28.06.2014 Views

Bulletin of the Buffalo Society of Natural Sciences - Buffalo Museum ...

Bulletin of the Buffalo Society of Natural Sciences - Buffalo Museum ...

Bulletin of the Buffalo Society of Natural Sciences - Buffalo Museum ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 59<br />

NOTES ON THE BIOGEOGRAPHY AND PHYLOGENY OF<br />

EASTERN ASIAN GHOST MOTHS (LEPIDOPTERA: HEPIALIDAE)<br />

John R. Grehan<br />

<strong>Buffalo</strong> <strong>Museum</strong> <strong>of</strong> Science, 1020 Humboldt Parkway, <strong>Buffalo</strong>, NY 14211<br />

jgrehan@sciencebuff.org<br />

ABSTRACT – The distribution records <strong>of</strong> eastern Asian Hepialidae are mapped for <strong>the</strong> genera<br />

Bipectilus Chu & Wang, 1985, Endoclita Felder, 1874, Hepialiscus Hampson, [1893], Napialus Chu<br />

& Wang, 1985, Palpifer Hampson, [1893], Parahepialiscus Viette, 1950, Thitarodes Viette, 1968 and<br />

Xhoaphyrix Viette, 1953. All are distributed across mainland eastern Asia between <strong>the</strong> Himalayas and<br />

China, with Endoclita and Thitarodes also extending north to Japan and <strong>the</strong> Russian Far East.<br />

Endoclita and Palpifer occur south <strong>of</strong> <strong>the</strong> Himalayas, and only Thitarodes is absent from South East<br />

Asia. The similarity <strong>of</strong> distribution ranges between <strong>the</strong> genera, and <strong>the</strong> presence <strong>of</strong> vicariant lineages<br />

in Bipectilus and <strong>the</strong> Hepialiscus group (with respect to Napialus) is predicted to be <strong>the</strong> result <strong>of</strong> <strong>the</strong>ir<br />

having evolved from widespread ancestral distributions that largely encompassed <strong>the</strong> generic ranges.<br />

These ancestral distributions overlapped Eurasian and North American genera in <strong>the</strong> Russian Far East<br />

and Japan. The distribution <strong>of</strong> Hepialiscus, Parahepialiscus, and Xhoaphryx may toge<strong>the</strong>r represent<br />

<strong>the</strong> Asian fragment <strong>of</strong> an ancestral range that also included Australia and New Guinea where it is now<br />

represented by Oxycanus Walker, 1856. Endoclita also has a very close vicariant relationship with <strong>the</strong><br />

Australasian Aenetus Herrich-Schäffer, 1855 that may have originated from a formerly widespread<br />

ancestor across eastern Asia and Australasia. The geological history behind <strong>the</strong> convergence <strong>of</strong><br />

tectonic plates at <strong>the</strong>ir common biogeographic boundary may have played a role in <strong>the</strong> differentiation<br />

<strong>of</strong> <strong>the</strong> two genera.<br />

KEYWORDS – Hepialidae, ghost moth, biogeography, phylogeny, Asia.<br />

INTRODUCTION<br />

The global biogeography and phylogeny <strong>of</strong><br />

ghost moths (Hepialidae) is poorly understood,<br />

particularly for inter-generic and intercontinental<br />

relationships (Nielsen et al., 2000; Grehan and<br />

Rawlins, 2003). The family has a global range,<br />

although absent from some extensive geographic<br />

areas such as Madagascar, <strong>the</strong> Caribbean<br />

islands, west-central tropical Africa, and <strong>the</strong><br />

lowlands <strong>of</strong> eastern and central United States,<br />

even though apparently suitable habitats are<br />

present. In regions where Hepialidae occur <strong>the</strong>re<br />

are seven geographic clusters <strong>of</strong> genera and<br />

species (based on <strong>the</strong> classification <strong>of</strong> Nielsen et<br />

al., 2000) where geographic overlap is minimal<br />

or absent. The generic and species diversity <strong>of</strong><br />

<strong>the</strong>se geographic clusters are as follows:<br />

1) America north <strong>of</strong> Mexico: 4-16.<br />

2) Western Eurasia/North Africa: 7-78.<br />

3) America south <strong>of</strong> <strong>the</strong> United States: 14-132.<br />

4) Sou<strong>the</strong>rn Africa: 6-78.<br />

5) Australasia: 9-190.<br />

6) Fiji/Samoa: 1-1.<br />

7) Eastern Asia: 10-47.<br />

Generic diversity is not substantially<br />

different between <strong>the</strong> clusters o<strong>the</strong>r than for<br />

Fiji/Samoa with its monotypic genus, and<br />

America south <strong>of</strong> <strong>the</strong> United States which has<br />

<strong>the</strong> highest number <strong>of</strong> genera and almost as<br />

many documented species as Australasia with<br />

<strong>the</strong> highest species diversity. The only generic<br />

overlap between <strong>the</strong>se clusters involves<br />

Korscheltellus Börner, 1920, Gazoryctra<br />

Hübner, [1820], and Phymatopus Wallengren,<br />

1869 that range across North America, Western<br />

Eurasia/North Africa, and Eastern Asia.<br />

In this paper <strong>the</strong> distribution ranges <strong>of</strong> <strong>the</strong><br />

endemic eastern Asian genera are examined to<br />

characterize <strong>the</strong>ir geographic limits and how<br />

<strong>the</strong>se limits do or do not intersect with genera in<br />

western Asia and Australasia. In <strong>the</strong> absence <strong>of</strong><br />

a comprehensive revision and syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong><br />

systematics and taxonomy for most <strong>of</strong> <strong>the</strong>se<br />

groups, <strong>the</strong> level <strong>of</strong> biogeographic detail is<br />

limited principally to each genus as a whole.<br />

The eastern Asian genera (or generic groups)<br />

considered here are (1) Bipectilus Chu & Wang,<br />

1985, (2) Hepialiscus Hampson, [1893] (along<br />

with <strong>the</strong> closely related Napialus Chu & Wang,


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 60<br />

1985, Xhoaphyrix, and Parahepialiscus), (3)<br />

Thitarodes Viette, 1968, (4) Palpifer Hampson,<br />

[1893], and (5) Endoclita Felder, 1874.<br />

The geographic range defined by <strong>the</strong> total<br />

range <strong>of</strong> all <strong>of</strong> <strong>the</strong>se genera includes South East<br />

Asia, Ceylon/India and <strong>the</strong> Russian Far<br />

East/Japan. Specimens that were dissected and<br />

illustrated here are from <strong>the</strong> following<br />

collections: JRG (John R. Grehan collection);<br />

CMNH (Carnegie <strong>Museum</strong> <strong>of</strong> <strong>Natural</strong> History);<br />

NZAC (New Zealand Arthropod Collection).<br />

1) Bipectilus Chu & Wang, 1985<br />

Characterized as one <strong>of</strong> <strong>the</strong> most distinctive and<br />

peculiar hepialid genera, Bipectilus differs from<br />

all o<strong>the</strong>r Eurasian and Oriental genera in having<br />

bipectinate antennae and highly specialized male<br />

genitalia. The genus may represent a basal<br />

lineage within <strong>the</strong> Hepialidae (Nielsen, 1988).<br />

Bipectilus ranges between eastern China (south<br />

<strong>of</strong> 33° N), eastern Nepal, and sou<strong>the</strong>rn Burma.<br />

