28.06.2014 Views

Birds of paradise, biogeography and ecology in New Guinea: a review

Birds of paradise, biogeography and ecology in New Guinea: a review

Birds of paradise, biogeography and ecology in New Guinea: a review

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal <strong>of</strong> Biogeography, 28, 893±925<br />

<strong>Birds</strong> <strong>of</strong> <strong>paradise</strong>, <strong>biogeography</strong> <strong>and</strong> <strong>ecology</strong><br />

<strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea: a <strong>review</strong><br />

Michael Heads Science Faculty, University <strong>of</strong> Goroka, Goroka, Papua <strong>New</strong> Gu<strong>in</strong>ea<br />

Abstract<br />

Aim The paper <strong>review</strong>s the <strong>biogeography</strong> <strong>and</strong> <strong>ecology</strong> <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea us<strong>in</strong>g the birds <strong>of</strong><br />

<strong>paradise</strong> (Paradisaeidae) as an illustrative example.<br />

Location <strong>New</strong> Gu<strong>in</strong>ea, the Moluccas, North-eastern Australia.<br />

Methods Panbiogeographic analysis (Craw et al., 1999).<br />

Results The family Paradisaeidae is <strong>in</strong>terpreted as the ma<strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea vicariant <strong>in</strong><br />

Sibley & Ahlquist's (1990) Corv<strong>in</strong>ae. It has evolved ma<strong>in</strong>ly on the <strong>New</strong> Gu<strong>in</strong>ea orogen,<br />

extend<strong>in</strong>g, like the orogen, to the northern Moluccas <strong>and</strong> the Milne Bay isl<strong>and</strong>s, but not<br />

present north <strong>of</strong> it on Karkar Isl<strong>and</strong> or <strong>New</strong> Brita<strong>in</strong>. With<strong>in</strong> the orogen, Vogelkop ±<br />

Huon Pen<strong>in</strong>sula disjunctions (1500 km) occur between putative sister species <strong>in</strong><br />

Paradisaea, Astrapia <strong>and</strong> Parotia. Whatever taxonomic rank these af®nities warrant,<br />

the biogeographic connection is <strong>in</strong>explicable by `jump' dispersal from the ma<strong>in</strong>l<strong>and</strong>, but<br />

is compatible with an accreted terrane model <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea tectonics <strong>in</strong>clud<strong>in</strong>g massive<br />

lateral strike-slip movement. This would also account for many aspects <strong>of</strong> distribution <strong>of</strong><br />

Paradisaeidae with<strong>in</strong> the <strong>New</strong> Gu<strong>in</strong>ea highl<strong>and</strong>s, <strong>and</strong> also disjunctions between Sulawesi<br />

<strong>and</strong> the Bismarck Archipelago <strong>in</strong> the related genus Artamus.<br />

Ma<strong>in</strong> conclusions <strong>Birds</strong> <strong>of</strong> <strong>paradise</strong> are sedentary forest dwellers with small home<br />

ranges <strong>and</strong> are tolerant <strong>of</strong> disturbance. It is suggested that populations have been caught<br />

<strong>in</strong> the dramatic geological uplift <strong>and</strong> downwarp<strong>in</strong>g <strong>of</strong> different parts <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea.<br />

This has led to fragmentation <strong>and</strong> juxtaposition <strong>of</strong> ranges, <strong>and</strong> determ<strong>in</strong>ed the altitud<strong>in</strong>al<br />

range <strong>of</strong> the taxa (<strong>in</strong>clud<strong>in</strong>g altitud<strong>in</strong>al `anomalies'). Areas <strong>of</strong> endemism <strong>in</strong> birds <strong>of</strong><br />

<strong>paradise</strong> <strong>in</strong>clude Quaternary volcanoes. In <strong>New</strong> Gu<strong>in</strong>ea large areas have eventually been<br />

covered by lava ¯ows <strong>of</strong> different volcanic phases, but the liv<strong>in</strong>g communities, <strong>in</strong>clud<strong>in</strong>g<br />

local endemics, may rema<strong>in</strong> more or less <strong>in</strong> situ by constantly coloniz<strong>in</strong>g younger ¯ows<br />

from adjacent older ¯ows. In this way older life can `¯oat' on younger stratigraphy. At<br />

least ®ve, possibly six, <strong>of</strong> the ®fteen genera <strong>in</strong> subfam. Paradisae<strong>in</strong>ae are known to occur<br />

<strong>in</strong> mangrove. The ancestors <strong>of</strong> Paradisaeidae <strong>and</strong> other <strong>New</strong> Gu<strong>in</strong>ea bird families such as<br />

Ptilonorhynchidae probably <strong>in</strong>cluded birds <strong>of</strong> the mangrove, beach forest <strong>and</strong> coastal<br />

h<strong>in</strong>terl<strong>and</strong> which have been str<strong>and</strong>ed <strong>in</strong> central Australia follow<strong>in</strong>g mar<strong>in</strong>e transgressions<br />

(Ptilonorhynchidae) <strong>and</strong> uplifted <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea dur<strong>in</strong>g the Tertiary orogeny<br />

(Ptilonorhynchidae <strong>and</strong> Paradisaeidae).<br />

Keywords<br />

Paci®c, ra<strong>in</strong>forest, <strong>biogeography</strong>, evolution, vicariance, dispersal, plate tectonics.<br />

INTRODUCTION<br />

The strik<strong>in</strong>gly diverse birds <strong>of</strong> <strong>paradise</strong>, Paradisaeidae, have<br />

been described as the most colourful avian group (Bock,<br />

Correspondence: Science Faculty, University <strong>of</strong> Goroka, PO Box 1078<br />

Goroka, Papua <strong>New</strong> Gu<strong>in</strong>ea. E-mail: mheads@dg.com.pg<br />

1982). They <strong>in</strong>habit <strong>New</strong> Gu<strong>in</strong>ea (®fteen genera, thirty-eight<br />

species), the Moluccas (two genera, two species) <strong>and</strong> eastern<br />

Australia (two genera, three species) (Fig. 1), but `all the<br />

more extraord<strong>in</strong>ary <strong>and</strong> magni®cent species' (Wallace, 1962<br />

[1869]) are restricted to <strong>New</strong> Gu<strong>in</strong>ea. They have <strong>of</strong>ten been<br />

the subject <strong>of</strong> biogeographical studies (Croizat, 1958;<br />

Wallace, 1962 [1869]; Mayr, 1964 [1942]) <strong>and</strong> are used<br />

here as a reference group <strong>in</strong> a <strong>review</strong> <strong>of</strong> <strong>biogeography</strong> <strong>and</strong><br />

Ó 2001 Blackwell Science Ltd


894 M. Heads<br />

Aga<strong>in</strong>, this `discrepancy' or `paradox' has been expla<strong>in</strong>ed<br />

as result<strong>in</strong>g from the different means <strong>of</strong> dispersal (Mayr,<br />

1953), but it seems more likely to be simply because <strong>of</strong><br />

different groups hav<strong>in</strong>g different evolutionary centres;<br />

angiosperms <strong>and</strong> <strong>in</strong>sects both have major centres <strong>in</strong> the<br />

Indian Ocean <strong>and</strong> Paci®c Ocean regions, whereas passer<strong>in</strong>es<br />

<strong>and</strong> mammals have major centres around the Indian <strong>and</strong><br />

Atlantic Oceans.<br />

Figure 1 Distribution <strong>of</strong> Paradisaeidae, show<strong>in</strong>g areas with ³ 10<br />

species (stippled) <strong>and</strong> ³ 20 species (black) per 1° ´1° grid cell.<br />

<strong>ecology</strong> <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea. Some ma<strong>in</strong> aspects <strong>of</strong> distribution <strong>in</strong><br />

the birds <strong>of</strong> <strong>paradise</strong> are discussed ®rst.<br />

BIOGEOGRAPHY<br />

The major species concentrations <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>of</strong> such<br />

dist<strong>in</strong>ctive bird families as birds <strong>of</strong> <strong>paradise</strong>, bowerbirds<br />

(Ptilonorhynchidae) <strong>and</strong> cassowaries (Casuariidae) renders<br />

the absence there <strong>of</strong> major, widespread groups such as<br />

trogons (Trogoniformes) <strong>and</strong> woodpeckers (Piciformes)<br />

`almost mysterious' (Gilliard, 1969) <strong>and</strong> certa<strong>in</strong>ly worth<br />

<strong>in</strong>vestigat<strong>in</strong>g. This presence <strong>and</strong> absence are sometimes<br />

attributed to dispersal <strong>in</strong>to <strong>New</strong> Gu<strong>in</strong>ea, or lack <strong>of</strong> it,<br />

because <strong>of</strong> different means <strong>of</strong> dispersal <strong>in</strong> the respective taxa.<br />

However, employ<strong>in</strong>g the usual concept <strong>of</strong> dispersal does<br />

leave the patterns rather enigmatic. Instead, it is suggested<br />

that these patterns <strong>of</strong> replacement are not caused by<br />

`dispersal' as physical movement, but are the result <strong>of</strong><br />

vicariant evolution mediated by tectonic processes on prior<br />

l<strong>and</strong>scapes.<br />

Different groups <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea show af®nities with<br />

different parts <strong>of</strong> the world. For example, plants <strong>and</strong> <strong>in</strong>sects<br />

there show many connections with Indo-Malaysia <strong>and</strong> there<br />

are also many trans-tropical-Paci®c groups, whereas the<br />

passer<strong>in</strong>es <strong>and</strong> mammals show strong Australian connections.<br />

(There are few trans-Paci®c ties <strong>in</strong> these groups ± the<br />

<strong>New</strong> Zeal<strong>and</strong> bat family Mystac<strong>in</strong>idae <strong>and</strong> South American<br />

taxa, possible af®nities <strong>in</strong> marsupials, <strong>and</strong> possible af®nities<br />

between the passer<strong>in</strong>es Acanthisittidae <strong>of</strong> <strong>New</strong> Zeal<strong>and</strong> <strong>and</strong><br />

subosc<strong>in</strong>es <strong>in</strong> South America ± <strong>and</strong> these are <strong>in</strong> the far<br />

south).<br />

The <strong>New</strong> Gu<strong>in</strong>ea orogen<br />

The birds <strong>of</strong> <strong>paradise</strong> are distributed rather evenly throughout<br />

the folded <strong>and</strong> faulted mounta<strong>in</strong> ranges <strong>of</strong> the sp<strong>in</strong>e <strong>of</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea ± the <strong>New</strong> Gu<strong>in</strong>ea orogen (Figs 2, 4 & 29).<br />

This mounta<strong>in</strong>ous belt was formerly regarded as the result <strong>of</strong><br />

a simple cont<strong>in</strong>ent±isl<strong>and</strong> arc collision, but Pigram & Davies<br />

(1987) gave a radical re-<strong>in</strong>terpretation. They described the<br />

orogen as consist<strong>in</strong>g <strong>of</strong> a southern part (the Australian<br />

craton), <strong>and</strong> a northern part made up <strong>of</strong> at least thirty-two<br />

tectonostratigraphic terranes ± fault-bounded geological<br />

prov<strong>in</strong>ces with <strong>in</strong>dependent histories from other terranes.<br />

The <strong>New</strong> Gu<strong>in</strong>ea terranes, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>trusive <strong>and</strong> metamorphic<br />

rocks, formed <strong>and</strong> sometimes amalgamated with<br />

others some distance from their present position <strong>and</strong><br />

subsequently accreted to the craton marg<strong>in</strong>. In the Vogelkop<br />

accretion history <strong>in</strong>volves ma<strong>in</strong>ly cont<strong>in</strong>ental terranes. The<br />

central Kemum terrane was detached from Gondwana by<br />

the early Cretaceous <strong>and</strong> then had a history <strong>of</strong> movement<br />

<strong>in</strong>dependent <strong>of</strong> the Australian craton until the Miocene. In<br />

central <strong>New</strong> Gu<strong>in</strong>ea, the Sepik <strong>and</strong> Rouffaer terranes had<br />

docked with the craton by the Late Oligocene, when the<br />

<strong>New</strong> Gu<strong>in</strong>ea orogeny was <strong>in</strong>itiated. In eastern Papua <strong>New</strong><br />

Gu<strong>in</strong>ea (PNG) several terranes <strong>of</strong> diverse orig<strong>in</strong> amalgamated<br />

<strong>in</strong> the Palaeogene (Early Eocene if this caused the<br />

metamorphism <strong>of</strong> the proto-Owen Stanley terrane), <strong>and</strong> this<br />

composite terrane then docked with the Australian craton <strong>in</strong><br />

the Miocene. F<strong>in</strong>ally the F<strong>in</strong>isterre terrane was accreted to<br />

the ma<strong>in</strong>l<strong>and</strong> at 3.0±3.7 Ma (Abbott et al., 1994), <strong>and</strong> rapid<br />

uplift cont<strong>in</strong>ues there. Probably <strong>New</strong> Brita<strong>in</strong> will dock next.<br />

Pigram & Davies (1987) discussed transcurrent movement<br />

Figure 2 Geological map show<strong>in</strong>g the Australian craton (grey), the<br />

<strong>New</strong> Gu<strong>in</strong>ea orogen (between the heavy broken l<strong>in</strong>es), <strong>and</strong> the<br />

accreted <strong>New</strong> Gu<strong>in</strong>ea terranes (black). Blank areas on the map are<br />

successor bas<strong>in</strong>s (simpli®ed from Pigram & Davies, 1987).<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 895<br />

on faults, <strong>and</strong> suggested left-lateral <strong>of</strong>fsets <strong>of</strong> up to 300 km<br />

along the Ramu-Markham <strong>and</strong> the Bundi Fault Zones.<br />

These new ideas <strong>in</strong> geology have been utilized <strong>in</strong> recent<br />

studies on <strong>New</strong> Gu<strong>in</strong>ea <strong>biogeography</strong> (van Welzen et al.,<br />

1992; Michaux, 1994; de Boer, 1995a; Turner, 1995; de<br />

Boer & Duffels, 1996a,b; Polhemus, 1996; van Welzen,<br />

1997; Polhemus & Polhemus, 1998; Heads, 1999) <strong>and</strong> <strong>in</strong><br />

this paper are compared with ma<strong>in</strong> aspects <strong>of</strong> distribution <strong>in</strong><br />

the Paradisaeidae. Locality maps are given <strong>in</strong> Figs 3 <strong>and</strong> 4.<br />

Distributions <strong>of</strong> other birds cited are from R<strong>and</strong> & Gilliard<br />

(1967), Diamond (1972), Howard & Moore (1984) <strong>and</strong><br />

Beehler et al. (1986).<br />

The Australia/<strong>New</strong> Gu<strong>in</strong>ea boundary<br />

There is a great lower<strong>in</strong>g <strong>of</strong> diversity <strong>in</strong> birds <strong>of</strong> <strong>paradise</strong><br />

between ra<strong>in</strong>forest <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, which has up to twentyone<br />

species <strong>in</strong> 1° by 1° squares, <strong>and</strong> ra<strong>in</strong>forest <strong>in</strong> Queensl<strong>and</strong><br />

with only one or two species per square (Heads, <strong>in</strong> press).<br />

This pattern is seen <strong>in</strong> many groups, although the two<br />

l<strong>and</strong>masses are almost completely l<strong>in</strong>ked physically <strong>and</strong> were<br />

l<strong>in</strong>ked recently. The <strong>New</strong> Gu<strong>in</strong>ea biota is <strong>of</strong>ten seen as<br />

derived from that <strong>of</strong> Australia (<strong>and</strong> Indonesia), but <strong>in</strong> fact<br />

the two biotas differ greatly ± Good (1960, 1963) wrote<br />

that this `extraord<strong>in</strong>ary' difference is a `biogeographical<br />

