and same g m<br />

, r e<br />

, r π<br />

.<br />

16


ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Small Signal Analysis cont.<br />

The input resistance R in1<br />

to the CB stage<br />

is the small-signal “R C<br />

” for the CE stage<br />

i b1 = i e1<br />

1 = i c2<br />

1<br />

The CE output voltage, the voltage drop<br />

from Q2 collector to ground, is:<br />

v cg2<br />

=v eg1<br />

=−r 1<br />

i b1<br />

=− r 1<br />

1 i c2=− r 1<br />

1 i e1<br />

Therefore, the CB Stage input resistance is:<br />

R in1<br />

= v eg1<br />

−i e1<br />

= r 1<br />

1 =r e1<br />

A vCE−Stage<br />

= v cg2<br />

v sig<br />

≈− R in1<br />

R E<br />

=− r e<br />

R E<br />

1 => C eq<br />

=1 r e<br />

R E<br />

C <br />

2C <br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

17


ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Small Signal Analysis - cont.<br />

Now, find the CE collector current in terms of<br />

the input voltage v s<br />

: Recall i c1<br />

≈i c2<br />

i b2 ≈<br />

v s<br />

R s ∥R B r 2 1 R E<br />

i c2 =i b2 ≈<br />

v s<br />

≈<br />

v s<br />

R s ∥R B r 2<br />

1 R E 1 R E<br />

for bias insensitivity:<br />

1 R E<br />

≫R s<br />

∥R B<br />

r <br />

v s<br />

OBSERVATIONS:<br />

1. Voltage gain A v<br />

is about the same as a stand-along CE <strong>Amplifier</strong>.<br />

2. HF cutoff is much higher then a CE <strong>Amplifier</strong> due to the reduced C eq<br />

.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

18


ESE319 Introduction to Microelectronics<br />

Approximate <strong>Cascode</strong> HF Voltage Gain<br />

A v<br />

f = V − R C<br />

o f <br />

V s f ≈ R E<br />

'<br />

1 j 2 f C in R s<br />

where<br />

C in<br />

=C <br />

C eq<br />

=C <br />

1 r e<br />

C<br />

R <br />

C <br />

2C <br />

E<br />

R ' s =R s ∥R B ≈R s<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

19


ESE319 Introduction to Microelectronics<br />

I 1<br />

I C1<br />

I E1<br />

<strong>Cascode</strong> Biasing<br />

R in1 =low<br />

I C2<br />

I E2<br />

1. Choose I E1<br />

– make it relatively large to<br />

reduce R in1 =r e1 =V T / I E1 to push out HF<br />

break frequencies.<br />

2. Choose R C<br />

for suitable voltage swing<br />

V C1G<br />

and R E<br />

for desired gain.<br />

3. Choose bias resistor string such that<br />

its current I 1<br />

is about 0.1 of the collector<br />

current I C1<br />

.<br />

4. Given R E<br />

, I E2<br />

and V BE2<br />

= 0.7 V calculate<br />

R 3<br />

.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

20


I 11<br />

V B1<br />

ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Biasing - cont.<br />

Since the CE-Stage gain is very small:<br />

a. The collector swing of Q2 will be small.<br />

b. The Q2 collector bias V C2<br />

= V B1<br />

- 0.7 V.<br />

5. Set<br />

V B1 −V B2 ≈1V ⇒V CE2 ≈1V<br />

V B2<br />

V C2<br />

This will limit V CB2<br />

V CB2 =V CE2 −V BE2 =0.3V<br />

which will keep Q2 forward active.<br />

V CE2 =V C2 −V R e =V C2 −V B2 −0.7 V <br />

.=V B1 −V BE1 −V B2 V BE2<br />

.≈V B1 −0.7V −V B2 0.7V<br />

.=V B1 −V B2<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

6. Next determine R 2<br />

. Its drop V R2<br />

= 1 V<br />

with the known current.<br />

7. Then calculate R 1<br />

.<br />

R 2 = V B1−V B2<br />

I 1<br />

R 1 = V CC−V B1<br />

I 1<br />

21


ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Bias Example<br />

V CC<br />

-I C<br />

R E<br />

-1.7<br />

R C<br />

I C<br />

R C<br />

=12 V<br />

1.0<br />

I C<br />

R E<br />

+0.7<br />

V CE1 =V =I C<br />

R CC C<br />

–1–I −I C R EC<br />

−1−I C R E<br />

=12 V<br />

V CE2<br />

=1<br />

R E<br />

I C<br />

R E<br />

<strong>Cascode</strong> circuit<br />

I E2 ≈ I C2 =I E1 ≈ I C1 ⇒ I C1 ≈I E2<br />

Typical Bias Conditions<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

22


ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Bias Example cont.<br />

V CE1 =V CC −I C R C −1−I C R E<br />

1. Choose I E1<br />

– make it a bit high to lower r e<br />

or . Try I E1<br />

= 5 mA => .<br />

r <br />

r e =0.025V / I E =5<br />

2. Set desired gain magnitude. For example<br />

if A V<br />

= -10, then R C<br />

/R E<br />

= 10.<br />

3. Since the CE stage gain is very small,<br />

V CE2<br />

can be small. Use V CE2<br />

= V B1<br />