All eight species are vicariant, and <strong>the</strong>re are two<br />

vicariant lineages, an eastern group comprising<br />

two species, and <strong>the</strong> remaining four species<br />

between Nepal, central and sou<strong>the</strong>rn China, and<br />

Thailand (Fig. 1).<br />

Fig. 1. Distribution records <strong>of</strong> Bipectilus. Each symbol represents different species. Vicariant subgroups<br />

represented by blue and red symbols (Nielsen, 1988).<br />

2) Hepialiscus Hampson, [1893] group<br />

Ueda (1988) suggested that Hepialiscus, and <strong>the</strong><br />

genera Napialus (three species), Parahepialiscus<br />

(monotypic, Fig. 2a), and Xhoaphyrix<br />

(monotypic, Fig. 2b) may be monophyletic or at<br />

least represent closely related species. This<br />

tentative classification was based on <strong>the</strong>ir<br />

sharing a pattern <strong>of</strong> wing venation where R4<br />

(=Rs3) and R5 (=Rs4) arise separately from<br />

R2+3 (=Rs1+Rs2) (see Kristensen, 1999 (Fig.<br />

3).<br />

The separate origin <strong>of</strong> R4 and R5 also<br />

applies to <strong>the</strong> New Guinea/Australian Elhamma<br />

Walker, 1856, Oxycanus Walker, 1856, Jeana<br />

Tindale, 1935, <strong>the</strong> New Zealand genera<br />

Cladoxycanus Dumbleton, 1966, Dioxycanus<br />

Dumbleton, 1966, Dumbletonius Dugdale, 1988,<br />

Heloxycanus Dugdale, 1994, and Wiseana<br />

Viette, 1961, and <strong>the</strong> North African<br />

Neohepialiscus Viette, 1948 (Viette, 1948).<br />

This ‘oxycanine’ pattern (as<br />

characterized by Dumbleton, 1966) appears to<br />

be a problematic indicator <strong>of</strong> relationship<br />

because it also occurs in <strong>the</strong> South American<br />

Roseala Viette, 1950, Cibyra (Aepytus) Herrich-<br />

Schäffer, [1858], C. (Vietteogorgopis), and C.


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 61<br />

(Lamelliformia) (Nielsen and Robinson, 1983;<br />

Ueda, 1988; Brown et al., 2000). These South<br />

American genera have abdominal features in <strong>the</strong><br />

tergal lobe (Grehan, 2010) and genitalic<br />

similarities that appear to be closer to o<strong>the</strong>r<br />

‘cibyrine’ genera ra<strong>the</strong>r than Asian and<br />

Australasian ‘oxycanine’ genera (JRG, personal<br />

observation), although <strong>the</strong>ir future taxonomic<br />

placement will also be contingent upon a<br />

comprehensive phylogenetic analysis.<br />

Fig. 2. Hepialiscus group. (a) Parahepialiscus borneensis (BMNH(E) #953897); (b) Xhoaphryx sp. (BMNH(E)<br />

#953898). Scale = 5 mm. Images courtesy <strong>of</strong> Carlos Mielke. Copyright: Trustees <strong>of</strong> <strong>the</strong> <strong>Natural</strong> History <strong>Museum</strong>,<br />

London, used with permission<br />

Fig. 3. Forewing venation. (a) ‘oxcanine’, Dioxycanus oreas (Hudson, 1920); (b) ‘hepialine’, Aoraia insularis<br />

Dugdale, 1994. Reproduced from Dugdale (1994 figs 75, 77) by permission.<br />

None <strong>of</strong> <strong>the</strong> characters listed for<br />

Hepialiscus by Ueda (1988) were characterized<br />

as unique for <strong>the</strong> genus. Presence <strong>of</strong> a<br />

terberculate plate (pinnaculm) anterior to <strong>the</strong><br />

spiracle on <strong>the</strong> 2 nd to 6 th abdominal segments<br />

may distinguish Hepialiscus from Bipectilus, but<br />

not Endoclita (personal observation).<br />

Napialus was created by Chu and<br />

Wang (1985) for a new species, and a fur<strong>the</strong>r<br />

two species were added by Wu (1992) and<br />

Nielsen et al. (2000) respectively. Three <strong>of</strong> <strong>the</strong><br />

four features found in Napialus are also shared<br />

by Hepialiscus (Ueda, 1988). Napialus may<br />

represent largely nor<strong>the</strong>astern vicariant <strong>of</strong><br />

Hepialiscus ranging mostly fur<strong>the</strong>r south in<br />

China. The monotypic Xhoaphryx <strong>of</strong> Vietnam<br />

differs from Hepialiscus in having an oval<br />

pseudotegumen and it also lacks an epiphysis,<br />

but Ueda (1988) thought <strong>the</strong> genera were closely<br />

related because <strong>of</strong> <strong>the</strong> shared oxycanine venation<br />

and <strong>the</strong> presence <strong>of</strong> a subanal sclerite in <strong>the</strong> male<br />

genitalia.<br />

Ueda (1988) concurred with Viette’s<br />

(1950a) view that Parahepialiscus was also<br />

closely related to Hepialiscus because <strong>of</strong> <strong>the</strong><br />

‘oxycanine’ venation and similarity <strong>of</strong> genitalia.<br />

Viette (1950a) distinguished Parahepialiscus by<br />

<strong>the</strong> presence <strong>of</strong> lateral sclerification around <strong>the</strong><br />

adeagus, but Ueda (1988) regarded this structure<br />

to be homologous with <strong>the</strong> subanal sclerite<br />

found in Hepialiscus and Xhoaphyrx.<br />

Viette (1948) also suggested a close<br />

relationship between Hepialiscus and <strong>the</strong> North<br />

African Neohepialiscus algeriensis (de Joannis,<br />

1903) on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir both sharing<br />

‘oxycanine’ venation, but he did not include a<br />

comparison with male Hepialiscus genitalia or


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 62<br />

refer to <strong>the</strong> presence or absence <strong>of</strong> a subanal<br />

sclerite. The pseudoteguminal arms <strong>of</strong><br />

Neohepialiscus are long and narrow, and in this<br />

respect are similar to those <strong>of</strong> Napialus<br />

hunanensis (Chu & Wang, 1985: fig. 36).<br />

Hepialiscus ranges between Nepal, Taiwan, and<br />

nor<strong>the</strong>rn Borneo (Fig. 4), but is mostly<br />

represented by a few scattered records. Within<br />

this range Xhoaphryx is represented by a single<br />

published record in nor<strong>the</strong>rn Vietnam while<br />

Parahepialiscus is confined to nor<strong>the</strong>rn Borneo.<br />

Fig. 4. Distribution <strong>of</strong> Hepialiscus and closely related genera. Hepialiscus (red circles), Napialus (blue circles),<br />

Parahepialiscus borneensis (Pfitzner, 1933) (yellow circle), Xhoaphryx lemeei Viette, 1953 (purple circle)<br />

(Daniel, 1940; Viette, 1953; Chu & Wang, 1985; Ueda, 1988; Wu, 1992; Robinson et al., 1995).<br />

5) Thitarodes Viette, 1968<br />

Thitarodes (Fig. 5) was originally proposed with<br />

four species, but a fur<strong>the</strong>r 53 were later added<br />

(Ueda, 1996, 2000; Nielsen et al., 2000; see also<br />

Zhu et al., 2004). Viette (1968) drew attention to<br />

<strong>the</strong> presence <strong>of</strong> a basal spine on <strong>the</strong> male valve,<br />

but at least six species added by Nielsen et al.<br />

(2000) lack <strong>the</strong> spine (as illustrated by Chu &<br />

Wang, 1985). A basal spine occurs in some<br />

o<strong>the</strong>r genera such as Schausiana Viette, 1950 <strong>of</strong><br />

Mexico-Central America (JRG, personal<br />

observation). Thitarodes is distinguished from<br />

<strong>the</strong> Hepialiscus group by vein R4 branching<br />

from R4+R5, and from o<strong>the</strong>r Asian genera by<br />

<strong>the</strong> male genitalia. Larvae are subterranean root<br />

feeders in alpine meadows or pastures (Yang et<br />

al., 1996; Maczey et al., 2010).<br />

Fig. 5. (a) Thitarodes namnai Maczey, 2010 (Bhutan), (b) T. caligophilus Maczey, 2010 (Bhutan) (Maczey et al.,<br />

2010). Images courtesy <strong>of</strong> Norbert Maczey. Scale = 5 mm.