Figure 3 Locality map <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong><br />

the Moluccas.<br />

Figure 4 Locality map <strong>of</strong> the PNG Highl<strong>and</strong>s,<br />

show<strong>in</strong>g l<strong>and</strong> over 2400 m (stippled)<br />

<strong>and</strong> l<strong>and</strong> over 3600 m (black) <strong>and</strong> geological<br />

terranes (Be ˆ Benabena, Bo ˆ Bowutu,<br />

F ˆ F<strong>in</strong>isterre, J ˆ Jimi, Ma ˆ marum,<br />

Me ˆ Menyamya, Sc ˆ Schrader,<br />

Se ˆ Sepik, OS ˆ Owen Stanley).<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


896 M. Heads<br />

anomaly¼ nowhere else <strong>in</strong> the world is there, over a similar<br />

distance, so great a difference <strong>in</strong> plant <strong>and</strong> animal life'.<br />

Of the 906 `Australo-Papuan' bird species, 566 occur <strong>in</strong><br />

the <strong>New</strong> Gu<strong>in</strong>ea region <strong>and</strong> 531 <strong>in</strong> Australia (Keast, 1961),<br />

although the latter is ten times greater <strong>in</strong> size. In a similar<br />

way, tectonically complex Colombia has as many bird<br />

species <strong>and</strong> subspecies as Brazil, although Brazil is 7.5 times<br />

the area <strong>of</strong> Colombia (Dug<strong>and</strong>, 1948). Rallidae, Columbidae,<br />

Psittacidae, Alced<strong>in</strong>idae, Muscicapidae <strong>and</strong> Pachycephalidae<br />

all have roughly 50% more genera <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

than <strong>in</strong> Queensl<strong>and</strong> (Pratt, 1982), for example, there are<br />

eight genera <strong>of</strong> parrots <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea that are not <strong>in</strong><br />

Queensl<strong>and</strong>. Likewise Ziegler (1982) wrote that it is<br />

`surpris<strong>in</strong>g' just how few <strong>of</strong> the many <strong>in</strong>digenous <strong>New</strong><br />

Gu<strong>in</strong>ea mammals also occur <strong>in</strong> Australia. Conversely,<br />

Ziegler observed that the bat family Megadermatidae is <strong>in</strong><br />

Australia <strong>and</strong> the Moluccas, but is `<strong>in</strong>explicably' absent on<br />

the <strong>New</strong> Gu<strong>in</strong>ea ma<strong>in</strong>l<strong>and</strong>.<br />

The apparent absence <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> from most <strong>of</strong><br />

Australia <strong>and</strong> Indonesia is complemented by the concentration<br />

there <strong>of</strong> the families Sibley & Ahlquist (1990) proposed<br />

as the relatives <strong>of</strong> Paradisaeidae:<br />

Artamidae (<strong>in</strong>clud<strong>in</strong>g Cracticidae <strong>and</strong> Grall<strong>in</strong>idae) (wood<br />

swallows <strong>and</strong> butcherbirds) range from India to Australia<br />

(most species), <strong>New</strong> Gu<strong>in</strong>ea, <strong>New</strong> Brita<strong>in</strong> <strong>and</strong> Fiji.<br />

Oriolidae (orioles) occur <strong>in</strong> Africa <strong>and</strong> Eurasia (Oriolus),<br />

<strong>and</strong> Australia <strong>and</strong> PNG (Oriolus <strong>and</strong> Sphecotheres). <strong>New</strong><br />

Gu<strong>in</strong>ea has four species, but three are restricted to the south<br />

coast <strong>and</strong> only one is widespread.<br />

Campephagidae (cuckoo-shrikes; <strong>in</strong>cluded with Oriolidae<br />

by Sibley & Ahlquist) are distributed from Africa through<br />

southern Asia to the Paci®c, with the ma<strong>in</strong> bulk <strong>of</strong> the<br />

seventy-two species occurr<strong>in</strong>g west <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea: Indonesia<br />

west <strong>of</strong> Irian Jaya has twenty-seven species, <strong>New</strong> Gu<strong>in</strong>ea<br />

®fteen, <strong>and</strong> Australia four.<br />

The Corvidae (crows <strong>and</strong> jays; twenty-six genera) are<br />

notably poorly represented <strong>in</strong> Australia (only ®ve species <strong>of</strong><br />

Corvus L.) <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea (only three species <strong>of</strong> Corvus),<br />

aga<strong>in</strong> <strong>in</strong>dicat<strong>in</strong>g vicariance <strong>of</strong> a global ancestor. There are as<br />

many as six genera <strong>of</strong> Corvidae <strong>in</strong> Indonesia.<br />

The Callaeidae, a relic <strong>New</strong> Zeal<strong>and</strong> group with three<br />

monotypic genera, has <strong>of</strong>ten been placed with these families,<br />

although Sibley & Ahlquist (1990) listed it as `<strong>in</strong>certae<br />

sedis'.<br />

In a similar, well-known example, the order Casuariiformes<br />

comprises two families, Casuariidae (cassowaries)<br />

ma<strong>in</strong>ly <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, <strong>and</strong> Dromaiidae (emus) <strong>in</strong> Australia.<br />

Casuariidae has thirteen subspecies <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, three on<br />

the Aru Isl<strong>and</strong>s, two on Japen Isl<strong>and</strong> <strong>and</strong> one on each <strong>of</strong><br />

Moluccas, <strong>New</strong> Brita<strong>in</strong>, <strong>and</strong> northern Queensl<strong>and</strong>. Fossils<br />

are known from the Northern Territory. Dromaiidae has one<br />

subspecies <strong>in</strong> each <strong>of</strong> NW <strong>and</strong> W Australia, SW Australia<br />

<strong>and</strong> E Australia. There is no need to <strong>in</strong>voke any dispersal by<br />

migration from Australia to <strong>New</strong> Gu<strong>in</strong>ea or vice versa to<br />

expla<strong>in</strong> the distribution <strong>of</strong> Paradisaeidae <strong>and</strong> Artamidae, or<br />

Casuariidae <strong>and</strong> Dromaiidae, only simple vicariance around<br />

a Torres Strait node (Heads, 1990). As Mayr (1953) noted:<br />

`The <strong>in</strong>dependence <strong>of</strong> birds from habitat restrictions leads to<br />

the remarkable phenomenon that the nearest relatives <strong>of</strong><br />

many birds <strong>of</strong> the central Australian brush savannas <strong>and</strong><br />

semi-deserts are found <strong>in</strong> the steam<strong>in</strong>g lowl<strong>and</strong> or the misty<br />

mounta<strong>in</strong> forest <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea¼'.<br />

Similarly, Taylor (1972) described Australia <strong>and</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea as `separate evolutionary epicentres' for <strong>in</strong>sects. The<br />

two faunas are strongly autochthonous at species level, <strong>and</strong><br />

`Australia may be viewed as a producer <strong>of</strong> semi-arid adapted<br />

species, <strong>New</strong> Gu<strong>in</strong>ea as a producer <strong>of</strong> moist-adapted<br />

species'. Aga<strong>in</strong>, <strong>in</strong> this vicariance model there is no need<br />

to <strong>in</strong>voke any dispersal by physical movement between<br />

Australia <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea to expla<strong>in</strong> the ma<strong>in</strong> pattern.<br />

Schodde & Calaby (1972) summarized the history <strong>of</strong><br />

biogeographical ideas on the region, writ<strong>in</strong>g that: `In recent<br />

years [<strong>in</strong> fact s<strong>in</strong>ce the time <strong>of</strong> Wallace <strong>and</strong> Matthew] there<br />

has been an almost universal preoccupation with successive<br />

waves <strong>of</strong> colonization to expla<strong>in</strong> the present composition<br />

<strong>and</strong> distribution <strong>of</strong> the whole Australo-Papuan l<strong>and</strong> bird <strong>and</strong><br />

mammal fauna'. Schodde & Calaby were highly critical <strong>of</strong><br />

what they called this `simplistic' idea ± they suggested that it<br />

has resulted from the `super®cial ease' with which immigration<br />

can be <strong>in</strong>voked, <strong>and</strong> rests on the `shaky notion' that<br />

biotas `must have moved because the cont<strong>in</strong>ents could not'.<br />

Instead, Schodde & Calaby cited data favour<strong>in</strong>g the view<br />

that the elements <strong>of</strong> the great arc <strong>of</strong> ra<strong>in</strong>forest ¯ora <strong>and</strong><br />

fauna stretch<strong>in</strong>g through montane <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong><br />

E Australia are `old, autochthonous <strong>and</strong> co-<strong>in</strong>herited by<br />

Australia <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea' (cf. Webb et al., 1986).<br />

The age <strong>of</strong> the pr<strong>of</strong>ound Australia/<strong>New</strong> Gu<strong>in</strong>ea difference<br />

is as controversial as the mode <strong>of</strong> its orig<strong>in</strong>. Discuss<strong>in</strong>g the<br />

tree family Sap<strong>in</strong>daceae, Turner (1995) wrote that the basal<br />

split between taxa <strong>of</strong> E Australia <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea `suggests<br />

that the vicariance between these two regions may be older<br />

than the <strong>of</strong>ten suggested period <strong>of</strong> post-Pleistocene rise <strong>in</strong><br />

sea-level¼'. Likewise, Zweifel (1985) saw `no reason' for<br />

assum<strong>in</strong>g that the <strong>in</strong>itial vicariant event separat<strong>in</strong>g Australian<br />

<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea microhylid frogs occurred as recently<br />

as the Pleistocene.<br />

Torres Strait has traditionally been seen as either a bridge<br />

for, or a barrier to dispersal, <strong>and</strong> has caused confusion as it<br />

seems to be a `bridge' <strong>in</strong> some groups but a `barrier' <strong>in</strong> others<br />

with similar <strong>ecology</strong> <strong>and</strong> means <strong>of</strong> dispersal. However, if<br />

`dispersal' <strong>in</strong> the broadest sense <strong>of</strong> `any change <strong>in</strong> position' is<br />

<strong>of</strong>ten a result <strong>of</strong> evolution, rather than physical movement,<br />

the Torres Strait region is neither bridge nor barrier, but a<br />

zone <strong>of</strong> biogeographical articulation <strong>and</strong> a centre <strong>of</strong> endemism<br />

<strong>in</strong> its own right. In the same way, the Weyl<strong>and</strong><br />

Mounta<strong>in</strong>s/Wissel Lakes <strong>in</strong> the west <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> the<br />

Bismarck Fault Zone/Kratke Mounta<strong>in</strong>s <strong>in</strong> the east are not<br />

bridges or barriers to dispersal for birds <strong>of</strong> <strong>paradise</strong> <strong>and</strong><br />

others, but represent areas around which allopatric evolution<br />

has taken place. Similarly, birds <strong>of</strong> <strong>paradise</strong> <strong>and</strong><br />

bowerbirds (traditionally, but probably <strong>in</strong>correctly, allied<br />

with Paradisaeidae) are absent from the northern isl<strong>and</strong>s<br />

fr<strong>in</strong>g<strong>in</strong>g <strong>New</strong> Gu<strong>in</strong>ea (Biak, Manam, Karkar <strong>and</strong> the<br />

Bismarck Archipelago), not because they are unable to ¯y<br />

there, or were there <strong>and</strong> went ext<strong>in</strong>ct, but because their early<br />

Tertiary ancestors did not live <strong>in</strong> the region. Instead, these<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 897<br />

ancestors were concentrated on the l<strong>and</strong>s <strong>and</strong> isl<strong>and</strong>s around<br />

the craton marg<strong>in</strong> which later became consolidated <strong>and</strong><br />

uplifted as the <strong>New</strong> Gu<strong>in</strong>ea orogen.<br />

The different regions <strong>of</strong> the orogen are discussed next,<br />

start<strong>in</strong>g <strong>in</strong> the west.<br />

The northern Moluccas<br />

Terranes <strong>in</strong> the Moluccas may form a western extension <strong>of</strong><br />

the <strong>New</strong> Gu<strong>in</strong>ea orogen (Pigram & Davies, 1987). <strong>Birds</strong> <strong>of</strong><br />

<strong>paradise</strong> are represented <strong>in</strong> the northern Moluccas by two<br />

unrelated monospeci®c genera, Lycocorax Bonaparte <strong>and</strong><br />

Semioptera Gray. This outpost <strong>of</strong> the family is `a bit <strong>of</strong> an<br />

anomaly' for Frith & Beehler (1998) who expla<strong>in</strong>ed it as<br />

the result <strong>of</strong> overwater dispersal. However, although Frith<br />

& Beehler (1998) wrote that Manucodia Boddaert, sister<br />

group <strong>of</strong> Lycocorax, shows a `propensity for coloniz<strong>in</strong>g<br />

isl<strong>and</strong>s', they immediately followed this by writ<strong>in</strong>g `We<br />

hypothesize that Lycocorax is an isl<strong>and</strong> vicariant that<br />

evolved from what was a widespread form that gave rise to<br />

both Lycocorax <strong>and</strong> the genus Manucodia'. This second<br />

view is supported here; there is no need to propose<br />

`coloniz<strong>in</strong>g ¯ights' across modern geography by birds<br />

already recognizable as Manucodia or Lycocorax. The<br />

pre-Lycocorax + Manucodia widespread ancestral complex<br />

may itself have `reached' the Moluccas, aga<strong>in</strong>, not by<br />

physical movement but by vicariant evolution out <strong>of</strong> a<br />

more or less global assemblage <strong>of</strong> pre-Corvidae/Paradaisaeidae/Artamidae/Oriolidae.<br />

For the `very aberrant' Semioptera, Frith & Beehler (1998)<br />

suggested that its weirdness <strong>and</strong> remarkable morphological<br />

divergency are `deceptive', <strong>and</strong> might simply be the result <strong>of</strong><br />

`a very small found<strong>in</strong>g population'. Nevertheless, accord<strong>in</strong>g<br />

to Frith & Beehler it has one set <strong>of</strong> characters l<strong>in</strong>k<strong>in</strong>g it to<br />

Ptiloris Swa<strong>in</strong>son <strong>and</strong> another l<strong>in</strong>k<strong>in</strong>g it to the Paradisaea<br />

l<strong>in</strong>eage. Stochastic `over-water dispersal', even with `founder<br />

effects', is hardly likely to result <strong>in</strong> this arrangement ± it<br />

would more likely result <strong>in</strong> Semioptera hav<strong>in</strong>g one obvious<br />

ancestor. It is simpler to account for the distribution by a<br />

vicariance event <strong>in</strong> which the characters <strong>of</strong> a widespread<br />

ancestral complex have been recomb<strong>in</strong>ed to give Semioptera<br />

<strong>in</strong> the Moluccas, <strong>and</strong> the Paradisaea <strong>and</strong> Ptiloris l<strong>in</strong>eages<br />

further east.<br />

Despite their presence <strong>in</strong> the northern Moluccas, birds <strong>of</strong><br />

<strong>paradise</strong> are absent from the southern Moluccas. In fact the<br />

fauna <strong>of</strong> the southern Moluccas is quite different from that<br />

<strong>of</strong> the northern isl<strong>and</strong>s ± many widespread Indonesian<br />

species occur on the southern isl<strong>and</strong>s without be<strong>in</strong>g <strong>in</strong> the<br />

north, while many <strong>New</strong> Gu<strong>in</strong>ea groups such as Paradisaeidae<br />

are represented <strong>in</strong> the northern isl<strong>and</strong>s only (White &<br />

Bruce, 1986). Likewise, Michaux (1994) cited four mammal<br />

species <strong>in</strong> the northern Moluccas <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea, but not<br />