– V B2<br />

= 1 V.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

23


ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Bias Example cont.<br />

V CC<br />

=12<br />

I C<br />

=5 mA.<br />

∣A v ∣= R C<br />

R E<br />

=10<br />

V CE1 =V CC −I C R C −1−I C R E<br />

Determine R C<br />

for a 5 V drop across R C<br />

.<br />

R C<br />

=<br />

5V<br />

5⋅10 −3 A =1000 <br />

R E<br />

= R C<br />

∣A v ∣ = R C<br />

10 =100<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

24


ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Bias Example cont.<br />

I 1<br />

=12V<br />

V CC<br />

=12<br />

I C<br />

=5 mA.<br />

R C<br />

=1 k R E<br />

=100<br />

R 1<br />

V CC<br />

-I C<br />

R E<br />

-1.7<br />

R 2<br />

R 3<br />

1.0<br />

I C<br />

R E<br />

+0.7<br />

R C<br />

R E<br />

I C<br />

R C<br />

V CE1 =V =I C<br />

R CCC −I –1–I CC R CE<br />

−1−I C R E<br />

V CE2<br />

=1<br />

I C<br />

R E<br />

Make current through the string of bias<br />

resistors I 1<br />

= 1 mA.<br />

R 1<br />

R 2<br />

R 3<br />

= V CC<br />

= 12<br />

I 1 1⋅10 −3=12k <br />

We now calculate the bias voltages:<br />

V CC<br />

−I C<br />

R E<br />

−1.7 V =12 V −0.5V −1.7 V =9.8V<br />

V B1B2<br />

=V B1<br />

−V B2<br />

=1.0V<br />

V B2<br />

=I C<br />

R E<br />

0.7=5⋅10 −3 ⋅1000.7=1.2V<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

25


ESE319 Introduction to Microelectronics<br />

<strong>Cascode</strong> Bias Example cont.<br />

V B2<br />

=10 −3 R 3<br />

=1.2V<br />

V B1<br />

V B2<br />

R 3<br />

=1.2 k <br />

V B1<br />

−V B2<br />

=1⋅10 −3 R 2<br />

=1.0V<br />

R 2<br />

=1 k <br />

R 1<br />

=12000−1200−1000=9.8k <br />

V CC<br />

=12 R C<br />

=1 k <br />

I C<br />

=5 mA. R E<br />

=100<br />

V B2<br />

=1.2 V<br />

V B1<br />

−V B2<br />

=1.0V<br />

R 1<br />

=10 k <br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

26


ESE319 Introduction to Microelectronics<br />

Multisim Results – Bias Example<br />

R 1<br />

I C1<br />

R C<br />

C byp<br />

v o<br />

R s<br />

C b<br />

R 2<br />

v s<br />

R 3<br />

R E<br />

Check I C1<br />

:<br />

I C1<br />

about 3.4 mA. That's a little low.<br />

Increase R 3<br />

to 1.5 k Ohms and re-simulate.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

I C1<br />

= V CC−7.3290.9710.339<br />

=<br />

R C<br />

12V −8.639 V<br />

1000<br />

=3.36 mA<br />

27


ESE319 Introduction to Microelectronics<br />

Improved Biasing<br />

R 1<br />

R C<br />

C byp<br />

R s<br />

10 uF<br />

C b<br />

R 2<br />

v s<br />

10 uF<br />

R 3<br />

R E<br />

Check I C1<br />

: I C1<br />

= V CC−5.0480.9410.551<br />

That's better! Now measure the gain at a mid-band frequency<br />

with some “large” coupling capacitors, say 10 µF inserted.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

R C<br />

12V −6.540 V<br />

=<br />

1000<br />

=5.46 mA<br />

28


ESE319 Introduction to Microelectronics<br />

Single Frequency Gain<br />

10 uF<br />

C byp<br />

R 1<br />

R C<br />

v-out<br />

v o<br />

R s<br />

v s<br />

R 2<br />

R 3<br />

10 uF<br />

C b<br />

R E<br />

Gain |A v<br />

| of about 8.75 at 100 kHz - OK for rough calculations. Some attenuation<br />

from low CB input impedance (R B<br />

= R 2<br />

||R 3<br />

)and some from 5Ω r e<br />

.<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

29


ESE319 Introduction to Microelectronics<br />

Bode Plot for the <strong>Amplifier</strong><br />

18.84 dB<br />

Low frequency break point with 10 µF. capacitors<br />

18.84 dB<br />

High frequency break point – internal capacitances only<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

30


ESE319 Introduction to Microelectronics<br />

Scope Plot – Near 5 V Swing on Output<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

31


ESE319 Introduction to Microelectronics<br />

Determine Bypass Capacitors<br />

Low Frequency f ≤ f min<br />

v-out<br />

From CE stage determine C b<br />

C b<br />

≥<br />

10<br />

2 f min R B ∥r bg<br />

≈<br />

R B<br />

=R 2<br />

∥R 3<br />

10<br />

2 f min R B ∥1 R E<br />

F<br />

From CB stage determine C byp<br />

10<br />

C byp<br />

≥<br />

2 f min 1 R E<br />

r F<br />

where R S<br />

-> R E<br />

2008 Kenneth R. Laker,update 21Oct09 KRL<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!