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 63<br />

Fig. 6. Distribution records for Thitarodes (Bang-Haas, 1939; Chu & Wang, 1985; Liang et al., 1988; Wang,<br />

1990; Yang, 1993, 1994; Yang & Jiang, 1995; Yang & Yang, 1995; Yang et al., 1992, 1993; Robinson et al.,<br />

1995; Ueda, 1996, 2000; Tu et al., 2009; Maczey et al., 2010; Zou et al., 2011).<br />

Thitarodes has a nor<strong>the</strong>rn limit about<br />

50º N in central Asia and <strong>the</strong> Far East, and a<br />

westernmost limit about 85ºW in Nepal and<br />

Sou<strong>the</strong>rn China (Fig. 6). There is a considerable<br />

species concentration in sou<strong>the</strong>ast China and <strong>the</strong><br />

Himalayas, including 16 species being recorded<br />

from <strong>the</strong> province <strong>of</strong> Yunnan alone. With many<br />

species only superficially described and lacking<br />

comparative diagnoses with respect to <strong>the</strong> rest <strong>of</strong><br />

<strong>the</strong> genus, it is possible that some <strong>of</strong> this<br />

diversity may be reduced by future synonymy.<br />

There is a notable lack <strong>of</strong> confirmed records<br />

from eastern China, resulting in a current<br />

geographic disjunction between <strong>the</strong> center <strong>of</strong><br />

diversity for this group and species occurring in<br />

Taiwan, Japan, and <strong>the</strong> Russian Far East.<br />

4) Palpifer Hampson, [1893]<br />

The few published records for Palpifer (Fig. 7)<br />

are geographically scattered between Japan,<br />

northwestern India and Sri Lanka, and Java (Fig.<br />

8). Palpifer comprises nine species (Nielsen et<br />

al., 2000) and is in need <strong>of</strong> taxonomic revision<br />

(Robinson et al., 1995). Monophyly for some or<br />

all species may be indicated by <strong>the</strong> uniquely<br />

shared presence <strong>of</strong> a small dark spot along <strong>the</strong><br />

posterior forewing margin basal to vein CuA2, a<br />

white spot at <strong>the</strong> base <strong>of</strong> <strong>the</strong> forewing discal cell<br />

on or near vein M3, and an orange-brown fringe<br />

on some or much <strong>of</strong> <strong>the</strong> outer and posterior<br />

hindwing margins. Larvae are root borers<br />

(Kalshoven, 1965; Robinson et al., 1995).<br />

Fig. 7. Palpifer murinus, West Pahang, Malasia.<br />

(BMNH(E) #953899). Scale = 5 mm. Image courtesy<br />

Carlos Mielke. Copyright: Trustees <strong>of</strong> <strong>the</strong> <strong>Natural</strong><br />

History <strong>Museum</strong>, London, used with permission<br />

5) Endoclita Felder, 1874<br />

This large genus <strong>of</strong> 60 species (Nielsen et al.,<br />

2000) ranges between <strong>the</strong> Russian Far East,<br />

sou<strong>the</strong>rn India, Sri Lanka, and Sou<strong>the</strong>ast Asia<br />

(Fig. 9). Some species are widespread in India<br />

and China while most are known from one<br />

locality. The map (Fig. 9) includes an<br />

unconfirmed record by Smetacek (1997) from<br />

northwestern India. Monophyly <strong>of</strong> <strong>the</strong> genus has<br />

yet to be corroborated. Larvae are wood borers<br />

<strong>of</strong> trees and shrubs (Grehan, 1989).


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 64<br />

Fig. 8. Distribution records for Palpifer (Butler, 1879; Moore, 1887, 1879; Cotes & Swinhoe, 1887; Piepers &<br />

Snellen, 1900; Swinhoe, 1905; Pfitzner, 1914; Matsumura, 1931; Daniel, 1940; Viette, 1968; Robinson et al.,<br />

1995; Utsumi, personal communication).<br />

Fig. 9. Distribution <strong>of</strong> Endoclita (Van Eecke, 1915; Daniel, 1940; Tindale, 1941, 1942, 1958; Viette, 1950b;<br />

Robinson et al., 1995; Tshistjakov, 1996; Jeon et al., 2000; Utsumi & Ohgushi, 2007; Utsumi, personal<br />

communication).


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 65<br />

BIOGEOGRAPHY<br />

Generic categories are a proxy for one or more<br />

characters that group two or more species<br />

toge<strong>the</strong>r as being more closely related to each<br />

o<strong>the</strong>r than to o<strong>the</strong>r species. Genera, like any<br />

o<strong>the</strong>r taxonomic category, <strong>of</strong>ten represent one or<br />

more features that are relatively unambiguous<br />

for grouping species toge<strong>the</strong>r, whereas features<br />

that identify relationships between those groups<br />

may be more difficult to recognize – if <strong>the</strong>y are<br />

evident at all. This is <strong>the</strong> current situation for <strong>the</strong><br />

Hepialidae where many genera have long been<br />

recognized or well defined while inter-generic<br />

relationships remain uncertain.<br />

As clusters <strong>of</strong> related species, <strong>the</strong>re is<br />

no necessary relationship between <strong>the</strong> generic<br />

distributions and any particular geographic area<br />

such as ‘Eastern Asia’ or any <strong>of</strong> <strong>the</strong> artificial<br />

biogeographic classifications that create<br />

geographic regions such as ‘Indo-Malaysia’ and<br />

‘Australasia’ (e.g. Olsen et al., 2001).<br />

Instead, it is <strong>the</strong> geographic and<br />

phylogenetic relationships <strong>of</strong> taxa that are<br />

biogeographically informative. Within <strong>the</strong><br />

current constraints <strong>of</strong> limited phylogenetic<br />

resolution for inter-generic relationships, <strong>the</strong><br />

uncertainty <strong>of</strong> species identification within some<br />

genera and <strong>the</strong> paucity <strong>of</strong> collecting records in<br />

many areas, biogeographic interpretation <strong>of</strong><br />

eastern Asian Hepialidae is limited here to<br />

geographic and phylogenetic examples<br />

involving distributions that are geographically<br />

vicariant or non-overlapping (and <strong>of</strong>ten referred<br />

to as allopatric).<br />

In most biogeographic approaches,<br />

vicariant distributions are interpreted as <strong>the</strong><br />

result <strong>of</strong> an imagined dispersal from an<br />

imagined center <strong>of</strong> origin, where <strong>the</strong> ancestral<br />

form it <strong>the</strong>orized to have occupied a geographic<br />

area smaller than <strong>the</strong> combined geographic area<br />

<strong>of</strong> its vicariant descendants. This approach goes<br />

back to Darwin’s <strong>the</strong>ory <strong>of</strong> evolution and has<br />

remained a predominant <strong>the</strong>ory <strong>of</strong> evolution to<br />

this day.<br />

While very popular, <strong>the</strong> center <strong>of</strong> origin<br />

<strong>the</strong>ory relies more on intuition than evidence for<br />

proposed dispersal events to explain <strong>the</strong><br />

vicariant differentiation <strong>of</strong> descendant taxa<br />

(species or any o<strong>the</strong>r taxonomic level). It also<br />

generates internal contradictions where a barrier<br />

is supposed to explain <strong>the</strong> isolation and<br />

differentiation <strong>of</strong> vicariant taxa while at <strong>the</strong><br />

same time being just permeable enough to allow<br />

ei<strong>the</strong>r a one-<strong>of</strong>f or a few chance dispersals over<br />