<strong>in</strong> the southern Moluccas. Many taxa show differentiation<br />

between the northern <strong>and</strong> southern Moluccas, <strong>in</strong> the<br />

marsupials for example, Phalanger orientalis (Pallas) is <strong>in</strong><br />

the southern Moluccas (<strong>and</strong> Timor ± <strong>New</strong> Gu<strong>in</strong>ea), while<br />

P. ornatus (Gray) <strong>and</strong> P. rothschildii Thomas are endemic <strong>in</strong><br />

the northern Moluccas (Flannery, 1994).<br />

It is strik<strong>in</strong>g that there are only two genera <strong>of</strong> Paradisaeidae<br />

<strong>in</strong> the Moluccas <strong>and</strong> that they are so dist<strong>in</strong>ctive, unlike<br />

the Australian species which all have congeners <strong>in</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea. Geological <strong>and</strong> biological evolution focused along<br />

the <strong>New</strong> Gu<strong>in</strong>ea orogen may have been responsible.<br />

The follow<strong>in</strong>g birds, like the two endemic bird <strong>of</strong> <strong>paradise</strong><br />

genera, illustrate the status <strong>of</strong> the Moluccas as a biogeographically<br />

<strong>in</strong>dependent centre:<br />

In Megapodiidae, Megapodius wallacei Gray, sometimes<br />

treated as a monotypic genus Eulipoa Ogilvie-Grant, is a<br />

Moluccas endemic (Fig. 5), vicariant with Macrocephalon<br />

MuÈ ller to the west <strong>and</strong> Aepypodius Salvadori <strong>in</strong> the east to<br />

the Huon <strong>and</strong> Papuan Pen<strong>in</strong>sulas.<br />

Similarly, N<strong>in</strong>ox squamipila (Bonaparte) (Fig. 6) <strong>of</strong> the<br />

Moluccas <strong>and</strong> Tanimbar Isl<strong>and</strong>s (with a disjunct race on<br />

Christmas Isl<strong>and</strong> south <strong>of</strong> Java, 3000 km to the west) is<br />

s<strong>and</strong>wiched between N. perversa Stresemann <strong>in</strong> the west <strong>and</strong><br />

N. theomacha Bonaparte to the east.<br />

The cuckoo shrikes Corac<strong>in</strong>a papuensis Gmel<strong>in</strong>,<br />

C. parvula (Salvadori) <strong>and</strong> C. atriceps (MuÈ ller) (Campephagidae)<br />

(Fig. 7) form a concentric series <strong>of</strong> species around<br />

Halmahera (cf. Lycocorax enclos<strong>in</strong>g Semioptera, which is<br />

not on Morotai or Obi Isl<strong>and</strong>s).<br />

The Moluccas are also <strong>in</strong>terest<strong>in</strong>g as a centre <strong>of</strong> absence.<br />

Acanthizidae, for example, are widespread from Malaysia<br />

<strong>and</strong> the Philipp<strong>in</strong>es to <strong>New</strong> Zeal<strong>and</strong> (with Gerygone, etc.)<br />

<strong>and</strong> while they closely surround the Moluccas, they do not<br />

occur there (Ford, 1986). Other taxa present <strong>in</strong> both<br />

Indonesia <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea but not on the Moluccas <strong>in</strong>clude<br />

the pigeon Gallicolumba, the tree Stemonurus Bl. <strong>and</strong> the<br />

liane Phytocrene Wall. (Sleumer, 1971).<br />

The western limit <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> on the Moluccas is<br />

far from be<strong>in</strong>g an `anomaly' (Frith & Beehler, 1998). The<br />

Moluccas show very clear faunistic l<strong>in</strong>ks with <strong>New</strong> Gu<strong>in</strong>ea<br />

<strong>and</strong> form the north-western limit <strong>of</strong> many <strong>New</strong> Gu<strong>in</strong>ea/<br />

Australasian taxa. Casuariidae reach their western limit <strong>in</strong><br />

the southern Moluccas (Seram), while birds with a western<br />

Figure 5 Three genera <strong>of</strong> Megapodiidae: Macrocephalon,<br />

Megapodius wallacei Gray ( ˆ the monotypic Eulipoa): Moluccas,<br />

Misol; <strong>and</strong> Aepypodius (east to the Saruwaged <strong>and</strong> Owen Stanley<br />

Mounta<strong>in</strong>s).<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


898 M. Heads<br />

Figure 6 A sequence <strong>of</strong> three species <strong>in</strong> N<strong>in</strong>ox, a genus rang<strong>in</strong>g<br />

from Madagascar to <strong>New</strong> Zeal<strong>and</strong>. N. perversa, N. squamipila (four<br />

subspecies shown, a ®fth on Christmas Isl<strong>and</strong> <strong>in</strong>dicated by arrow),<br />

N. theomacha.<br />

Figure 8 Aegothelidae (monogeneric) at its western limit. Aegotheles<br />

cr<strong>in</strong>ifrons Halmahera <strong>and</strong> Bacan. The genus has six other species <strong>in</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea (one <strong>of</strong> these also <strong>in</strong> Australia), one <strong>in</strong> <strong>New</strong> Caledonia,<br />

<strong>and</strong> one (fossil) <strong>in</strong> <strong>New</strong> Zeal<strong>and</strong>.<br />

Figure 7 Corac<strong>in</strong>a atriceps: N <strong>and</strong> S Moluccas, Corac<strong>in</strong>a parvula:<br />

Halmahera. C. papuensis: Misol I., Moluccas (melanolora), other<br />

races <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, Solomons, northern Australia.<br />

limit <strong>in</strong> the northern Moluccas, like the birds <strong>of</strong> <strong>paradise</strong>,<br />

<strong>in</strong>clude the follow<strong>in</strong>g taxa.<br />

Aegothelidae (owlet nightjars) (Fig. 8) comprise eight<br />

species <strong>of</strong> Australia, <strong>New</strong> Zeal<strong>and</strong> (fossil), <strong>New</strong> Caledonia<br />

<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea, <strong>and</strong> range west to the northern Moluccas<br />

where Aegotheles cr<strong>in</strong>ifrons Bonaparte is endemic.<br />

Re<strong>in</strong>wardtoena Bonaparte (Columbidae) (Fig. 9) comprises<br />

three species: one <strong>in</strong> the Solomons, one <strong>in</strong> <strong>New</strong> Brita<strong>in</strong><br />

<strong>and</strong> R. re<strong>in</strong>wardtsi (Temm<strong>in</strong>ck) with races <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

<strong>and</strong> the western Papuan Isl<strong>and</strong>s, Biak <strong>and</strong> the Moluccas.<br />

Tanysiptera Gray (Alced<strong>in</strong>idae) (Fig. 10) reaches its western<br />

limit with T. galatea (Gray) <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> the<br />

Moluccas, <strong>and</strong> four other species on small isl<strong>and</strong>s around the<br />

Vogelkop.<br />

Gymnophaps Salvadori (Columbidae) (Fig. 11) comprises<br />

three species: one <strong>in</strong> the Solomon Isl<strong>and</strong>s, G. albertisii<br />

Figure 9 Re<strong>in</strong>wardtoena at its western limit. R. re<strong>in</strong>wardtsi has a<br />

distribution resembl<strong>in</strong>g that <strong>of</strong> the Paradisaeidae, with subspecies <strong>in</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> Western Papuan Isl<strong>and</strong>s, Biak I. <strong>and</strong> the Moluccas.<br />

Re<strong>in</strong>wardtoena has two other species, one <strong>in</strong> <strong>New</strong> Brita<strong>in</strong> <strong>and</strong><br />

one <strong>in</strong> the Solomons.<br />

Salvadori with subspecies <strong>in</strong> the Bismarck Archipelago, <strong>New</strong><br />

Gu<strong>in</strong>ea <strong>and</strong> northern Moluccas (Bacan only), <strong>and</strong> G. mada<br />

Hartert <strong>in</strong> the southern Moluccas.<br />

Charmosyna Wagler (Loriidae) (Fig. 12) ranges from Fiji<br />

<strong>and</strong> <strong>New</strong> Caledonia west to <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> the northern<br />

<strong>and</strong> southern Moluccas.<br />

Lorius Vigors (Loriidae) (Fig. 13) has four species <strong>in</strong> the<br />

Bismarck Archipelago <strong>and</strong> Solomon Isl<strong>and</strong>s, one <strong>in</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea, <strong>and</strong> the western limit <strong>of</strong> the genus is held by<br />

L. garrulus (L<strong>in</strong>naeus) <strong>in</strong> the northern Moluccas, <strong>and</strong><br />

L. domicellus (L<strong>in</strong>naeus) <strong>in</strong> the southern Moluccas.<br />

Alcedo (ˆ Ceyx, ˆ Alcyone) azureus (Latham) (Alced<strong>in</strong>idae)<br />

(Fig. 14) has three races <strong>in</strong> Australia, one each <strong>in</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea, Tanimbar <strong>and</strong> Aru Isl<strong>and</strong>s <strong>and</strong> reaches its<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 899<br />

Figure 10 Tanysiptera at its western limit. Tanysiptera galatea:<br />

subspecies at: Rau I. (Moluccas), Morotai, Halmahera, Bacan,<br />

Kayoa I. (Moluccas), Obi <strong>and</strong> Oblitau Is. Buru, S Moluccas, <strong>and</strong> ®ve<br />

other races on the Western Papuan Isl<strong>and</strong>s <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea. The<br />

other western species are T. ellioti on Ko®au I., T. carol<strong>in</strong>ae Schlegel<br />

on Numfor I., T. riedellii Verreaux on Biak I, <strong>and</strong> I. hydrocharis <strong>in</strong><br />

S. <strong>New</strong> Gu<strong>in</strong>ea.<br />

Figure 12 Charmosyna at its western limit: C. placentis with<br />

subspecies on N Moluccas; S Moluccas, Aru Is., <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea;<br />

NW <strong>New</strong> Gu<strong>in</strong>ea; other subspecies occur <strong>in</strong> E <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong><br />

Bismarcks ± Solomons. C. toxopei is at Buru I. The genus ranges east<br />

to Fiji <strong>and</strong> <strong>New</strong> Caledonia.<br />

Figure 11 Gymnophaps at its western limit: G. mada S Moluccas,<br />

<strong>and</strong> G. albertisii with subspecies on Bacan, <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> the<br />

Bismarck Archipelago. The only other species <strong>in</strong> the genus occurs<br />

<strong>in</strong> the Solomon Isl<strong>and</strong>s.<br />

north-west limit with an endemic race <strong>in</strong> the northern<br />

Moluccas. Similarly, A. pusilla (Temm<strong>in</strong>ck) has races <strong>in</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea, Solomon Isl<strong>and</strong>s, Queensl<strong>and</strong> <strong>and</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea, with a western limit <strong>in</strong> the northern Moluccas.<br />

Eos Wagler (Loriidae) (Fig. 15), with six species, occurs<br />

only on the Moluccas <strong>and</strong> nearby isl<strong>and</strong>s (Biak, Tanimbar,<br />

Kai <strong>and</strong> Talaud isl<strong>and</strong>s). The genus as such is absent from<br />

ma<strong>in</strong>l<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea, but is probably represented there by<br />

Chalcopsitta Bonaparte <strong>and</strong> Pseudeos Peters.<br />

Monarcha Vigors & Hors®eld (Myiagridae) (Fig. 16)<br />

ranges through Australia, Solomon Isl<strong>and</strong>s, Bismarck Archipelago,<br />

Yap Isl<strong>and</strong> <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea, west to the approaches<br />

<strong>of</strong> Sulawesi (genus limit shown <strong>in</strong> Fig. 16). Four <strong>of</strong> the<br />

Figure 13 Lorius at its western limit: Lorius garrulus: subspecies on<br />

Halmahera <strong>and</strong> Weda Is., Bacan <strong>and</strong> Obi, <strong>and</strong> Morotai.<br />

L. domicellus: S Moluccas). L. lory: <strong>New</strong> Gu<strong>in</strong>ea wide. The genus<br />

has four other species <strong>in</strong> the Bismarck Archipelago <strong>and</strong> Solomon<br />

Isl<strong>and</strong>s.<br />

Moluccan species are mapped here, none <strong>of</strong> these are found<br />

on ma<strong>in</strong>l<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea. Despite their geographical<br />

<strong>in</strong>signi®cance some <strong>of</strong> the t<strong>in</strong>y islets <strong>in</strong> the region hold<br />

strik<strong>in</strong>g endemism: Ko®au Isl<strong>and</strong>, NW <strong>of</strong> Misool Isl<strong>and</strong>, has<br />

an endemic species, M. julienae Ripley. Tanysiptera ellioti<br />

(Sharpe) (Fig. 10) is also endemic there. (Ko®au Isl<strong>and</strong> is<br />

part <strong>of</strong> the Waigeo ophiolite terrane discussed below).<br />

Nearby, Eos squamata attenua Ripley (Fig. 15) is endemic to<br />

the even smaller Schildpad Isl<strong>and</strong>s north <strong>of</strong>f Misool;<br />

Zosterops chloris (below) is also on Schildpad Isl<strong>and</strong>s but<br />

not Misool.<br />

At lower taxonomic levels, species (e.g. Myzomela obscura<br />

Gould) <strong>and</strong> subspecies (e.g. Aplonis m. metallica Temm<strong>in</strong>ck,<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


900 M. Heads<br />

Figure 14 Ceyx (ˆ Alcedo, ˆ Alcyone) azureus at its western limit:<br />

subspecies <strong>in</strong> N Moluccas, Tanimbar, Aru Is., Western Papuan Is.<br />

<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea. There are three other races <strong>in</strong> NES Australia <strong>and</strong><br />

Tasmania. C. pusillus also ranges from Solomons, Queensl<strong>and</strong> west<br />

through <strong>New</strong> Gu<strong>in</strong>ea to Halmahera <strong>and</strong> Obi (C. p. halmaherae).<br />

Figure 16 Monarcha at its north-western limit (hatched l<strong>in</strong>e).<br />

Monarcha pileatus Salvadori, with subspecies on Halmahera, Buru,<br />

<strong>and</strong> Tanimbar. M. trivirgatus (Temm<strong>in</strong>ck), also disjunct <strong>in</strong><br />

Queensl<strong>and</strong> <strong>and</strong> the Louisiade Is. (arrow), M. julienae (Ko®au), <strong>and</strong><br />

M. brehmii (Schlegel) (Misool, Biak I.) with af®nities to Manus <strong>and</strong><br />

Bismarck Archipelago species (arrow).<br />

Figure 15 The six species <strong>of</strong> Eos: E. histrio P.L.S.MuÈ ller (Talaud<br />

Is.), E. squamata (Boddaert): Obi (obiensis), Maju I. (atrocaerulea),<br />

N Moluccas (ric<strong>in</strong>iata), Western Papuan Is. (nom<strong>in</strong>ate). E. cyanogenia<br />

Bonaparte (Geelv<strong>in</strong>k Bay isl<strong>and</strong>s), E. reticulata (S.Muller):<br />

Tanimbar <strong>and</strong> Kai Is., E. bornea L<strong>in</strong>naeus (S Moluccas, Kai Is.),<br />

E. semilarvata Bonaparte (Seram). The related Chalcopsitta <strong>and</strong><br />

Pseudeos occur on ma<strong>in</strong>l<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea.<br />

Artamus leucorhynchus leucopygialis Gould) also have a NE<br />

Australia ± <strong>New</strong> Gu<strong>in</strong>ea ± Moluccas distribution more or less<br />

the same as that <strong>of</strong> Paradisaeidae.<br />

In beetles, Chrysomelidae subfamily Hisp<strong>in</strong>ae has twentyone<br />

genera <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, fourteen <strong>of</strong> which range west<br />

only to the Moluccas (Gressitt, 1982a). Likewise <strong>in</strong> frogs,<br />

Microhylidae subfamily Asterophry<strong>in</strong>ae is endemic to <strong>New</strong><br />

Gu<strong>in</strong>ea <strong>and</strong> the Moluccas (Richards et al., 2000), <strong>and</strong> the<br />

genus Nyctimestes Stejneger (Hylidae) has a range practically<br />

identical to that <strong>of</strong> the birds <strong>of</strong> <strong>paradise</strong>: <strong>New</strong> Gu<strong>in</strong>ea<br />

(most species), the Milne Bay isl<strong>and</strong>s, northern Australia,<br />

<strong>and</strong> the northern Moluccas (Zweifel, 1958; Tyler, 1968).<br />

The lizard genera Eugongylus Fitz<strong>in</strong>ger <strong>and</strong> Carlia Gray also<br />

range through <strong>New</strong> Gu<strong>in</strong>ea west to the Moluccas (Greer,<br />

1974).<br />

Many characteristic plants <strong>of</strong> Australasian <strong>and</strong> Melanesian<br />

ra<strong>in</strong>forests also have a north-western limit at the<br />

Moluccas. For example, <strong>in</strong> the seed plants, Himat<strong>and</strong>raceae<br />

(compris<strong>in</strong>g Galbulimima F.M. Bail.) is <strong>in</strong> NE Australia,<br />

<strong>New</strong> Gu<strong>in</strong>ea, <strong>and</strong> the Moluccas (Cr<strong>of</strong>t, 1978) like the<br />

Paradisaeidae. A group <strong>of</strong> four genera <strong>in</strong> Cunoniaceae:<br />

Spiraeanthemum A. Gray (<strong>in</strong>clud<strong>in</strong>g Acsmithia Hoogl<strong>and</strong>),<br />

Gillbeea F. Muell., Aistopetalum Schlechter <strong>and</strong> Brunellia<br />

Ruiz & Pav., forms a basal clade <strong>in</strong> the family, sister group<br />

to the rest, <strong>and</strong> occurs <strong>in</strong> Central America, Polynesia, NE<br />

Queensl<strong>and</strong>, <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> the Moluccas (Hufford &<br />

Dickison, 1992). Other plant taxa which break <strong>of</strong>f range<br />

westward at the Moluccas <strong>in</strong>clude the fern Leptopteris Presl<br />

(van Balgooy, 1966a,b), the conifers Decussocarpus de<br />

Laub. sect. Decussocarpus (de Laubenfels, 1984) <strong>and</strong> Papuacedrus<br />

Li (Li, 1953), the monocots P<strong>and</strong>anus sect.<br />

Maysops St John (Stone, 1992), Com<strong>in</strong>sia Hemsl., Helmholtzia<br />

F. Muell. (Johns & Hay, 1981), Drymophloeus Zipp.<br />

(Zona, 1999), Gulubia Becc. (Drans®eld, 1993), Glossorhyncha<br />

Ridley (Smith, 1979±1996), <strong>and</strong> Pterostylis R.Br.<br />

(de Vogel, 1975a), <strong>and</strong> the dicots Levieria Becc. (Philipson,<br />

1986), Pararistolochia Hutch. & Dalz. (re-appear<strong>in</strong>g <strong>in</strong><br />

Africa) (Parsons, 1996), Rhyticaryum Becc., Polypor<strong>and</strong>ra<br />

Becc. (Sleumer, 1971), Hollrungia K. Schum. (de Wilde,<br />

1975), Hugonia sect. Dur<strong>and</strong>ea Planch. (van Balgooy,<br />

1993), Dubouzetia Pancher ex Brongn. & Gris (Coode,<br />

1987), Schle<strong>in</strong>itzia Warb. (de Vogel, 1975b; as Prosopis<br />

<strong>in</strong>sularum (Guill.) Bret.), Archidendron ser. Stipulatae<br />

(Mohl) Nielsen, A. ser. Pendulosae (Mohl) Nielsen, <strong>and</strong><br />

A. ser. Morolobiae (Kosterm.) Nielsen (Nielsen et al., 1984),<br />

Pullea Schlechter (Hoogl<strong>and</strong>, 1979; cf. Hufford & Dickison,<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 901<br />

1992), Fl<strong>in</strong>dersia R.Br. (Roos, 1984), Jagera Blume, Sarcopteryx<br />

Radlk., Sarcotoechia Radlk. (the last three from<br />

Adema et al., 1994), Burckella Pierre (Penn<strong>in</strong>gton, 1991),<br />

Eucalyptopsis White (White, 1951; Johns, 1980), L<strong>in</strong>dsayomyrtus<br />

Hyl<strong>and</strong> & Steen. (Hyl<strong>and</strong> & van Steenis, 1973),<br />

Octamyrtus Diels (Scott, 1979a), Mastixiodendron Melchior,<br />

Cyclophyllum Hook.f. (Smith, 1979±1996), Tecomanthe<br />

Baillon (van Steenis, 1977), <strong>and</strong> such characteristic, widespread<br />

<strong>New</strong> Gu<strong>in</strong>ea species as Schuurmansia henn<strong>in</strong>gsii<br />

K.Sch. (Kanis, 1978).<br />

Like most important centres <strong>of</strong> endemism, the Moluccas<br />

have several far-¯ung biogeographical af®nities. For example,<br />

four species <strong>of</strong> Accipiter (Accipitridae) show disjunct<br />

connections between the Moluccas <strong>and</strong> <strong>New</strong> Brita<strong>in</strong> which<br />

do not <strong>in</strong>volve ma<strong>in</strong>l<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea: A. erythrauchen G.R.<br />

Gray (Fig. 17) <strong>of</strong> the northern Moluccas is similar to<br />

A. brachyurus (Ramsay) <strong>of</strong> <strong>New</strong> Brita<strong>in</strong>, just as A. henicogrammus<br />

(G.R. Gray) <strong>of</strong> the northern Moluccas is related to<br />

A. luteoschistaceus Rothschild & Hartert <strong>of</strong> <strong>New</strong> Brita<strong>in</strong><br />

(Wattel, 1973). The butter¯y Eurema c<strong>and</strong>ida is also<br />

disjunct between Moluccas/Timor <strong>and</strong> the Bismarck Archipelago/Solomon<br />

Isl<strong>and</strong>s (Parsons, 1999). Similarly, the fern<br />

genus Christensenia Maxon. is disjunct between west<br />

Malesia/Moluccas <strong>and</strong> <strong>New</strong> Irel<strong>and</strong> ± Solomons (Johns &<br />

Bellamy, 1981). Also <strong>in</strong> ferns the closely related Christella<br />

perpubescens (Alston) Holttum group has one species <strong>in</strong><br />

each <strong>of</strong> the follow<strong>in</strong>g: the Moluccas; Waigeo Isl<strong>and</strong> <strong>and</strong><br />

disjunct <strong>in</strong> the Solomons; Biak isl<strong>and</strong>; <strong>and</strong> <strong>New</strong> Irel<strong>and</strong>, all<br />

on limestone (Holttum, 1976, 1981). In the Araceae,<br />

Spathiphyllum commutatum Schott (Araceae) occurs <strong>in</strong> the<br />

Philipp<strong>in</strong>es, Palau, Sulawesi, <strong>and</strong> the Moluccas, <strong>and</strong> is<br />

disjunct from there to <strong>New</strong> Brita<strong>in</strong> <strong>and</strong> Bouga<strong>in</strong>ville, be<strong>in</strong>g<br />

absent from ma<strong>in</strong>l<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea. It is replaced <strong>in</strong> Manus,<br />

<strong>New</strong> Irel<strong>and</strong> <strong>and</strong> SE <strong>New</strong> Gu<strong>in</strong>ea by two further species <strong>in</strong><br />

the genus, the rema<strong>in</strong>der are all <strong>in</strong> tropical America (van<br />

Steenis, 1961; Hay, 1990). Spathiphyllum is replaced on<br />

ma<strong>in</strong>l<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea outside the Papuan Pen<strong>in</strong>sula by the<br />

more or less closely allied Holochlamys Engl.<br />

This Moluccas ± <strong>New</strong> Brita<strong>in</strong> connection is related to<br />

similar disjunctions. For example, N<strong>in</strong>ox connivens Latham<br />

(Fig. 17) is <strong>in</strong> the northern Moluccas, eastern PNG <strong>and</strong><br />

Australia, bypass<strong>in</strong>g Irian Jaya, <strong>and</strong> a similar range (northern<br />

Moluccas; Sepik) is held by the tree Dictyoneura<br />

acum<strong>in</strong>ata Blume ssp. acum<strong>in</strong>ata, with the gap <strong>in</strong> Irian Jaya<br />

®lled by D. acum<strong>in</strong>ata ssp. microcarpa J. Dijk (van Dijk <strong>in</strong><br />

Adema et al., 1994). Other examples were noted by<br />

Michaux (1994). An even greater disjunction across the<br />

north <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea is shown <strong>in</strong> conifers. Dacrydium<br />

magnum de Laub. occurs only <strong>in</strong> the northern Moluccas<br />

(Obi), <strong>and</strong> on isl<strong>and</strong>s east <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea ± the Louisiades<br />

(Sudest Isl<strong>and</strong>) <strong>and</strong> the Solomon Isl<strong>and</strong>s (de Laubenfels,<br />

1988), <strong>and</strong> Podocarpus spathoides de Laub. has a very<br />

similar distribution: northern Moluccas (Morotai), disjunct<br />

to the Louisiades (Rossel) <strong>and</strong> Solomon Isl<strong>and</strong>s, with an<br />

additional disjunct record <strong>in</strong> the west on the Malay<br />

Pen<strong>in</strong>sula (Mount Ophir ˆ Gunong Ledang).<br />

In many taxa the Moluccas populations are <strong>in</strong>volved with<br />

those <strong>of</strong> the Aru Isl<strong>and</strong>s, with the af®nity skirt<strong>in</strong>g <strong>New</strong><br />

Gu<strong>in</strong>ea to the south-west <strong>and</strong> not present on the ma<strong>in</strong>l<strong>and</strong>.<br />

Three examples are illustrated:<br />

Hemiprocne mystacea con®rmata Stresemann (Fig. 18) is<br />

on the Moluccas <strong>and</strong> Aru Isl<strong>and</strong>s; other races occur <strong>in</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea, Bismarck Archipelago <strong>and</strong> the Solomon Isl<strong>and</strong>s.<br />

Zosterops chloris Bonaparte (Fig. 19) ranges on the B<strong>and</strong>a<br />

Sea isl<strong>and</strong>s, islets <strong>of</strong>f SE Borneo, <strong>and</strong> also on the Torres Strait<br />

isl<strong>and</strong>s, but is not on the <strong>New</strong> Gu<strong>in</strong>ea ma<strong>in</strong>l<strong>and</strong>. Z. c. chloris<br />

is restricted to the Moluccas, Kai <strong>and</strong> Aru Isl<strong>and</strong>s.<br />

Z. atriceps Gray is endemic <strong>in</strong> the northern Moluccas.<br />

Pachycephala phaionota (Bonaparte) (Fig. 20) surrounds<br />

the Vogelkop to the west, north <strong>and</strong> south: it is on the<br />

northern Moluccas, Aru Isl<strong>and</strong>s, the western Papuan Isl<strong>and</strong>s<br />

<strong>and</strong> also small isl<strong>and</strong>s <strong>in</strong> Geelv<strong>in</strong>k Bay.<br />

Figure 17 Accipiter erythrauchen G.R.Gray: Bacan, Halmahera,<br />

Morotai, Obi (nom<strong>in</strong>ate), Seram, Buru (ceramensis (Schlegel)). This<br />

species is similar to A. brachyurus <strong>of</strong> <strong>New</strong> Brita<strong>in</strong> (arrow).<br />

A. henicogrammus: Bacan, Halmahera, Morotai; related to<br />

A. luteoschistaceus <strong>of</strong> <strong>New</strong> Brita<strong>in</strong>. N<strong>in</strong>ox connivens, disjunct <strong>in</strong> E<br />

<strong>New</strong> Gu<strong>in</strong>ea (east <strong>of</strong> Merauke <strong>and</strong> Karkar Isl<strong>and</strong>) <strong>and</strong> Australia.<br />

Figure 18 Hemiprocne coronata (Sulawesi), H. mystacea with<br />

subspecies on Moluccas <strong>and</strong> Aru Is., <strong>and</strong> <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, Bismarck<br />

Archipelago, Solomon Isl<strong>and</strong>s.<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


902 M. Heads<br />

Figure 19 Zosterops atriceps (hatched) subspecies on Morotai,<br />

Halmahera, <strong>and</strong> Bacan. Z chloris has subspecies (solid l<strong>in</strong>e) on Aru,<br />

Kai, Seram, Schildpad, Halmahera; S Moluccas, Tanimbar, Torres<br />

Srait Is. (albiventris), <strong>and</strong> others around Sulawesi, Lombok <strong>and</strong><br />

isl<strong>and</strong>s <strong>of</strong>f SE Borneo.<br />

Figure 21 The distribution <strong>of</strong> Aquilaria ®laria (Thymelaeaceae).<br />

Figure 20 Pachycephala phaionota, with two subspecies: one on<br />

Aru Is., N Moluccas, Western Papuan Isl<strong>and</strong>s <strong>and</strong> Geelv<strong>in</strong>k Bay<br />

islets, the other endemic to Majau I. (N Moluccas). The genus ranges<br />

north to Thail<strong>and</strong>.<br />

The Moluccas have an important biogeographical connection<br />

to the south, for example Lichmera Cabanis reaches<br />

its northern limit <strong>in</strong> the Moluccas. To the north, the<br />

Moluccas l<strong>in</strong>k <strong>New</strong> Gu<strong>in</strong>ea with the Philipp<strong>in</strong>es. Examples<br />

are Amaurornis olivaceus (Meyen) <strong>and</strong> the tree Aquilaria<br />

®laria (Oken) Merr. (D<strong>in</strong>g Hou, 1960; now also known<br />

from the Sepik region) (Fig. 21).<br />

F<strong>in</strong>ally, the northern Moluccas are an important eastern<br />

boundary for many Indian Ocean groups, such as the l<strong>and</strong><br />

snail family Clausiliideae (Szekeres, 1980), the sylv<strong>in</strong>e<br />

warbler Bradypterus Swa<strong>in</strong>son (Africa ± northern Moluccas),<br />

the bat family Megadermatidae (Africa ± northern<br />

Moluccas) <strong>and</strong> the palm subtribe Oncospermat<strong>in</strong>ae J.D.<br />

Hooker (Uhl & Drans®eld, 1987; map 43) (Seychelles has<br />

four genera, Sri Lanka ± northern Moluccas has one genus).<br />

Craw et al. (1999, Fig. 4.4) mapped vicariant butter¯y<br />

genera <strong>in</strong>, respectively, SE Asia east to Sulawesi, <strong>and</strong> the<br />

Moluccas east to Australasia.<br />

Summariz<strong>in</strong>g, the biogeographical boundary, or node,<br />

between Sulawesi <strong>and</strong> the Moluccas (`Weber's l<strong>in</strong>e') may not<br />

be as well-known as its over-famous neighbour, the break<br />

between Sulawesi <strong>and</strong> Borneo (`Wallace's l<strong>in</strong>e'), but it is<br />

probably <strong>of</strong> similar signi®cance. As shown, a break between<br />

the Moluccas <strong>and</strong> Sulawesi occurs <strong>in</strong> many plants <strong>and</strong><br />

animals, <strong>and</strong> this same break <strong>in</strong> Paradisaeidae cannot be<br />