<strong>the</strong> barrier to reach <strong>the</strong> o<strong>the</strong>r side where <strong>the</strong>re is<br />

sufficient isolation to allow divergence (Craw et<br />

al., 1999).<br />

The center <strong>of</strong> origin/dispersal <strong>the</strong>ory is<br />

most <strong>of</strong>ten represented by <strong>the</strong> location <strong>of</strong> <strong>the</strong><br />

most primitive lineage being at or nearer <strong>the</strong><br />

center <strong>of</strong> origin, with more derived groups<br />

representing successively recent colonization<br />

(Heads, 2009a, b). But this phylogenetic pattern<br />

could be just as well explained as <strong>the</strong> sequence<br />

<strong>of</strong> differentiation <strong>of</strong> a widespread ancestor (and<br />

without generating contradictions between<br />

<strong>the</strong>orized dispersal and actual distribution). In<br />

<strong>the</strong> following sections <strong>the</strong> presence <strong>of</strong> vicariant<br />

patterns is proposed as evidence <strong>of</strong> a formerly<br />

widespread ancestor with a geographic range<br />

that spanned all or much <strong>of</strong> <strong>the</strong> combined<br />

distributions <strong>of</strong> <strong>the</strong> vicariant taxa involved.<br />

1. Geographic relationships<br />

All <strong>of</strong> <strong>the</strong> eastern Asian genera occur in <strong>the</strong><br />

Himalayas and southwestern China/nor<strong>the</strong>rn<br />

South East Asia, and only Bipectilus is restricted<br />

to <strong>the</strong> continental mainland. The o<strong>the</strong>r four<br />

genera geographically vary with respect to <strong>the</strong>ir<br />

presence on adjacent island archipelagos and <strong>the</strong><br />

Indian subcontinent. Thitarodes is particularly<br />

diverse in species in western China/Himalayas<br />

and also occurs in Taiwan and at least sou<strong>the</strong>rn<br />

Japan (each with an endemic species). The<br />

Hepialiscus group is represented by very<br />

scattered mainland records as well as occurring<br />

on Taiwan and nor<strong>the</strong>rn Borneo. The mainland<br />

Asian distribution <strong>of</strong> Palpifer is limited to<br />

scattered localities in <strong>the</strong> Himalayas and south to<br />

Borneo and <strong>the</strong> Malaysian Peninsula with<br />

disjunct records from eastern China, Taiwan,<br />

Japan, Java and Sri Lanka. Endoclita is <strong>the</strong> most<br />

widespread genus, being present across <strong>the</strong><br />

Indian subcontinent and Sri Lanka as well as all<br />

major island archipelagos south east to <strong>the</strong><br />

Moluccas.<br />

The nor<strong>the</strong>rn distributions <strong>of</strong> Endoclita<br />

and Thitarodes overlap with three genera that


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 66<br />

also occur beyond eastern Asia. These occur in<br />

<strong>the</strong> region <strong>of</strong> China, <strong>the</strong> Russian Far East, and<br />

Japan. Pharmacis Hübner, [1820], with eight<br />

species in Europe, including P. fusconebulosa<br />

(De Geer, 1778) that ranges east to <strong>the</strong> Amur<br />

River region <strong>of</strong> <strong>the</strong> Russian Far East and Japan<br />

(Fig. 10). A similar overlap occurs with<br />

Gazoryctra and Phymatopus (Figs 11-12), both<br />

<strong>of</strong> which occur in western Asia and also North<br />

American north <strong>of</strong> Mexico.<br />

Fig. 10. Distribution range for Pharmacis. Dotted line indicates uncertainty about <strong>the</strong> precise geographic limits<br />

(De Freina & Witt, 1990; Staudinger, 1887; Utsumi, personal communication).<br />

The Eurasian distribution <strong>of</strong><br />

Gazoryctra (Fig. 11) involves one species<br />

confined to Europe, two restricted to <strong>the</strong> Russian<br />

Far East and Japan, and G. fuscoargenteus<br />

(Bang-Haas, 1927) ranging across nor<strong>the</strong>rn<br />

Eurasia. The distributions <strong>of</strong> <strong>the</strong> nine species <strong>of</strong><br />

North America north <strong>of</strong> Mexico are poorly<br />

documented. About five <strong>of</strong> <strong>the</strong>se appear to be<br />

confined to <strong>the</strong> west, and two range across<br />

Canada and parts <strong>of</strong> nor<strong>the</strong>rn United States.<br />

There appears to be only one eastern endemic<br />

which is found in <strong>the</strong> sou<strong>the</strong>rn Appalachians.<br />

In contrast to Gazoryctra, <strong>the</strong> Eurasian<br />

range <strong>of</strong> Phymatopus is represented by only a<br />

single species, and in North America <strong>the</strong> genus<br />

is represented by only three species that are also<br />

geographically restricted to <strong>the</strong> coastal region <strong>of</strong><br />

<strong>the</strong> western United States (Fig. 12).<br />

Geographic overlap <strong>of</strong> <strong>the</strong> Eurasian and<br />

North American genera with <strong>the</strong> nor<strong>the</strong>rn range<br />

<strong>of</strong> Endoclita and Thitarodes suggests that <strong>the</strong><br />

Asian nor<strong>the</strong>ast is an important biogeographic<br />

center for understanding <strong>the</strong> origin and evolution<br />

<strong>of</strong> Eurasian Hepialidae. Biogeographically,<br />

nor<strong>the</strong>astern Asia represents a center <strong>of</strong><br />

differentiation between nor<strong>the</strong>rn Eurasian/North<br />

American genera, and those <strong>of</strong> central/sou<strong>the</strong>rn<br />

Asia that are o<strong>the</strong>rwise widespread across<br />

eastern Asia. This pattern may represent<br />

ancestral distributions that occupied different<br />

geographic sectors o<strong>the</strong>r than <strong>the</strong>ir current<br />

overlapping boundary, or <strong>the</strong> marginal<br />

geographic overlap is <strong>the</strong> result <strong>of</strong> subsequent<br />

range expansion between <strong>the</strong> two vicariant<br />

groups.<br />

The overlapping boundary between <strong>the</strong><br />

two Asian distributional patterns contrasts with<br />

<strong>the</strong> apparent lack <strong>of</strong> geographic overlap between<br />

<strong>the</strong> eastern Asian genera and <strong>the</strong> diverse<br />

Australasian hepialid fauna. This apparent<br />

absence <strong>of</strong> overlap may, however, be an artifact<br />

<strong>of</strong> current taxonomy and fur<strong>the</strong>r consideration <strong>of</strong><br />

phylogenetic relationships may show a closer<br />

relationship for at least some groups as<br />

discussed in <strong>the</strong> next section on phylogeny.<br />

2. Phylogenetic relationships<br />

The phylogenetic relationships <strong>of</strong> eastern Asian<br />

genera have yet to be explored in detail. Nielsen<br />

(1988) suggested Bipectilus represented a basal<br />

lineage within <strong>the</strong> Hepialidae, but was unable to<br />

draw any definitive conclusions. Among some<br />

<strong>of</strong> <strong>the</strong> key questions for <strong>the</strong> future will be <strong>the</strong><br />

relationships <strong>of</strong> eastern Asian genera with each<br />

o<strong>the</strong>r, and with Hepialidae in o<strong>the</strong>r parts <strong>of</strong><br />