<strong>in</strong>terpreted as an anomaly. The northern Moluccas have<br />

several different st<strong>and</strong>ard biogeographical connections with<br />

north <strong>and</strong> south <strong>New</strong> Gu<strong>in</strong>ea, recall<strong>in</strong>g the different character<br />

recomb<strong>in</strong>ations <strong>in</strong> Semioptera.<br />

De Boer (1995a) wrote that the cicadas <strong>of</strong> the Moluccas<br />

show ®ve dist<strong>in</strong>ct patterns <strong>of</strong> distribution, each <strong>in</strong>dicat<strong>in</strong>g<br />

different relationships between parts <strong>of</strong> the Moluccas <strong>and</strong><br />

different areas. Like Paradisaeidae <strong>and</strong> the other birds<br />

mapped above, the cicadas Cosmopsaltria StaÊl, Diceropyga<br />

StaÊl, Aedeastria de Boer (Fig. 22), Gymnotympana StaÊl<br />

(Fig. 23) <strong>and</strong> Baeturia StaÊl are all ma<strong>in</strong>ly <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea,<br />

but each has a few species <strong>in</strong> NE Queensl<strong>and</strong> <strong>and</strong> outly<strong>in</strong>g<br />

endemics <strong>in</strong> the Moluccas. Discuss<strong>in</strong>g these genera, de Boer<br />

(1995a) cited three volcanic isl<strong>and</strong> arc systems <strong>in</strong> the the<br />

West Paci®c, one <strong>of</strong> which, the Halmahera arc, comprises<br />

eastern M<strong>in</strong>danao (Philipp<strong>in</strong>es), the northern Moluccas <strong>and</strong><br />

Waigeo Isl<strong>and</strong>, <strong>and</strong> possibly connects with the Mariana <strong>and</strong><br />

Palau/Yap arcs. The Halmahera arc formed far to the east <strong>of</strong><br />

its present position on a fracture <strong>of</strong> the Paci®c plate ± it<br />

might have ended close to the Papuan Pen<strong>in</strong>sula. S<strong>in</strong>ce the<br />

early or middle Miocene the arc has swept 2000 km<br />

westwards past the north-western edge <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>in</strong>to<br />

the Moluccas region (Daly et al., 1991; Honza, 1991). The<br />

geology <strong>of</strong> the northern Moluccas region is highly complex<br />

<strong>and</strong> controversial; one <strong>in</strong>terpretation is shown <strong>in</strong> Fig. 24.<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 903<br />

arcs from eastern PNG. This would also account for the<br />

Moluccas ± <strong>New</strong> Brita<strong>in</strong>/NE PNG disjunctions seen <strong>in</strong><br />

Accipiter, N<strong>in</strong>ox <strong>and</strong> others.<br />

South <strong>of</strong> Halmahera, but still <strong>in</strong> the northern Moluccas,<br />

Obi Isl<strong>and</strong> (where Lycocorax pyrrhopterus obiensis Bernste<strong>in</strong><br />

is endemic) <strong>and</strong> Bacan Isl<strong>and</strong> (where Semioptera<br />

w. wallacii Gould is endemic) comprise a separate microcont<strong>in</strong>ent<br />

dist<strong>in</strong>ct from Halmahera. The orig<strong>in</strong> <strong>of</strong> the<br />

southern Moluccas (Buru <strong>and</strong> Seram) is still subject to<br />

controversy, but the microcont<strong>in</strong>ent they form is <strong>of</strong> Australian<br />

orig<strong>in</strong> (de Boer, 1995a) <strong>and</strong> is quite dist<strong>in</strong>ct from that <strong>of</strong><br />

the northern Moluccas.<br />

Figure 22 The distribution <strong>of</strong> Aedeastria (Homoptera) species.<br />

Figure 23 The distribution <strong>of</strong> Gymnotympana (Homoptera)<br />

species.<br />

Western Papuan Isl<strong>and</strong>s<br />

Seven species <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> are <strong>in</strong>digenous to the<br />

Western Papuan Isl<strong>and</strong>s, ly<strong>in</strong>g between the <strong>New</strong> Gu<strong>in</strong>ea<br />

ma<strong>in</strong>l<strong>and</strong> <strong>and</strong> the Moluccas. Several ma<strong>in</strong>l<strong>and</strong> species occur<br />

on Salawati <strong>and</strong> Misool <strong>and</strong> Manucodia ranges to Gebe<br />

Isl<strong>and</strong>. Cic<strong>in</strong>nurus respublica (Bonaparte) <strong>and</strong> Paradisaea<br />

rubra Daud<strong>in</strong> are strik<strong>in</strong>g species both endemic to Waigeo<br />

<strong>and</strong> Batanta; birds endemic to these isl<strong>and</strong>s are discussed<br />

below as examples <strong>of</strong> ophiolite terrane endemism. In stark<br />

contrast, Zosterops Vigors & Hors®eld, supposedly a lover<br />

<strong>of</strong> small isl<strong>and</strong>s, is `strangely enough' (R<strong>and</strong> & Gilliard,<br />

1967) totally absent from Waigeo, Batanta, Misool <strong>and</strong><br />

Salawati, although Z. chloris extends right up to the<br />

approaches <strong>of</strong> Misool on the t<strong>in</strong>y Schildpad Isl<strong>and</strong>s<br />

(Fig. 19). This absence <strong>of</strong> Zosterops from Misool <strong>and</strong> the<br />

others is <strong>in</strong>deed strik<strong>in</strong>g, <strong>and</strong> <strong>in</strong>explicable by dispersal as<br />

movement, as the genus has ®ve species <strong>in</strong> the Moluccas,<br />

n<strong>in</strong>e <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, <strong>and</strong> there is an endemic genus <strong>of</strong><br />

Zosteropidae on each <strong>of</strong> Seram <strong>and</strong> Buru. The Western<br />

Papuan Isl<strong>and</strong>s also form an eastern limit for widespread<br />

Indian Ocean groups such as Strophanthus DC. (Apocynaceae):<br />

West Africa to western Papuan Isl<strong>and</strong>s (Beentje,<br />

1982).<br />

Figure 24 Geology <strong>of</strong> the Moluccas region. Tectonic elements<br />

(subduction zones, faults, volcanic arcs) as heavy l<strong>in</strong>es, arrows<br />

<strong>in</strong>dicate motion on strike-slip faults (from Axelrod & Raven, 1982<br />

after Hamilton, 1977).<br />

de Boer (1995a,b) <strong>and</strong> de Boer & Duffels (1996a,b)<br />

proposed that the north Moluccan cicadas are derived from<br />

ancestral forms which travelled on fragments <strong>of</strong> volcanic<br />

The Vogelkop<br />

The Vogelkop, like the Huon <strong>and</strong> Papuan Pen<strong>in</strong>sulas <strong>and</strong><br />

major biogeographical nodes <strong>in</strong> general, is an important<br />

centre <strong>of</strong> biological endemism, absence <strong>and</strong> disjunction. The<br />

Kemum terrane <strong>in</strong> the central Vogelkop orig<strong>in</strong>ated as a<br />

detached portion <strong>of</strong> Gondwana (Pigram & Davies, 1987)<br />

<strong>and</strong> other component terranes <strong>of</strong> the Vogelkop are also <strong>of</strong><br />

<strong>in</strong>terest. The Arfak Mounta<strong>in</strong>s are a major centre <strong>of</strong><br />

endemism, for example, four out <strong>of</strong> twenty-two <strong>New</strong> Gu<strong>in</strong>ea<br />

species <strong>of</strong> Rapanea Aubl. (Myrs<strong>in</strong>aceae) are endemic there,<br />

at the Anggi Lakes (Sleumer, 1986).<br />

In the birds <strong>of</strong> <strong>paradise</strong> Astrapia nigra (Gmel<strong>in</strong>) is<br />

restricted to the Arfak <strong>and</strong> Tamrau Mounta<strong>in</strong>s, <strong>and</strong> its<br />

af®nities are with the Huon Pen<strong>in</strong>sula species A. rothschildi<br />

Foerster, 1500 km to the east (Fig. 25).<br />

Similarly, with<strong>in</strong> the black, blue-eyed Parotia species<br />

(Fig. 26), P. se®lata <strong>of</strong> the Vogelkop <strong>and</strong> nearby W<strong>and</strong>ammen<br />

Pen<strong>in</strong>sulas may well be the sister species <strong>of</strong> P. wahnesi<br />

<strong>of</strong> the Huon Penisula <strong>and</strong> the Adelbert Mounta<strong>in</strong>s. Both<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


904 M. Heads<br />

Figure 25 The two related species Astrapia nigra <strong>and</strong> A. rothschildi.<br />

Figure 26 The black, blue-eyed Parotia species, <strong>and</strong> P. carolae.<br />

Figure 27 Paradisaea subgen. Paradisaea. The three species with<br />

`decomposed' ¯ank plumes ± P. rubra, P. guilielmi <strong>and</strong> P. decora.<br />

The ®rst two are a related pair with green forecrown <strong>and</strong> reddishbrown<br />

iris.<br />

share a longer tail <strong>and</strong> behavioural similarities (E. Scholes,<br />

pers. comm., September 2000).<br />

Likewise, <strong>in</strong> their cladogram Frith & Beehler (1998) have<br />

Paradisaea rubra Daud<strong>in</strong>, <strong>of</strong> Waigeo <strong>and</strong> Batanta Isl<strong>and</strong>s<br />

(ophiolite terrane) just <strong>of</strong>f the Vogelkop, as the sister species<br />

<strong>of</strong> P. guilielmi Cabanis, <strong>of</strong> the Huon Pen<strong>in</strong>sula mounta<strong>in</strong>s<br />

(Fig. 27). Neither Frith & Beehler (1998) nor Gilliard (1969)<br />

give any characters l<strong>in</strong>k<strong>in</strong>g these two but they do seem<br />

related: <strong>in</strong> the males <strong>of</strong> both, but <strong>in</strong> no other species, the oilgreen<br />

throat colouration extends above the eye to cover the<br />

front <strong>of</strong> the crown, <strong>and</strong> the eye is reddish-brown, not yellow.<br />

In addition the tail wires (central rectrices) are longer<br />

relative to body size <strong>in</strong> these two species. F<strong>in</strong>ally, P. rubra<br />

<strong>and</strong> P. guilielmi have the outermost primaries with no<br />

emarg<strong>in</strong>ation on the <strong>in</strong>ner vane, unlike the other species.<br />

Whatever rank this group<strong>in</strong>g warrants, the biogeographical<br />

af®nity is <strong>of</strong> great <strong>in</strong>terest <strong>and</strong> could be <strong>in</strong>vestigated further.<br />

Frith & Beehler's (1998) only comment is that the two<br />

species are each an `aberrant sister form' <strong>of</strong> the ma<strong>in</strong><br />

Paradisaea clade. This <strong>in</strong>terpretation ®ts with the theory<br />

postulat<strong>in</strong>g colonization <strong>of</strong> the <strong>of</strong>fshore isl<strong>and</strong>s <strong>and</strong> coastal<br />

ranges from the central ranges, but it is not consistent with<br />

the cladogram, <strong>in</strong> which P. rubra <strong>and</strong> P. guilielmi together<br />

form the sister group to the rest <strong>of</strong> Paradisaea subgen.<br />

Paradisaea. The <strong>in</strong>vasion theory would predict the two<br />

outly<strong>in</strong>g species to be separately related to the central group<br />

<strong>of</strong> species, as implied <strong>in</strong> Frith & Beehler's comments. The<br />

mutual af®nity <strong>of</strong> the two species is <strong>in</strong>explicable under the<br />

dispersal theory, but is easily compatible with an accreted<br />

terrane model <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>biogeography</strong> (Heads, 1999),<br />

or <strong>in</strong>deed any model that accepts geological change, such as<br />

strike-slip movement, as relevant to biological distribution.<br />

In a similar example, Melipotes (Meliphagidae) comprises<br />

three species: the black-breasted M. gymnops Sclater (Arfak,<br />

Tamrau <strong>and</strong> W<strong>and</strong>ammen Mounta<strong>in</strong>s) <strong>and</strong> M. ater Roths<br />

child & Hartert (Huon Pen<strong>in</strong>sula mounta<strong>in</strong>s), separated by<br />

M. fumigatus Meyer with a slaty lower breast (R<strong>and</strong> &<br />

Gilliard, 1967). Melipotes' putative sister group is another<br />

frugivore, Macgregoria De Vis (Cracraft & Fe<strong>in</strong>ste<strong>in</strong>, 2000)<br />

(formerly considered a bird <strong>of</strong> <strong>paradise</strong>), which itself shows a<br />

disjunction between the Star Mounta<strong>in</strong>s <strong>and</strong> the Papuan<br />

Pen<strong>in</strong>sula.<br />

Other Vogelkop disjunctions <strong>in</strong>volve taxa known only<br />

from there <strong>and</strong> western PNG, especially the Karius Range ±<br />

Muller Range area. Examples <strong>in</strong> the birds <strong>of</strong> <strong>paradise</strong> are the<br />

black, blue-eyed Parotia species (with the gap ®lled by<br />

P. carolae Meyer) (Fig. 26), <strong>and</strong> the long-tailed Astrapia<br />

species (with the gap ®lled by A. splendidissima Rothschild)<br />

(Fig. 28). Drepanornis albertisi cerv<strong>in</strong>icauda Sclater has a<br />

very similar disjunction: Weyl<strong>and</strong> Mounta<strong>in</strong>s ± Doma Peaks.<br />

Frith & Beehler (1998) downplay these Vogelkop disjunctions<br />

± <strong>in</strong> the Astrapia species the `curious' plumage<br />

similarities may represent symplesiomorphies (no evidence<br />

is given), the disjunction <strong>in</strong> Paradisaea is hardly mentioned,<br />

<strong>in</strong> the black parotias the disjunct forms are `certa<strong>in</strong>ly' sister<br />

taxa but the mode <strong>of</strong> their differentiation is `unclear', <strong>and</strong><br />

<strong>in</strong> Drepanornis the distribution is `peculiar <strong>in</strong> the extreme'<br />

<strong>and</strong> may be a taxonomic `artefact'. Nevertheless, the<br />

Vogelkop ± Huon Pen<strong>in</strong>sula disjunction <strong>and</strong> related patterns<br />

occur <strong>in</strong> many other animals <strong>and</strong> plants <strong>and</strong> are<br />

probably important clues to the history <strong>of</strong> northern <strong>New</strong><br />

Gu<strong>in</strong>ea <strong>and</strong> their biota.<br />

The Vogelkop ± Huon disjunction is seen <strong>in</strong> <strong>in</strong>vertebrates<br />

such as the spiders Argiope aemula (Walckenaer) <strong>and</strong><br />

A. appensa (Walckenaer) (Levi, 1983) <strong>and</strong> <strong>in</strong> plants such<br />

as the follow<strong>in</strong>g:<br />

Hartleya Sleum. (Vogelkop, disjunct south <strong>of</strong> Lae at<br />

Mounts Shungol <strong>and</strong> Ka<strong>in</strong>di) (Sleumer, 1971),<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 905<br />

Sphenostemon arfakensis (Gibbs) Steen. & Erdtman.<br />

Vogelkop (Arfak Mounta<strong>in</strong>s), closest to S. lobosporus<br />

(F.v.M.) L.S. Smith <strong>of</strong> Jimi Valley, Milne Bay <strong>and</strong><br />

Queensl<strong>and</strong> (van Steenis, 1986),<br />

Mammea odorata (Raf.) Kosterm. Vogelkop, disjunct at<br />

Madang <strong>and</strong> po<strong>in</strong>ts east (Stevens, 1974b).<br />

Figure 28 The long-tailed Astrapia species, <strong>and</strong> A. splendidissima.<br />

Picrasma Blume (van Balgooy, 1966a, b),<br />

Koompassia Ma<strong>in</strong>gay ex Benth. (Verdcourt, 1979),<br />

Sycopsis Oliver (V<strong>in</strong>k, 1957),<br />

Lycianthes subg. Polymeris sect. Asiomelanesia Bitt.<br />

(Symon, 1984),<br />

Aglaia teysmanniana, A. elaeagnoidea (Pannell, 1992),<br />

Aglaonema marantifolium Bl. (Araceae) is disjunct<br />

between Moluccas/Kai Is./Aru Is./Vogelkop, <strong>and</strong> Madang/Huon<br />

Pen<strong>in</strong>sula/Bulolo (Nicholson, 1969).<br />

Very similar disjunctions are seen <strong>in</strong> the follow<strong>in</strong>g<br />

plants:<br />

Soulamea Lam. Vogelkop, disjunct at Madang (van<br />

Steenis, 1961),<br />

Sambucus L. Vogelkop <strong>and</strong> Wissel Lakes, disjunct on the<br />

Huon Pen<strong>in</strong>sula (van Steenis, 1978),<br />

Illigera Bl. Vogelkop, disjunct at the lower Ramu (Cr<strong>of</strong>t,<br />

1981),<br />

Archidendron ser. Pendulosae (Mohl.) Nielsen. Vogelkop,<br />

disjunct at Madang <strong>and</strong> the Papuan Pen<strong>in</strong>sula<br />

(Nielsen et al., 1984),<br />

Alyxia subser. Clusiaceae Markgr. Vogelkop <strong>and</strong> Meos<br />

Num Isl<strong>and</strong> <strong>in</strong> Geelv<strong>in</strong>k Bay, disjunct at Bulolo (Markgraf,<br />

1977),<br />

Amyema queensl<strong>and</strong>ica (Blakely) Danser. Vogelkop,<br />

disjunct at Mount Ka<strong>in</strong>di <strong>and</strong> po<strong>in</strong>ts south-east (Barlow,<br />

1992),<br />

Rhododendron erosipetalum J.J. Sm. Vogelkop, closest<br />

to R. detznerianum Sleum. <strong>of</strong> Gara<strong>in</strong>a <strong>and</strong> Goilala<br />

(Sleumer, 1973),<br />

Xanthophytum Re<strong>in</strong>w. Vogelkop, disjunct at Morobe<br />

<strong>and</strong> the Papuan Pen<strong>in</strong>sula (Axelius, 1990),<br />

Romnalda P.F. Stevens. Japen Isl<strong>and</strong>, disjunct at the<br />

southern Morobe coast (Stevens, 1978),<br />

Rapanea m<strong>in</strong>utifolia Knoester, Wijn & Sleumer. Vogelkop,<br />

disjunct at Mount Ka<strong>in</strong>di, Mount Amungwiwa<br />

<strong>and</strong> Milne Bay (Sleumer, 1986),<br />

Alocasia pyrospatha A. Hay. Vogelkop, Misool I.,<br />

Rouffaer R. ( ˆ Tariku R., the western tributary <strong>of</strong><br />

Mamberamo R.) <strong>and</strong> disjunct at Lae (Hay & Wise,<br />

1991),<br />

Xanthomyrtus angustifolia A.J. Scott. Sulawesi,<br />

Vogelkop, Mount Ka<strong>in</strong>di, <strong>and</strong> (possibly) Normanby<br />

Isl<strong>and</strong> (Scott, 1979b),<br />

In many cases the gap is ®lled by a related taxon, for<br />

example the gap <strong>in</strong> Mammea odorata is at least partly ®lled<br />

by M. papuana (Laut.) Kosterm. <strong>in</strong> East Sepik (Stevens,<br />

1974b). Likewise, Jansen & Ridsdale (1983) described a<br />

series <strong>of</strong> Dolicholobium A. Gray. compris<strong>in</strong>g eleven species<br />

at, respectively: Japen Isl<strong>and</strong>; Idenburg River; Sepik area<br />

(two species); Huon Pen<strong>in</strong>sula/Port Moresby; Sudest Isl<strong>and</strong>;<br />

Woodlark/Misima Isl<strong>and</strong>s; Rossel Isl<strong>and</strong>; Bouga<strong>in</strong>ville; Solomon<br />

Isl<strong>and</strong>s (two species). The distribution basically skirts<br />

the north coast, but is not a simple cl<strong>in</strong>e; as Jansen &<br />

Ridsdale exclaimed, `The two species from the Sepik area<br />

[<strong>in</strong> the centre <strong>of</strong> the range] are the most different ones with<strong>in</strong><br />

this series!'. This gives a disjunction between Idenburg River<br />

<strong>and</strong> Huon Pen<strong>in</strong>sula similar to that <strong>of</strong> Alocasia pyrospatha<br />

(above).<br />

It is probably signi®cant that while the Tamrau terrane is<br />

unlike any <strong>of</strong> the other terranes <strong>in</strong> western Irian Jaya, there<br />

are similar sequences with mid-Miocene <strong>in</strong>termediate volcanics<br />

on the northern ¯ank <strong>of</strong> the central ranges <strong>in</strong> eastern<br />

Irian Jaya <strong>and</strong> PNG (Pigram & Davies, 1987). This recalls<br />

the proposed massive westward movement <strong>of</strong> the Halmahera<br />

arc cited above.<br />

As <strong>in</strong>dicated, a frequent variation <strong>of</strong> the Vogelkop ± Huon<br />

disconnecton is a Vogelkop ± Papuan Pen<strong>in</strong>sula disjunction.<br />

For example, Melanocharis arfakiana (F<strong>in</strong>sch) (Dicaeidae) is<br />

known only from Vogelkop (Arfak Mounta<strong>in</strong>s) <strong>and</strong> north <strong>of</strong><br />

Port Moresby (Matsika, halfway between Kairuku <strong>and</strong><br />

Mount Albert Edward), with sight records on the nearby<br />

Kokoda trail. Zosterops m<strong>in</strong>or tenuifrons (Greenway) is <strong>in</strong><br />

the Vogelkop (Tamrau Mounta<strong>in</strong>s) <strong>and</strong> also SE <strong>New</strong> Gu<strong>in</strong>ea<br />

(Herzog Mounta<strong>in</strong>s to Hydrographer's Mounta<strong>in</strong>s) (R<strong>and</strong> &<br />

Gilliard, 1967). Diamond (1972) referred to ®ve `drop-out'<br />

bird species which are present on the Vogelkop <strong>and</strong> <strong>in</strong> PNG<br />

but are not <strong>in</strong> the Irian Jaya mounta<strong>in</strong>s. Like the alp<strong>in</strong>e<br />

`drop-outs' considered below, these disjunctions can be<br />

expla<strong>in</strong>ed by movement <strong>and</strong> accretion <strong>of</strong> terranes rather than<br />

ext<strong>in</strong>ction <strong>of</strong> central populations.<br />

A further related Vogelkop disjunction is illustrated by<br />

Araliaceae, <strong>in</strong> which Frod<strong>in</strong> (1998) recorded Osmoxylon<br />

Boerl. disjunct between the Vogelkop <strong>and</strong> the Bismarck<br />

Archipelago, <strong>and</strong> Gastonia serratifolia (Miq.) Philipson disjunct<br />

between the Vogelkop <strong>and</strong> the central Solomons. Frod<strong>in</strong><br />

concluded that these patterns possibly relate to movement<br />

along the Sorong Fault, a strike-slip zone <strong>in</strong>itiated 20 Ma.<br />

It was shown above that the tie between the greenheaded,<br />

red-eyed paradisaeas (P. rubra on Western Papuan<br />

Isl<strong>and</strong>s, <strong>of</strong>f the Vogelkop, <strong>and</strong> P. guilielmi <strong>of</strong> Huon<br />

Pen<strong>in</strong>sula) represents a st<strong>and</strong>ard biogeographical connection.<br />

Paradisaea decora <strong>of</strong> the D'Entrecasteaux isl<strong>and</strong>s<br />

shares `wispy' or `decomposed' ¯ank-plumes with these<br />

two species, <strong>and</strong> perhaps the resultant northern track is also<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


906 M. Heads<br />

a real phenomenon. Although many distributions are<br />

disjunct between Karkar <strong>and</strong> nearby isl<strong>and</strong>s <strong>and</strong> the<br />

D'Entrecasteaux isl<strong>and</strong>s, or between Huon Pen<strong>in</strong>sula <strong>and</strong><br />

the Milne Bay ma<strong>in</strong>l<strong>and</strong>, there does not seem to be a direct<br />

biogeographical connection between Huon Pen<strong>in</strong>sula <strong>and</strong><br />

the D'Entrecasteaux isl<strong>and</strong>s. However, there is one between<br />

the D'Entrecasteaux region <strong>and</strong> the Vogelkop (2100 km).<br />

For example Archidendron tenuiracemosum Kanehira &<br />

Hatusima (Moluccas, Vogelkop) is a `very close' sister<br />

species <strong>of</strong> A. hoogl<strong>and</strong>ii Verdcourt (D'Entrecasteaux)<br />

(Nielsen et al., 1984), Salacia forsteniana Miq. is disjunct<br />

between the Moluccas/Waigeo <strong>and</strong> Normanby Isl<strong>and</strong> (D<strong>in</strong>g<br />

Hou, 1964), a group <strong>of</strong> four species <strong>in</strong> Philipson's (1986)<br />

key to Kibara Endl. (under couplet 8b) are only <strong>in</strong> the<br />

Vogelkop, <strong>and</strong> the D'Entrecasteaux <strong>and</strong> Louisiade isl<strong>and</strong>s,<br />

<strong>and</strong> the conifers disjunct between the Moluccaas <strong>and</strong> the<br />

Louisiades cited above have a similar pattern. This gives<br />

two st<strong>and</strong>ard l<strong>in</strong>ks, one between the Vogelkop <strong>and</strong> Huon<br />

Pen<strong>in</strong>sulas, <strong>and</strong> the other between the Vogelkop <strong>and</strong> the<br />

D'Entrecasteaux ± Louisiade isl<strong>and</strong>s.<br />

De Boer & Duffels (1996a,b) used terrane re-alignments,<br />

<strong>in</strong>clud<strong>in</strong>g a proposed eastern orig<strong>in</strong> <strong>of</strong> Vogelkop terranes,<br />

<strong>in</strong> a detailed rationalization <strong>of</strong> similar vast disjunctions<br />

(e.g. Vogelkop ± Solomon Isl<strong>and</strong>s) <strong>in</strong> cicadas, which also<br />

accounts for the Paradisaea species discussed here.<br />

Weyl<strong>and</strong> Mounta<strong>in</strong>s <strong>and</strong> Wissel Lakes<br />

This region lies right on the marg<strong>in</strong> <strong>of</strong> the craton <strong>and</strong> forms<br />

an important east/west boundary for many birds <strong>of</strong> <strong>paradise</strong>.<br />

Montane examples <strong>in</strong>clude Pteridophora, a lowl<strong>and</strong> example<br />

is Paradisaea apoda L<strong>in</strong>naeus (rang<strong>in</strong>g west to the<br />

southern foothills <strong>of</strong> the Weyl<strong>and</strong> mounta<strong>in</strong>s known as<br />

the Charles Louis Mounta<strong>in</strong>s). As well as be<strong>in</strong>g a boundary,<br />

the region is an important centre <strong>of</strong> endemism: Parotia c.<br />

carolae Meyer is only at the Wissel Lakes, <strong>and</strong> Astrapia s.<br />

splendidissima Rothschild is endemic to the range: Wissel<br />

Lakes ± Weyl<strong>and</strong> Mounta<strong>in</strong>s. The Parastacidae are a<br />

southern hemisphere family <strong>of</strong> large freshwater crustaceans<br />

with thirteen species <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, eight <strong>of</strong> which are<br />

endemic to the Wissel Lakes (Holthuis, 1982) (Recently<br />

Hansen & Richardson, 2000; suggested that genera <strong>in</strong> this<br />

family are at least 90 Ma old, <strong>and</strong> the species `far more<br />

ancient than formerly believed'.). The Weyl<strong>and</strong> Mounta<strong>in</strong>s<br />

are also a centre <strong>of</strong> disjunction: for example Drepanornis<br />

albertisi cerv<strong>in</strong>icauda is disjunct between there <strong>and</strong> the<br />

Doma Peaks <strong>in</strong> western PNG.<br />

Snow Mounta<strong>in</strong>s<br />

The ma<strong>in</strong> Irian Jaya ranges from the Weyl<strong>and</strong> Mounta<strong>in</strong>s to<br />

the Star Mounta<strong>in</strong>s <strong>in</strong>clude the highest peaks <strong>in</strong> the <strong>New</strong><br />

Gu<strong>in</strong>ea orogen (Mt Carstensz ˆ Mt Sukarno ˆ Mt Irian<br />

ˆ Mt Jaya, 5039 m) <strong>and</strong> also have the most dist<strong>in</strong>ctive <strong>and</strong><br />

numerous endemic birds. There are two endemic, monotypic<br />

genera, Anurophasis van Oort (Phasianidae) <strong>and</strong> Androphobus<br />

Hartert & Paludan (Orthonychidae), <strong>and</strong> four other<br />

endemic species <strong>in</strong> Petroica Swa<strong>in</strong>son, Pachycephala Vigors,<br />

Lonchura Sykes <strong>and</strong> Aegotheles Vigors & Hors®eld. Six<br />

species are shared only with the Vogelkop <strong>and</strong> are not <strong>in</strong><br />

eastern <strong>New</strong> Gu<strong>in</strong>ea.<br />

The whole <strong>of</strong> ma<strong>in</strong>l<strong>and</strong> Irian Jaya has thirty-two endemic<br />

bird species (Mack, 2000), compared with only ®fteen on the<br />

PNG ma<strong>in</strong>l<strong>and</strong> (Beehler, 1993). However, this difference<br />

does not result from a simple dropp<strong>in</strong>g-out <strong>of</strong> taxa from west<br />

to east. Several groups, <strong>in</strong>clud<strong>in</strong>g birds <strong>of</strong> <strong>paradise</strong>, are more<br />

diverse on the eastern side <strong>of</strong> the isl<strong>and</strong>: thirty three species<br />

<strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> are known from PNG, twenty-eight (that<br />

is, 15% fewer) from Irian Jaya, <strong>and</strong> there is also less<br />

subspeci®c differentiation on the western side <strong>of</strong> the isl<strong>and</strong><br />

(Croizat, 1958). This eastern bias is shown clearly <strong>in</strong> the<br />

genus Paradisaea L<strong>in</strong>naeus <strong>and</strong> <strong>in</strong> plants such as Parahebe<br />

W.R.B. Oliver (Heads, 1994), but its orig<strong>in</strong> is unknown. It<br />

may be related to the greater number <strong>of</strong> accreted terranes<br />

<strong>and</strong> more volcanic activity <strong>in</strong> PNG than <strong>in</strong> Irian Jaya (except<br />

the Vogelkop). The groups mass<strong>in</strong>g <strong>in</strong> eastern <strong>New</strong> Gu<strong>in</strong>ea<br />

are <strong>of</strong>ten `Australo-Papuan' taxa such as the Paradisaeidae<br />

or Parahebe, <strong>and</strong> dom<strong>in</strong>ate the PNG biota; <strong>of</strong> the ®fteen<br />

PNG ma<strong>in</strong>l<strong>and</strong> endemics, seven are birds <strong>of</strong> <strong>paradise</strong> <strong>and</strong><br />

two are bowerbirds.<br />

Papua <strong>New</strong> Gu<strong>in</strong>ea Highl<strong>and</strong>s<br />