Eurasia and nor<strong>the</strong>rn America, sou<strong>the</strong>rn Africa,<br />

and Latin America. At this time <strong>the</strong>re is some


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 67<br />

phylogenetic evidence in support <strong>of</strong> a close<br />

relationship between <strong>the</strong> Hepialiscus group and<br />

<strong>the</strong> Australasian Oxycanus, and between<br />

Endoclita and <strong>the</strong> Australasian Aenetus.<br />

Fig. 11. Distribution localities for Gazoryctra (Edwards, 1886; Neumoegen & Dyar, 1894; Wagner & Tindale,<br />

1988; De Freina & Witt, 1990; Handfield, 1999; Tshistjakov, 1997; Grehan & Rawlins, 2003; Utsumi, personal<br />

communication).<br />

Fig. 12. Distribution <strong>of</strong> Phymatopus. Solid-dotted line – uncertain eastern limits <strong>of</strong> <strong>the</strong> only western Asian<br />

species Phymatopus hecta (Linnaeus, 1758) (De Freina & Witt, 1990; Grehan & Rawlins, 2003; Utsumi, personal<br />

communication).<br />

(a) Hepialiscus-Oxycanus: Ueda (1988)<br />

illustrated subanal sclerites (or paramedial<br />

sclerites) for Hepialiscus (Fig. 13a-d), and<br />

suggested <strong>the</strong>se were also present in<br />

Parahepialiscus borneensis (Pfitzner, 1933)<br />

based on Viette’s (1950) illustration <strong>of</strong> a<br />

“garniture latérale, sclérifeé en forme d’Y, au<br />

pénis” (Fig. 13e) and Xhoaphryx lemeei (Fig.<br />

13f) as <strong>the</strong>y were ‘vaguely figured’ by Viette<br />

(1953). He also drew attention to <strong>the</strong> presence <strong>of</strong><br />

subanal sclerites in Oxycanus goldfinchi Tindale<br />

1935 (Fig. 13g) and suggested this shared<br />

similarity represented evidence <strong>of</strong> a close<br />

phylogenetic relationship.<br />

Comparison <strong>of</strong> 44 <strong>of</strong> <strong>the</strong> 57 recognized<br />

hepialid genera (listed in Grehan, 2010 and<br />

subsequently Andeabatis chilensis [Ureta,<br />

1951]), resulted in subanal sclerites being found<br />

only in Oxycanus (Fig. 13h-i) (<strong>the</strong> Hepialiscus<br />

group was not available). Subanal sclerites are<br />

also absent from o<strong>the</strong>r hepialoid genera in <strong>the</strong><br />

Exoporia and its sistergroup Heteroneura (cf.<br />

genitalic descriptions in Kristensen, 1999).<br />

The subanal sclerite represents a<br />

uniquely shared feature for Parahepialiscus,<br />

Xhoaphryx and some or all Hepialiscus and<br />

Oxycanus species. Excluded from this clade are<br />

<strong>the</strong> o<strong>the</strong>r ‘oxycanine’ genera in Australia:<br />

(Jeana - Fig. 14a, Elhamma - Fig. 14b) and<br />

New Zealand (Cladoxycanus - Fig. 14c,<br />

Dioxycanus - Fig. 14d, Dumbletonius - Fig.<br />

14e), Heloxycanus - Fig. 14f, Wiseana - Fig.<br />

14g) (see also Dugdale, 1994) or <strong>the</strong> North<br />

African Neohepialiscus algeriensis (Fig. 14h).<br />

Genitalic illustration <strong>of</strong> Napialus hunanensis by<br />

Chu & Wang (1985) lacks <strong>the</strong> detail to confirm<br />

subanal sclerite presence or absence (Fig. 14i).<br />

A phylogenetic affinity between<br />

Hepialiscus and Oxycanus suggests a broad<br />

ancestral range encompassing <strong>the</strong> now vicariant<br />

distributions <strong>of</strong> Parahepialiscus, Xhoaphryx,


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 68<br />

Hepialiscus and Oxycanus between south <strong>the</strong> disjunction between Borneo and New<br />

eastern Asia and Australasia (Fig. 15). Whe<strong>the</strong>r Guinea represents an actual gap or is <strong>the</strong> result<br />

a b c<br />

d e f<br />

g h i<br />

Fig. 13. Subanal sclerite (marked in yellow): (a) Hepialiscus nepalensis (Walker, 1956) (Ueda, 1988:fig. 6); (b)<br />

Hepialiscus taiwanus Ueda, 1988 (Ueda, 1988: fig. 10); (c) Hepialiscus robinsoni Ueda, 1988 (Ueda, 1988: fig.<br />

9); (d) Hepialiscus monticolis Ueda, 1988 (Ueda, 1988: fig. 11) (e) Parahepialiscus borneensis (Pftzner, 1933)<br />

(Viette, 1950a: fig. 2); (f) Xhoaphyrx lemeei Viette, 1950 (Viette, 1953: fig 1); (g) Oxycanus goldfinchi Tindale,<br />

1935 (Ueda, 1988: fig. 7); (h) Oxycanus dirempta (Walker, 1865), Australia (M219, CMNH); (i) Oxycanus<br />

‘lyelli’ Tindale, 1935, Australia (M218, CMNH).


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 69<br />

a b c<br />

d e f<br />

g h i<br />

Fig. 14. Absence <strong>of</strong> <strong>the</strong> subanal plate in various oxycanine genera: (a) Jeana sp., Australia (M194, JRG), (b)<br />

Elhamma australasiae (Walker, 1856), Australia (M181, NZAC), (c) Cladoxycanus minos (Hudson, 1905), New<br />

Zealand (M137, JRG), (d) Dioxycanus fusca (Philpott, 1914), New Zealand (M172, JRG), (e) Dumbletonius<br />

unimaculata (Salmon, 1948), New Zealand (M209, JRG), (f) Heloxycanus patricki Dugdale, 1994, New Zealand<br />

(M151, JRG), (g) Wiseana copularis (Meyrick, 1912), New Zealand (M216, JRG); (h) Neohepialiscus<br />

algeriensis (Viette, 1948: fig 5); (i) Napialus hunanensis (Chu & Wang, 1985: fig. 36).


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 70<br />

Fig. 15. Distribution <strong>of</strong> Hepialiscus group (red circles) and Oxycanus (blue circles).<br />

a<br />

b<br />

Fig. 16. Vicariant relationship between Endoclita (red circles) and Aenetus (blue circles). (a) Total distribution <strong>of</strong><br />

both genera; (b) Distribution records <strong>of</strong> Endoclita and Aenetus at <strong>the</strong>ir shared biogeographic boundary in <strong>the</strong><br />

Moluccas archipelago.<br />

<strong>of</strong> inadequate collecting remains to be<br />

determined.<br />

b) Endoclita. The adjacent vicariant<br />

distributions <strong>of</strong> Endoclita and Aenetus Herrich-<br />

Schäffer, 1855 (Fig. 16a) (Grehan, 1988; Craw<br />

et al., 1999) along with specialized similarities<br />

in larval morphology and similar larval wood<br />

boring feeding habits (Grehan, 1988; Craw et<br />

al., 1999; Grehan & Rawlins, 2003) suggests


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 71<br />

<strong>the</strong>se genera are closely related, if not sister<br />

taxa. Unlike Hepialiscus and Oxycanus, <strong>the</strong><br />

vicariism <strong>of</strong> Endoclita and Aenetus is separated<br />

by only 80 km between <strong>the</strong> Endoclita locality <strong>of</strong><br />

Bacan (next to Halmahera) and those <strong>of</strong> Aenetus<br />

in New Guinea and <strong>the</strong> nearby islands <strong>of</strong> Misool<br />

and Ceram (Fig. 16b).<br />

As with Hepialiscus/Oxycanus, this<br />

vicariant relationship may be understood as <strong>the</strong><br />

result <strong>of</strong> a broad ancestral range encompassing<br />

Asia and Australasia that preceded <strong>the</strong><br />

differentiation <strong>of</strong> each genus. The region <strong>of</strong><br />

differentiation between Endoclita and Aenetus<br />

approximates <strong>the</strong> triple plate junction between<br />

<strong>the</strong> Asian, Philippine and Australian plates,<br />

suggesting that this tectonic convergence may<br />

have promoted <strong>the</strong> differentiation <strong>of</strong> <strong>the</strong> two<br />

genera.<br />

Even if a close phylogenetic affinity<br />

between Endoclita and Aenetus was not<br />

supported by future analysis, <strong>the</strong> vicariant<br />

distributions would still indicate that <strong>the</strong>ir<br />

ancestral ranges were vicariant and only brought<br />

into contact through tectonic convergence in <strong>the</strong><br />

region <strong>of</strong> <strong>the</strong>ir respective distributions coming<br />

into contact. The evolutionary origin <strong>of</strong> a<br />

common ancestral range for Endoclita and<br />

Aenetus may also involve <strong>the</strong> ancestral range <strong>of</strong><br />

related genera, such as Phassus Walker, 1856, in<br />

Latin America (Grehan & Rawlins, 2003).<br />

CONLCUSIONS<br />

The geographic and phylogenetic patterns<br />

described here are attributed to <strong>the</strong> eastern Asian<br />

genera having originated from ancestral<br />

distributions that ranged between <strong>the</strong> Russian<br />

Far East/Nor<strong>the</strong>rn Japan, South East Asia, and<br />

India. The ancestral ranges may have also<br />

represented a part <strong>of</strong> larger ancestral ranges that<br />

included <strong>the</strong>se genera and <strong>the</strong>ir closest relatives<br />

outside what is now eastern Asia. This<br />

possibility is suggested for <strong>the</strong> vicariant<br />

relationship <strong>of</strong> <strong>the</strong> Hepialiscus group with<br />

Oxycanus, and Endoclita with Aenetus, that each<br />

originated from an ancestral distribution that<br />

formerly extended between Asia and<br />

Australasia. In <strong>the</strong> case <strong>of</strong> Endoclita and<br />

Aenetus, <strong>the</strong> vicariant relationship remains<br />

geographically close.<br />

The Asian and Australasian regions are<br />

<strong>of</strong>ten treated as distinct biogeographic entities<br />

(Olsen et al., 2001), but <strong>the</strong>y are<br />

biogeographically indistinguishable with respect<br />

to <strong>the</strong> multitude <strong>of</strong> phylogenetic groups that<br />

have differentiated across both areas and with<br />

distributions that are spatially correlated with<br />

Mesozoic and Tertiary geology (Heads, 2005).<br />

The spatial proximity <strong>of</strong> <strong>the</strong><br />

northwestern boundary <strong>of</strong> Oxycanus, <strong>the</strong><br />

northwestern boundary <strong>of</strong> Aenetus, and <strong>the</strong><br />

sou<strong>the</strong>astern boundary <strong>of</strong> Endoclita to <strong>the</strong> triple<br />

junction between <strong>the</strong> Asian, Australian and<br />

Philippine tectonic plates suggests a historical<br />

relationship between <strong>the</strong> differentiation <strong>of</strong> <strong>the</strong>se<br />

genera and <strong>the</strong> geology <strong>of</strong> <strong>the</strong> region.<br />

Given <strong>the</strong> biodiversity prominence <strong>of</strong><br />

<strong>the</strong> Lesser Sunda, <strong>the</strong> Celebes and nearby<br />

islands (Myers et al., 2000; Olson et al., 2001),<br />

it is ironic that this region is so poorly known for<br />

<strong>the</strong> presence or absence <strong>of</strong> Hepialidae,<br />

particularly for <strong>the</strong> lack <strong>of</strong> published records <strong>of</strong><br />

Endoclita between Java/Borneo and Halmahera.<br />

ACKNOWLEGEMENTS<br />

I am very grateful to John Dugdale for feedback<br />

and insights on hepialid phylogeny, to Carlos<br />

Mielke and Thomas Simonsen for comments on<br />

<strong>the</strong> manuscript, to Michael Heads for discussion<br />

on <strong>the</strong> biogeography, and to Shunsuki Utsumi<br />

for information on Japanese Hepialidae. I am<br />

also grateful to <strong>the</strong> <strong>Natural</strong> History <strong>Museum</strong><br />

(London) for <strong>the</strong> permission to reproduce<br />

specimen images.<br />

REFERENCES<br />

Bang-Haas, O., 1927. Horae<br />

Macrolepidopterologicae Regionis<br />

Palaearcticae. Dr. O. Staudinger and A.<br />

Bang-Haas, Dresden-Blasewitz.<br />

Bang-Haas, O., 1939, Neubeschreibungen und<br />

Berichtigungen der Palaearktischen<br />

Macrolepidopterenfauna XXXVIII,<br />

Deutsche Entomologische Zeitschrift `Iris’<br />

53, 49- 60.<br />

Brown, B., Dugdale, J.S., Emberson, R.M. &<br />

Patterson, A.M. 2000. Phylogeny <strong>of</strong> New<br />

Zealand hepialid moths (Lepidoptera:<br />

Hepialidae) inferred from a cladistic analysis<br />

<strong>of</strong> morphological data. Systematic<br />

Entomology 25, 1-14.


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 72<br />

Butler, A.G. 1879. Descriptions <strong>of</strong> new species<br />

<strong>of</strong> Lepidoptera from Japan. Annals <strong>of</strong><br />

<strong>Natural</strong> History 5, 349-374, 437-457.<br />

Chu, H.F. & Wang, L. 1985. “Insect-herb”<br />

versus hepialids with descriptions <strong>of</strong> new<br />

genera and new species <strong>of</strong> Chinese<br />

Hepialidae. Sinozoologia 3, 121-134.<br />

Cotes, E.C. and Swinhoe, C. 1887. A Catalogue<br />

<strong>of</strong> <strong>the</strong> Moths <strong>of</strong> India. Trustees <strong>of</strong> <strong>the</strong> Indian<br />