Diamond (1972) observed that the highly localized or<br />

`patchy' distributions <strong>of</strong> many montane <strong>New</strong> Gu<strong>in</strong>ea birds<br />

comes <strong>in</strong>itially as a surprise to some temperate zone<br />

ornithologists, whose ®rst reaction may be to dismiss the<br />

phenomenon with a trivial explanation such as the patch<strong>in</strong>ess<br />

be<strong>in</strong>g the result <strong>of</strong> <strong>in</strong>adequate exploration or highly<br />

specialized habitats. However, `enough is known about<br />

distribution <strong>in</strong> most cases, <strong>and</strong> about habits <strong>in</strong> many cases,<br />

to dismiss these explanations'. Diamond (1972, 1973) cited<br />

several birds, <strong>in</strong>clud<strong>in</strong>g Macgregoria, under the head<strong>in</strong>g<br />

`drop-outs <strong>in</strong> the eastern (i.e. PNG) highl<strong>and</strong>s'. He wrote:<br />

`The central divid<strong>in</strong>g range <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea provides an<br />

un<strong>in</strong>terrupted expanse <strong>of</strong> montane forest for 1600 km.<br />

Nevertheless, eighteen montane bird species that would<br />

otherwise be uniformly distributed have a distributional gap<br />

<strong>of</strong> several hundred kilometers somewhere along the Central<br />

range'. These taxa sometimes have the gap ®lled by a closely<br />

related taxon, but <strong>of</strong>ten not. Diamond suggested that the<br />

drop-outs were expla<strong>in</strong>ed by local ext<strong>in</strong>ction, although Pratt<br />

(1982) observed that what factors caused the local ext<strong>in</strong>ction<br />

<strong>in</strong> the ®rst place `are not altogether clear'. It seems just as<br />

likely that the distributions are expla<strong>in</strong>ed by the species<br />

`dropp<strong>in</strong>g <strong>in</strong>', through hav<strong>in</strong>g been present on some accret<strong>in</strong>g<br />

terranes <strong>and</strong> hav<strong>in</strong>g always been absent from others.<br />

Large scale right-lateral <strong>and</strong> left-lateral movements have<br />

been proposed along many <strong>New</strong> Gu<strong>in</strong>ea faults <strong>and</strong> may have<br />

caused disjunctions; Diamond (1986) noted that many <strong>New</strong><br />

Gu<strong>in</strong>ea birds are `extremely sedentary'.<br />

Similarly, the mounta<strong>in</strong>s <strong>of</strong> the Papuan Pen<strong>in</strong>sula, SE <strong>New</strong><br />

Gu<strong>in</strong>ea (ma<strong>in</strong>ly Owen Stanley <strong>and</strong> Bowutu terranes) also<br />

`<strong>in</strong>explicably' (Diamond, 1972) lack several montane birds<br />

<strong>of</strong> <strong>paradise</strong> that are present throughout the rest <strong>of</strong> the <strong>New</strong><br />

Gu<strong>in</strong>ea cordillera (Loboparadisaea Rothschild, Pteridophora<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 907<br />

Meyer, Paradigalla Lesson, <strong>and</strong> others discussed below). The<br />

north coast here also lacks several otherwise widespread<br />

lowl<strong>and</strong> species, although it is a centre <strong>of</strong> endemism for<br />

other taxa. Aga<strong>in</strong>, these st<strong>and</strong>ard patterns <strong>of</strong> distribution are<br />

probably `<strong>in</strong>explicable' because an unrealistic concept <strong>of</strong><br />

dispersal is be<strong>in</strong>g used: for the same reason, the absence <strong>of</strong><br />

woodpeckers <strong>and</strong> trogons from <strong>New</strong> Gu<strong>in</strong>ea is `almost<br />

mysterious', <strong>and</strong> the Vogelkop disjunctions <strong>in</strong> Astrapia,<br />

Parotia, Paradisaea <strong>and</strong> others are `curious' or even `peculiar<br />

<strong>in</strong> the extreme' (Frith & Beehler, 1998).<br />

The central ranges divide Paradisaea m<strong>in</strong>or Shaw <strong>and</strong><br />

P. raggiana Sclater <strong>in</strong>to their northern <strong>and</strong> southern sectors,<br />

as <strong>in</strong> other taxa such as Goura victoria Fraser <strong>and</strong><br />

G. scheepmakeri F<strong>in</strong>sch, Psittaculirostris edwardsii Oustalet<br />

<strong>and</strong> P. desmarestii (Desmarest), <strong>and</strong> Lalage atrovirens Gray<br />

<strong>and</strong> L. leucomela Vieillot (R<strong>and</strong> & Gilliard, 1967). In a<br />

centre <strong>of</strong> orig<strong>in</strong>/<strong>in</strong>vasion model the central ranges constitute<br />

a barrier which has been crossed from either the north or<br />

south. In the simpler vicariance model the northern <strong>and</strong><br />

southern ranges have evolved through allopatric evolution<br />

follow<strong>in</strong>g uplift, although this pattern may also have been<br />

<strong>in</strong>¯uenced by terrane accretion. Similarly, <strong>in</strong> the Papuan<br />

Pen<strong>in</strong>sula Parotia splits up the Owen Stanley Range<br />

between northern <strong>and</strong> southern watershed forms (Parotia<br />

l. lawesii Ramsay <strong>and</strong> P. l. helenae De Vis) as does<br />

Peneothello bimaculatus (Salvadori) with the nom<strong>in</strong>ate<br />

subspecies <strong>in</strong> Irian Jaya <strong>and</strong> on the southern slopes <strong>of</strong><br />

SE <strong>New</strong> Gu<strong>in</strong>ea mounta<strong>in</strong>s, <strong>and</strong> P. b. vicarius De Vis on<br />

Huon Pen<strong>in</strong>sula <strong>and</strong> on the northern slopes <strong>of</strong> SE <strong>New</strong><br />

Gu<strong>in</strong>ea mounta<strong>in</strong>s. Detailed mapp<strong>in</strong>g is needed to decide<br />

if this pattern is an effect <strong>of</strong> aspect, which <strong>in</strong>¯uences the<br />

local climate even at such low latitudes, <strong>of</strong> terrane tectonics,<br />

or both.<br />

The craton marg<strong>in</strong> <strong>in</strong> the Papua <strong>New</strong> Gu<strong>in</strong>ea<br />

Highl<strong>and</strong>s<br />

<strong>Birds</strong> <strong>of</strong> <strong>paradise</strong> <strong>and</strong> bowerbirds both have their greatest<br />

diversity <strong>of</strong> species per 1° ´1° square <strong>in</strong> the Mount Hagen ±<br />

Wahgi Valley ± Jimi Valley square (Heads, <strong>in</strong> press). The<br />

former marg<strong>in</strong> <strong>of</strong> the Australian craton runs through this<br />

grid square which is also geologically dist<strong>in</strong>ctive <strong>in</strong> hav<strong>in</strong>g<br />

several diverse accreted terranes, one an ophiolite complex,<br />

juxtaposed there (Figs 4 & 29). As well as be<strong>in</strong>g a zone <strong>of</strong><br />

high diversity, the region along the craton marg<strong>in</strong> represents<br />

a major biogeographical break. Many mid-montane birds <strong>in</strong><br />

PNG are differentiated <strong>in</strong>to western <strong>and</strong> eastern forms, <strong>and</strong><br />

<strong>of</strong>ten the break co<strong>in</strong>cides with the craton marg<strong>in</strong> (Figs 2, 4 &<br />

29). Examples <strong>of</strong> this are given here.<br />

The blue bird <strong>of</strong> <strong>paradise</strong> Paradisaea rudolphi (F<strong>in</strong>sch)<br />

(Fig. 30) shows a clear subspecies break between Karimui<br />

(on the craton) <strong>and</strong> Okapa (<strong>of</strong>f the craton) well-documented<br />

by Diamond (1972). A similar break is seen <strong>in</strong> other birds:<br />

Corac<strong>in</strong>a caeruleogrisea strenua Schlegel is <strong>in</strong> western <strong>New</strong><br />

Gu<strong>in</strong>ea, east to Karimui, C. c. adamsoni Mayr & R<strong>and</strong><br />

replaces it at <strong>and</strong> east <strong>of</strong> Aw<strong>and</strong>e-Okasa (by Okapa);<br />

Sericornis nouhuysi stresemanni Mayr ranges east to Wahgi<br />

Valley <strong>and</strong> Mount Karimui; S. n. oorti Rothschild & Hartert<br />

takes over from Okapa east to SE <strong>New</strong> Gu<strong>in</strong>ea.<br />

The yellow-breasted bird <strong>of</strong> <strong>paradise</strong> Loboparadisaea<br />

sericea Rothschild (Fig. 31) is also divided by the craton<br />

marg<strong>in</strong> <strong>in</strong>to two subspecies, with a morphologically <strong>in</strong>termediate<br />

population located right on the marg<strong>in</strong>.<br />

A similar distribution break is seen between Amalocichla<br />

<strong>in</strong>certa olivascentior Hartert at Karimui <strong>and</strong> po<strong>in</strong>ts west,<br />

<strong>and</strong> A. i. brevicauda De Vis at Schrader Range, Huon<br />

Pen<strong>in</strong>sula, <strong>and</strong> SE <strong>New</strong> Gu<strong>in</strong>ea (Diamond, 1972). Three<br />

Figure 29 Geology <strong>of</strong> the PNG Highl<strong>and</strong>s<br />

(greatly simpli®ed after Ba<strong>in</strong> et al., 1972 <strong>and</strong><br />

Pigram & Davies, 1987) show<strong>in</strong>g accreted<br />

terranes (stippled), the ultrama®c Marum<br />

terrane (hatched), craton marg<strong>in</strong> (solid l<strong>in</strong>e),<br />

<strong>in</strong>trusive rocks (black), Quaternary volcanic<br />

rocks (v-symbols), <strong>and</strong> the Permian rocks <strong>of</strong><br />

the Kubor Mounta<strong>in</strong>s (cross hatched).<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


908 M. Heads<br />

Figure 30 The distribution <strong>of</strong> Paradisaea rudolphi <strong>in</strong> central<br />

PNG (there are additional records <strong>of</strong> P. r. rudolphi further SE).<br />

Figure 32 Orchidaceae. Corybas royenii Kores (triangles), Dendrobium<br />

kerewense van Royen (stars), D. guttatum J.J. Smith (squares),<br />

D. semeion van Royen (squares) (the af®nities <strong>of</strong> this species with<br />

West Irian species are <strong>in</strong>dicated by arrow), D. chamaephytum<br />

Schlechter (cont<strong>in</strong>uous l<strong>in</strong>e), D. euryanthemum Schlechter (cont<strong>in</strong>uous<br />

l<strong>in</strong>e), D. kerigomnense van Royen (at K ˆ Mount Kerigomna),<br />

D. auranti¯avum van Royen (dots connected by dotted<br />

l<strong>in</strong>e), D. alp<strong>in</strong>um van Royen (hatched l<strong>in</strong>e) <strong>and</strong> D. teligerum van<br />

Royen (broken l<strong>in</strong>e).<br />

Figure 31 The distribution <strong>of</strong> Loboparadisaea <strong>in</strong> the PNG Highl<strong>and</strong>s<br />

(L. s. sericea extends further west).<br />

other species have races on the outly<strong>in</strong>g Schrader Range,<br />

north <strong>of</strong> the craton marg<strong>in</strong> <strong>and</strong> between the Jimi <strong>and</strong> Ramu<br />

Rivers, that are dist<strong>in</strong>ct from birds <strong>in</strong> the rema<strong>in</strong>der <strong>of</strong> the<br />

highl<strong>and</strong>s: Melidectes rufocrissalis Reichenow, M. belfordi<br />

De Vis, <strong>and</strong> Astrapia stephaniae.<br />

It is <strong>in</strong>terest<strong>in</strong>g that parts <strong>of</strong> the Schrader terrane strongly<br />

resemble the northern part <strong>of</strong> the Owen Stanley terrane<br />

geologically (Pigram & Davies, 1987). If the Schrader<br />

terrane should prove to be a dismembered portion <strong>of</strong> the<br />

Owen Stanley terrane it would imply a left-lateral <strong>of</strong>fset <strong>of</strong> c.<br />

300 km along the Ramu-Markham <strong>and</strong> Bundi Fault Zones.<br />

Similar biogeographical breaks at the craton marg<strong>in</strong> occur<br />

<strong>in</strong> other plant <strong>and</strong> animal taxa. The shrub Drimys piperita<br />

entity `reducta' (Diels) V<strong>in</strong>k: Wissel Lakes, Mount Wilhelm<strong>in</strong>a,<br />

Mount Giluwe <strong>and</strong> the Kubor Mounta<strong>in</strong>s, <strong>and</strong> entity<br />

`subalp<strong>in</strong>a' V<strong>in</strong>k: Mount Wilhelm, act as a pair <strong>of</strong> `replac<strong>in</strong>g<br />

taxa' (V<strong>in</strong>k, 1970). V<strong>in</strong>k reported the `unexpla<strong>in</strong>ed circumstance'<br />

that the form <strong>of</strong> reducta most dist<strong>in</strong>ct from subalp<strong>in</strong>a<br />

is found at the Kubor Mounta<strong>in</strong>s ± the locality closest to<br />

Mount Wilhelm, while the form which connects the two<br />

morphologically, entity `subpittosporoides' V<strong>in</strong>k, is restricted<br />

to Mount Wilhelm<strong>in</strong>a. Aga<strong>in</strong>, this arrangement could be<br />

expla<strong>in</strong>ed by (right) lateral movement <strong>of</strong> terranes.<br />

Other examples <strong>of</strong> plant differentiation around the craton<br />

boundary <strong>in</strong>clude species <strong>of</strong> orchids (Corybas Salisb.,<br />

Dendrobium Sw., Fig. 32; Glossorhyncha Ridl., Fig. 33),<br />

Rhododendron L. (Fig. 34), Compositae (Tetramolopium<br />

Nees, Fig. 35; Olearia Moench, Fig. 36) <strong>and</strong> Rubiaceae<br />

(Amaracarpus Blume, Fig. 37) (distributions from van Royen,<br />

1979±1983). Sometimes these angiosperms are assumed to<br />

be recent groups, but recent molecular work has found that<br />

Orchidaceae, for example, may have evolved `much earlier<br />

than is traditionally believed' (Cameron, 2000).<br />

Vertebrates other than birds also show the biogeographical<br />

break at the craton marg<strong>in</strong> clearly. The lizard Emoia p. purari<br />

Brown ranges <strong>in</strong> PNG east to Karimui, while the second<br />

member <strong>of</strong> the species, Emoia p. physicae (DumeÂril &<br />

Bibron), replaces it from Wau eastwards (Brown, 1991).<br />

Colubrid snakes (Fig. 38) show a similar distributional break.<br />

In mammals, similar distributions are shown <strong>in</strong> marsupial<br />

genera (Fig. 39) (Flannery, 1995) <strong>and</strong> bat species (Figs 40 &<br />

41) (Bonaccorso, 1998).<br />

Flannery (1995) observed that SE <strong>New</strong> Gu<strong>in</strong>ea (south <strong>of</strong> a<br />

l<strong>in</strong>e: Kerema ± Gara<strong>in</strong>a) is biogeographically dist<strong>in</strong>ct from<br />

the central PNG highl<strong>and</strong>s <strong>and</strong> has a `particularly high<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 909<br />

Figure 33 Glossorhyncha ambuensis van Royen (Orchidaceae)<br />

(square), G. nigrimarg<strong>in</strong>ata van Royen (dots connected with dotted<br />

l<strong>in</strong>e), G. m<strong>in</strong>jensis van Royen (triangle), G. ¯uviatilis van Royen <strong>and</strong><br />