<strong>Museum</strong>, Calcutta.<br />

Craw, R.C., Grehan, J.R. & Heads, M.J. 1999.<br />

Panbiogeography: Tracking <strong>the</strong> History <strong>of</strong><br />

Life. Oxford University Press, Oxford.<br />

Daniel, F. 1940. Die Cossidae und Hepialidae<br />

der Ausbeuten Höne (lep. Het). Mitteilungen<br />

der Münchener Entomologischen<br />

Gesellenschaft 30, 1004-1024.<br />

Dugdale, J.S. 1994. Hepialidae. Fauna <strong>of</strong> New<br />

Zealand 30, 1-163.<br />

Edwards, H. 1886. Notes on some North<br />

American Zygaenidae and Bombycidae with<br />

descriptions <strong>of</strong> new forms. Entomologica<br />

Americana 2, 8-15.<br />

Grehan, J. R. 1988. Evolution <strong>of</strong> arboreal<br />

tunneling by <strong>the</strong> larvae <strong>of</strong> Aenetus<br />

(Lepidoptera: Hepialidae). New<br />

Zealand Journal <strong>of</strong> Zoology 14, 441-462.<br />

Grehan, J. R. 1989. Larval feeding habits <strong>of</strong> <strong>the</strong><br />

Hepialidae. Journal <strong>of</strong> <strong>Natural</strong> History 33,<br />

469-485.<br />

Grehan, J.R. 2010. Structural variants in <strong>the</strong><br />

morphology <strong>of</strong> <strong>the</strong> first abdominal tergite<br />

supporting <strong>the</strong> monophyly <strong>of</strong> <strong>the</strong> Latin<br />

American genera Cibyra, Druceiella,<br />

Pftizneriana and Trichophassus<br />

(Lepidoptera: Hepialidae). <strong>Bulletin</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong> 39, 43-<br />

63.<br />

Grehan, J. R. & Rawlins, J. E. 2003. Larval<br />

description <strong>of</strong> <strong>the</strong> New World ghost moth<br />

Phassus and <strong>the</strong> evolutionary biogeography<br />

<strong>of</strong> wood boring Hepialidae (Lepidoptera:<br />

Exoporia: Hepialoidea). Journal <strong>of</strong> <strong>the</strong><br />

Washington Entomological <strong>Society</strong> 105, 733-<br />

755.<br />

Handfield, L. 1999. Le Guide des Papillons du<br />

Québec. Broquet, Boucherville.<br />

Heads, M. 2005. Ericaceae in Malesia:<br />

vicariance biogeography, terrane tectonics<br />

and ecology Telopia 10, 311-449.<br />

Heads, M. 2009a. Vicariance In Encyclopedia <strong>of</strong><br />

Islands (ed. by R. Gillespie and D. Clague),<br />

pp. 947-950. University <strong>of</strong> California Press.<br />

Heads, M. 2009b. Globally basal centres <strong>of</strong><br />

endemism: <strong>the</strong> Tasman-Coral Sea region<br />

(south-west Pacific), Latin America and<br />

Madagascar/South Africa. Biological<br />

Journal <strong>of</strong> <strong>the</strong> Linnaean <strong>Society</strong> 96, 222–<br />

245.<br />

Jeon, H.Y., Kim, D.S., Cho, M.R., Yiem, M.S.<br />

& Chang, Y.D. 2000. Recent status <strong>of</strong> major<br />

fruit tree pest occurrences in Korea. Journal<br />

<strong>of</strong> <strong>the</strong> Korean <strong>Society</strong> <strong>of</strong> Horticultural<br />

Science 41, 607-612.<br />

Kalshoven, L.G.E. 1965. Notes on some<br />

injurious Lepidoptera from Java. Tijdshrift<br />

voor Entomologie 108, 73-93.<br />

Kristensen, N.P. 1999. Evolution, Systematics,<br />

and Biogeography. Walter de Gruyter,<br />

Berlin.<br />

Liang, X., Yang, D., Shen, F., Long, Y. and<br />

Yan, Y., 1988, Four new species <strong>of</strong> <strong>the</strong><br />

genus Hepialus (ghost moth) from Yunnan,<br />

China. Zoological Research 9, 419-425.<br />

Maczey, N., Zhang, F., Cannon, P.F. 2010.<br />

Ecology <strong>of</strong> Thitarodes spp., hosts <strong>of</strong> <strong>the</strong><br />

economically important entomopathogenic<br />

fungus Ophiocordyceps sinensis in Butan.<br />

Chinese Journal <strong>of</strong> Grassland 32, 109-121.<br />

Matsumura, S. M., 1931, 6000 Illustrated<br />

insects <strong>of</strong> Japan- Empire. Tokyo.<br />

Moore, F. 1887. The Lepidoptera <strong>of</strong> Ceylon,<br />

Vol. III. L Reeve & Co., London<br />

Moore, F., 1879. Descriptions <strong>of</strong> new genera<br />

and species <strong>of</strong> Asiatic Lepidoptera<br />

Heterocera. Proceedings <strong>of</strong> <strong>the</strong> Zoological<br />

<strong>Society</strong> <strong>of</strong> London 1879, 387-417.<br />

Myers, N, Mittermeir, R.A., Mittermeier, C.G.,<br />

da Fonseca, G.A.B., Kent, J. 2000.<br />

Biodiversity hotspots for conservation<br />

priorities. Nature 403, 853-858.<br />

Neumoegen, B. & Dyar, H.G. 1894. Preliminary<br />

revision <strong>of</strong> <strong>the</strong> bombyces <strong>of</strong> America north<br />

<strong>of</strong> Mexico. Journal <strong>of</strong> <strong>the</strong> New York<br />

Entomological <strong>Society</strong> 2, 147-174.<br />

Nielsen, E.S. 1988. The peculiar Asian ghost<br />

moth genus Bipectilus Chu and Wang:<br />

taxonomy and systematic position<br />

(Lepidoptera: Hepialidae s. str.). Systematic<br />

Entomology 13, 171-195.<br />

Nielsen, E.S. & Robinson, G.S. 1983. Ghost<br />

moths <strong>of</strong> sou<strong>the</strong>rn South America<br />

(Lepidoptera: Hepialidae), Entomonograph<br />

4, 1-192.<br />

Nielsen, E.S. Robinson, G.S. & Wagner, D.L.<br />

2000. Ghost-moths <strong>of</strong> <strong>the</strong> world: a global


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 73<br />

inventory and bibliography <strong>of</strong> <strong>the</strong> Exoporia<br />

(Mnesarchaeoidea and Hepialoidea)<br />

(Lepidoptera). Journal <strong>of</strong> <strong>Natural</strong> History<br />

34, 823–878<br />

Olson, D.M. et al., 2001. Terrestrial ecoregions<br />

<strong>of</strong> <strong>the</strong> world: A new map <strong>of</strong> life on earth.<br />

BioSience 51, 933-938<br />

Pfitzner, R. 1914. Neue Hepialiden.<br />

Entomologische Rundschau 31, 95-96, 105-<br />

106, 110.<br />

Piepers, M.C. & Snellen, P.C.T. 1900.<br />

Éumeration des Lépidoptères Hétérocères<br />

recueillis à Java, Tijdschrift voor<br />

Entomologie 43, 12-108<br />

Robinson, G.S., Sattler, K., Shaffer, M., Tuck,<br />

K.R., Allen, M.G. 1995. Microlepidoptera<br />

and Pyraloidea <strong>of</strong> Nepal – a checklist and<br />

bibliography. Japan Heterocerists’ <strong>Society</strong><br />

14, 150-181.<br />

Robinson, G.S., Tuck, K.R., Shaffer, M. 1994. A<br />

Field Guide to <strong>the</strong> Smaller Moths <strong>of</strong> South-<br />

East Asia. Malaysian Nature <strong>Society</strong>, Kuala<br />

Lumpur.<br />

Smetacek, P. 1997. On an unusual Endoclita<br />

(Lepidoptera: Hepialidae) from Kumaon, in<br />

<strong>the</strong> northwest Himalaya, India. Journal <strong>of</strong><br />

<strong>the</strong> Bombay <strong>Natural</strong> History <strong>Society</strong> 95, 136-<br />

137.<br />

Swinhoe, C., 1905, New species <strong>of</strong> eastern<br />

Heterocera in <strong>the</strong> National Collection,<br />

Annals and Magazine <strong>of</strong> <strong>Natural</strong> History 15,<br />

149-167.<br />

Tindale, N. B., 1941, Revision <strong>of</strong> <strong>the</strong> ghost<br />

moths (Lepidoptera Homoneura, family<br />

Hepialidae). Part IV, Records <strong>of</strong> <strong>the</strong> South<br />

Australian <strong>Museum</strong> 7, 15-46.<br />

Tindale, N. B., 1942, Revision <strong>of</strong> <strong>the</strong> ghost<br />

moths (Lepidoptera Homoneura, family<br />

Hepialidae). Part V. Records <strong>of</strong> <strong>the</strong> South<br />

Australian <strong>Museum</strong> 7, 151-168.<br />

Tindale, N. B., 1958, Revision <strong>of</strong> <strong>the</strong> ghost<br />

moths (Lepidoptera Homoneura, family<br />

Hepialidae). Part VII, Records <strong>of</strong> <strong>the</strong> South<br />

Australian <strong>Museum</strong>. 13, 157-197.<br />

Tshistjakov, Y. A., 1996, Taxonomic study <strong>of</strong><br />

<strong>the</strong> Far Eastern hepialid moths. Record 2.<br />

Description <strong>of</strong> Endoclyta excrescens<br />

pallescens subsp. n. (Lepidoptera,<br />

Hepialidae) from sou<strong>the</strong>rn Primorye. Japan<br />

Heterocerists’ Journal 190, 247- 248.<br />

Tu, Y., Ma, K. & Zhang, D. 2009. A new<br />

species <strong>of</strong> <strong>the</strong> genus Hepialus (Lepidoptera:<br />

Hepialidae) from China. Entotaxonomia 31,<br />

123-126.<br />

Ueda, K. 1988. New species <strong>of</strong> <strong>the</strong> genus<br />

Hepialiscus Hampson (Lepidoptera,<br />

Hepialidae) from Taiwan. <strong>Bulletin</strong> <strong>of</strong> <strong>the</strong><br />

Kitakyushu <strong>Museum</strong> <strong>of</strong> <strong>Natural</strong> History 8,<br />

39-54<br />

Ueda, K. 1996. New species <strong>of</strong> Thitarodes<br />

Viette (Lepidoptera, Hepialidae) from Japan.<br />

<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> Kitakyushu <strong>Museum</strong> <strong>of</strong><br />

<strong>Natural</strong> History 15, 35-41.<br />

Ueda, K. 2000. Hepialidae. Japan Heterocerist's<br />

Journal 16 (supplement 1), 70-93.<br />

Utsumi, S. & Ohgushi, T. 2007. Plant regrowth<br />

response to a stem-boring insect: a swift<br />

moth-willow system. Population Ecology 49,<br />

241-248.<br />

Van Eecke, R. 1915. A new hepialid from<br />

Sumatra. Zoologische Mededeelingen 1, 248-<br />

251.<br />

Viette, P. 1948. Contribution à l’étude des<br />

Hepialidae (3 e note). (Description d’un genre<br />

nouveau). Revue Française de<br />

Lepidoptérologie 11, 292-294.<br />

Viette, P. 1950a. Contribution à l’étude des<br />

Hepialidae (18 e note). (Description d’un<br />

nouveau genre et d’une nouvelle espèce.<br />

<strong>Bulletin</strong> Mensuel de la Société Linnéenne de<br />

Lyon 19, 169-170.<br />

Viette, P. 1950b. Contribution à l’étude des<br />

Hepialidae (21 e note). (Description d’un<br />

nouvelle espèce. <strong>Bulletin</strong> de l’Institute Royal<br />

des <strong>Sciences</strong> Naturelles de Belgique 26, 1-2.<br />

Viette, P. 1953. Contribution à l’étude des<br />

Hepialidae (30 e note). Lambillionea 53, 32-<br />

35.<br />

Viette, P. (1968). Contribution à l'étude des<br />

Hepialidae (36e note). Lepidoptera<br />

Hépialidae du Népal. Fosch Unternehmens<br />

Nepal Himalaya 3, 128-133.<br />

Wagner, D. & Tindale, N. 1988. Am appraisal<br />

<strong>of</strong> Gazoryctra Hübner (Hepialidae) and a<br />

description <strong>of</strong> a new species from Arizona<br />

and New Mexico. Journal <strong>of</strong> <strong>the</strong><br />

Lepidopterists’ <strong>Society</strong> 42, 204-212.<br />

Wang, L.Y. 1990. A new species <strong>of</strong> Hepialus<br />

(Lepidoptera: Hepialidae). Sinozoologia 7,<br />

173-174.<br />

Wu, W. 1992. A new genus <strong>of</strong> Napialus<br />

(Lepidoptera: Hepialidae) from Chongquing,<br />

China. Entotaxonomia 14, 55-56.


<strong>Bulletin</strong> <strong>of</strong> <strong>the</strong> <strong>Buffalo</strong> <strong>Society</strong> <strong>of</strong> <strong>Natural</strong> <strong>Sciences</strong>, Volume 40 74<br />

Yang, D. 1993. Two new species <strong>of</strong> Hepialus<br />

from Yunnan. Acta Zootaxonomica Sinica<br />

18, 184-187.<br />

Yang, D. 1994. Four new species <strong>of</strong> <strong>the</strong> genus<br />

Hepialus from Yunnan and Xizang, China.<br />

Zoological Research 15, 5-11.<br />

Yang, D. & Jiang, C. 1995. Two new species <strong>of</strong><br />

<strong>the</strong> genus Hepialus (Lepidoptera:<br />

Hepialidae) from north Xiang, China.<br />

Entotaxonomia 17, 215-218.<br />

Yang, D. & Yang, Y. 1995. Three new species<br />

<strong>of</strong> <strong>the</strong> genus Hepialus from Qinghai and<br />

Gansu, China (Lepidoptera: Hepialidae).<br />

Acta Entomologica Sinica 38, 359-362.<br />

Yang, D., Li, C., & Shen, F. 1992. Three new<br />

species <strong>of</strong> <strong>the</strong> genus Hepialus from Yunnan<br />

and Xizang, China (Lepidoptera,<br />

Hepialidae). Zoological Research 13, 245-<br />

250.<br />

Yang, D., Yang, Y. & Zhang, S. 1993. Three<br />

new species <strong>of</strong> <strong>the</strong> genus Hepialus from<br />

Qinghai and Gansu, China (Lepidoptera:<br />

Hepialidae). Acta Entomologica Sinica, 38,<br />

359-362.<br />

Yang, D., Li, C., Shu, C., Yang, Y. 1996.<br />

Studies on <strong>the</strong> Chinese species <strong>of</strong> <strong>the</strong> genus<br />

Hepialus and <strong>the</strong>ir geographical distribution.<br />

Acta Entomologica Sinica 39, 413-422.<br />

Zhu, H., Wang, L., & Han, H. 2004. Fauna<br />

Sinica Insects vol. 38. Lepidoptera<br />

Hepialidae Epiplemidae. Science Press,<br />

Beijing.<br />

Zou, Z., Liu, X., Zhang, G. 2011. Two new<br />

species <strong>of</strong> Thitarodes (Lepidoptera,<br />

Hepialidae) from Tibet in China. Pan Pacific<br />

Entomologist (in press).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!