G. p<strong>in</strong>ifolia van Royen (at W ˆ Mount Wilhelm), G. altigena van<br />

Royen (solid l<strong>in</strong>e), G. tenuis (Rolfe) van Royen (hatched l<strong>in</strong>e), G.<br />

nigricans van Royen (stippled l<strong>in</strong>e), G. chlorantha van Royen <strong>and</strong> G.<br />

tubisepala van Royen (at M ˆ Mount Michael), G. hamadryas<br />

Schlechter (broken l<strong>in</strong>e); related to G. daymanensis van Royen <strong>of</strong> the<br />

Maneau Range (arrow). Piora Koster (Compositae) at Mounts Piora<br />

<strong>and</strong> Amungwiwa (triangles).<br />

Figure 35 Tetramolopium procumbens Koster (Compositae)<br />

(triangle with cross-hatch<strong>in</strong>g), T. macrum (F. Muell.) Mattfeld var.<br />

glabrescens Koster (triangle with hatch<strong>in</strong>g, also at Mount<br />

Carstensz), T. macrum var. album Koster (hatched l<strong>in</strong>e) (the third<br />

variety <strong>in</strong> the species, var. macrum, is widespread through <strong>New</strong><br />

Gu<strong>in</strong>ea), T. al<strong>in</strong>ae (F. Muell.) Mattfeld (cont<strong>in</strong>uous l<strong>in</strong>e), T. pioraense<br />

van Royen (triangle) (show<strong>in</strong>g af®nities with a species from<br />

Mount Wilhelm<strong>in</strong>a), T. ciliatum Mattfeld (broken l<strong>in</strong>e).<br />

Figure 34 Rhododendron blackii Sleumer (Ericaceae) (horizontal<br />

hatch<strong>in</strong>g), R. saxifragoides J.J. Smith (vertical hatch<strong>in</strong>g, also <strong>in</strong> Star<br />

Mounta<strong>in</strong>s, Mount Wilhelm<strong>in</strong>a, Mount Carstensz), R. vitis-idaea<br />

Sleumer (cont<strong>in</strong>uous l<strong>in</strong>e), R. alticolum Sleumer (hatched l<strong>in</strong>e),<br />

R. rubellum Sleumer (stippled l<strong>in</strong>e).<br />

degree <strong>of</strong> endemism <strong>in</strong> mammals¼ Why these species have<br />

not spread beyond the region is mysterious, as many <strong>of</strong> its<br />

endemics are found over a wide altitud<strong>in</strong>al range¼ Competition<br />

with near relatives could not be a factor, as the<br />

nearest relatives <strong>of</strong> many <strong>of</strong> these endemics also exist <strong>in</strong> the<br />

south-east. Furthermore there do not appear to be any<br />

climatic or topographic barriers to dispersion¼'.<br />

Summariz<strong>in</strong>g, the effect <strong>of</strong> the craton boundary is the<br />

same <strong>in</strong> orchids, rhododendrons, marsupials, snakes <strong>and</strong> the<br />

Figure 36 Olearia lanata Koster (Compositae) (squares <strong>and</strong> stippled<br />

l<strong>in</strong>e), O. hoogl<strong>and</strong>ii Koster at S ˆ Sugarloaf, O. lepidota<br />

Mattfeld var. lepidota (hatched l<strong>in</strong>e, also at Star Mounta<strong>in</strong>s),<br />

O. lepidota var. opaca Koster (triangles), O. monticola Bailey (three<br />

subpecies) (solid l<strong>in</strong>e).<br />

blue bird <strong>of</strong> <strong>paradise</strong>: southern <strong>and</strong> western forms are<br />

separated from northern <strong>and</strong> eastern forms for no apparent<br />

ecological reason but with the break precisely correlated<br />

with the craton marg<strong>in</strong>. The same distribution is shown by<br />

organisms with very different <strong>ecology</strong> <strong>and</strong> means <strong>of</strong> dispersal,<br />

<strong>in</strong>dicat<strong>in</strong>g that these have not been primary factors<br />

mould<strong>in</strong>g the <strong>biogeography</strong>.<br />

Under the head<strong>in</strong>g `Anomalies', Frith & Beehler (1998)<br />

noted that several birds <strong>of</strong> <strong>paradise</strong> that are otherwise<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


910 M. Heads<br />

Figure 37 Amaracarpus nummatus van Royen (Rubiaceae)<br />

(triangles), A. montiswilhelmi van Royen (hatched l<strong>in</strong>e), A. clemensae<br />

Merrill & Perry (cont<strong>in</strong>uous l<strong>in</strong>e).<br />

Figure 40 The distribution <strong>of</strong> M<strong>in</strong>iopterus p. propitristis Peterson<br />

<strong>and</strong> M. p. gr<strong>and</strong>is Peterson (Chiroptera).<br />

Figure 38 The distribution <strong>of</strong> Tropidonophis parkeri Malnate <strong>and</strong><br />

T. aenigmaticus Malnate (Serpentes).<br />

Figure 41 The distribution <strong>of</strong> Rh<strong>in</strong>olophus arcuatus Peters <strong>and</strong><br />

Pipistrellus coll<strong>in</strong>us Thomas (Chiroptera).<br />

Figure 39 The distribution <strong>of</strong> Neophascogale Ste<strong>in</strong> <strong>and</strong> Phascolosorex<br />

Matschie (Marsupialia). Craton marg<strong>in</strong> as stippled l<strong>in</strong>e.<br />

widespread on the cordillera are absent from the Papuan<br />

Pen<strong>in</strong>sula. They used the term `Watut-Tauri Gap' to describe<br />

the biogeographical boundary between the birds <strong>of</strong> the<br />

Papuan Pen<strong>in</strong>sula <strong>and</strong> those <strong>of</strong> the central Highl<strong>and</strong>s <strong>of</strong><br />

PNG, <strong>and</strong> this is the boundary correlated above with the<br />

craton marg<strong>in</strong>. The exact location <strong>of</strong> this boundary rema<strong>in</strong>s<br />

uncerta<strong>in</strong>: Frith & Beehler (1998) wrote that `The southeastern<br />

term<strong>in</strong>us <strong>of</strong> the distribution <strong>of</strong> Paradigalla, Pteridophora<br />

<strong>and</strong> Epimachus fastuosus is the Kratke Range. It is<br />

apparent there is some sort <strong>of</strong> distributional barrier southeast<br />

<strong>of</strong> the Kratke Mounta<strong>in</strong>s'. Likewise, they write that<br />

E. meyeri bloodi ranges east `presumably' to the Kratke<br />

Range. However, Frith & Beehler are only predict<strong>in</strong>g the<br />

occurrence <strong>of</strong> these birds at the Kratke Mounta<strong>in</strong>s; their<br />

actual known limits are Goroka, Okapa, Okapa/Ka<strong>in</strong>antu<br />

<strong>and</strong> Goroka, respectively, all ly<strong>in</strong>g even closer to the craton<br />

marg<strong>in</strong>.<br />

The Kratke Mounta<strong>in</strong>s are nevertheless located at, or<br />

near, an important biogeographical boundary <strong>in</strong> the group,<br />

for example they mark the western limit <strong>of</strong> Paradisaea r.<br />

rudolphi (Fig. 30; cf. Piora Koster ± Fig. 33). Other birds<br />

such as Melidectes pr<strong>in</strong>ceps range east to the Kratke<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 911<br />

Mounta<strong>in</strong>s (Beehler et al., 1986), <strong>and</strong> are `strangely enough'<br />

(R<strong>and</strong> & Gilliard, 1967) not represented <strong>in</strong> SE <strong>New</strong> Gu<strong>in</strong>ea.<br />

The Kratke Mounta<strong>in</strong>s are also an important centre for local<br />

endemics, such as the fern Grammitis silvicola Parris (Parris,<br />

1983). Although they are relatively accessible they are still<br />

largely unexplored for birds <strong>of</strong> <strong>paradise</strong>. There are no<br />

records <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> from a potentially very <strong>in</strong>terest<strong>in</strong>g<br />

area between Mount Piora (Kratke Mounta<strong>in</strong>s) <strong>and</strong><br />

Kerema. This region <strong>of</strong> 150 ´ 50 km is covered <strong>in</strong> ra<strong>in</strong>forest,<br />

straddles the craton marg<strong>in</strong> <strong>and</strong> <strong>in</strong>cludes the accreted<br />

ultrama®c Menyamya terrane (Pigram & Davies, 1987;<br />

not shown on the map <strong>of</strong> Ba<strong>in</strong> et al., 1972).<br />

Parts <strong>of</strong> the Bismarck Range (Jimi <strong>and</strong> Benabena terranes)<br />

just north <strong>of</strong> the craton marg<strong>in</strong> bear outly<strong>in</strong>g populations <strong>of</strong><br />

many taxa otherwise found only on the craton, for example<br />

Paradisaea rudolphi margaritae (Fig. 30). This could be the<br />

result <strong>of</strong> local range expansion across the terrane suture, or<br />

there may be a purely tectonic explanation: Pigram & Davies<br />

(1987) <strong>in</strong>dicated that the Jimi <strong>and</strong> Bena Bena terranes<br />

(`stitched' together by the batholith which forms Mount<br />

Wilhelm) are probably displaced portions <strong>of</strong> the northern<br />

edge <strong>of</strong> the craton. The amount <strong>of</strong> displacement, if any, has<br />

not been determ<strong>in</strong>ed. The Mount Wilhelm batholith, whether<br />

or not regarded as a separate terrane (Pigram & Davies,<br />

1987 map it as part <strong>of</strong> the Australian craton) is separated<br />

from the craton by the Bismarck Fault Zone <strong>and</strong> is<br />

biogeographically dist<strong>in</strong>ct.<br />

The north coastal ranges<br />

The Idenburg, Sepik, Ramu <strong>and</strong> Markham Rivers form a<br />

1300-km-long trough <strong>of</strong> structural orig<strong>in</strong> separat<strong>in</strong>g the<br />

central <strong>New</strong> Gu<strong>in</strong>ea cordillera from the north coastal ranges.<br />

Gilliard (1969) wrote that `next to the central cordillera this<br />

depression is the most important zoogeographical barrier on<br />

the ma<strong>in</strong>l<strong>and</strong> <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea'. The differences between the<br />

faunas <strong>of</strong> the central ranges <strong>and</strong> those <strong>of</strong> the north coastal<br />

ranges (e.g. Parotia lawesii compared with P. wahnesi) `are<br />

<strong>of</strong> the sort one would expect to ®nd on moderately isolated<br />

oceanic isl<strong>and</strong>s (which is perhaps what they once were), not<br />

on mounta<strong>in</strong>s situated 12 miles apart across a narrow<br />

valley!¼ Thus it seems that the Central Depression has,<br />

<strong>and</strong> is still play<strong>in</strong>g an important part <strong>in</strong> the speciation <strong>of</strong><br />

many l<strong>in</strong>es <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea animals'. While it is true that the<br />

depression marks an important biogeographical boundary,<br />

this may not have been caused by the depression as such but<br />

rather by the long-term tectonic history <strong>of</strong> the terranes <strong>in</strong> the<br />

region. It has been suggested that colonization across the<br />

Mamberamo-Sepik-Ramu-Markham gulch by midmontane<br />

birds has been `practically a one-way affair', from the central<br />

mounta<strong>in</strong>s to the small northern mounta<strong>in</strong> isl<strong>and</strong>s<br />

(Diamond, 1972, 1985), but there is no real evidence for<br />

these <strong>in</strong>vasions over current geography. The Vogelkop ±<br />

Huon disjunctions discussed above <strong>in</strong>dicate that the<br />

situation is much more complex, <strong>and</strong> probably <strong>in</strong>volves<br />

major tectonic changes.<br />

Drepanornis bruijnii has `the most anomalous' <strong>and</strong><br />

`unexpla<strong>in</strong>ed' range <strong>in</strong> the Paradisaeidae (Frith & Beehler,<br />

1998): lowl<strong>and</strong>s <strong>of</strong> NW <strong>New</strong> Gu<strong>in</strong>ea north <strong>of</strong> the central<br />

depression from Geelv<strong>in</strong>k Bay to Vanimo. However, a very<br />

similar distribution is seen <strong>in</strong> many birds, such as the ®g<br />

parrot Psittaculirostris salvadorii (Oustalet) (east Geelv<strong>in</strong>k<br />

Bay to Cyclops Mounta<strong>in</strong>s by Jayapura) (Forshaw &<br />

Cooper, 1978; Beehler et al., 1986). One hypothesis Frith &<br />

Beehler (1998) cited for the distribution is that D. bruijnii<br />

differentiated <strong>in</strong> isolation <strong>in</strong> the north coastal ranges dur<strong>in</strong>g<br />

a period <strong>of</strong> high sea-level that ¯ooded the bas<strong>in</strong>s <strong>of</strong> the<br />

Idenburg <strong>and</strong> Sepik Rivers. However, if the concept <strong>of</strong><br />

accreted terranes is correct the regions north <strong>and</strong> south <strong>of</strong><br />

the depression have been separated by much more than a<br />

simple ¯ood<strong>in</strong>g <strong>of</strong> the current topography.<br />

The upper Watut Valley<br />

Epimachus m. meyeri ranges through the Papuan Pen<strong>in</strong>sula<br />

north-west to Mount Missim, above the towns <strong>of</strong> Wau <strong>and</strong><br />

Bulolo. Similarly, Manucodia keraudrenii purpureoviolacea<br />

Meyer ranges north-west to Wau, as does Lophor<strong>in</strong>a superba<br />

m<strong>in</strong>or where it meets L. s. connectens Mayr possibly endemic<br />

to the Herzog Mounta<strong>in</strong>s (although not recognized by Frith<br />

& Beehler, 1998). From the other direction, Loboparadisaea<br />

ranges through <strong>New</strong> Gu<strong>in</strong>ea, south-east to the nearby Herzog<br />

Mounta<strong>in</strong>s <strong>and</strong> Wau. As well as be<strong>in</strong>g a boundary, Mount<br />

Missim <strong>and</strong> the Herzog Mounta<strong>in</strong>s ( ˆ Mount Shungol)<br />

comprise a centre <strong>of</strong> endemism for bird subspecies <strong>in</strong> Mirafra,<br />

Pachycephala, Colluric<strong>in</strong>cla, Melidectes, <strong>and</strong> Rhamphocharis<br />

(R<strong>and</strong> & Gilliard, 1967). Plants <strong>in</strong> this upper Watut River<br />

region <strong>in</strong>clude Langsdorf®a Mart., known only from Mount<br />

Missim, Madagascar, <strong>and</strong> tropical America (Hansen, 1974;<br />

Streimann, 1983), <strong>and</strong> Hartleya, known only from Mount<br />

Shungol <strong>and</strong> Mount Ka<strong>in</strong>di with sterile specimens from the<br />

Vogelkop <strong>and</strong> its nearest relative, Gastrolepis Tiegh., <strong>in</strong> <strong>New</strong><br />

Caledonia (Sleumer, 1971). There are as many as six<br />

Solanum species locally endemic <strong>in</strong> the upper Watut (Symon,<br />

1985). Like E. m. meyeri, many plants endemic to SE <strong>New</strong><br />

Gu<strong>in</strong>ea reach their north-west limit here, for example<br />

dist<strong>in</strong>ctive genera <strong>in</strong> Sapotaceae (Magodendron V<strong>in</strong>k ± V<strong>in</strong>k,<br />

1995), Rubiaceae (Anthorrhiza Huxley & Jebb ± Huxley &<br />

Jebb, 1991) <strong>and</strong> Monimiaceae (Kairoa Philipson ± Philipson,<br />

1980). The area is the northern limit <strong>of</strong> the Owen Stanley<br />

terrane schists, <strong>and</strong> is marked by mid-Tertiary <strong>in</strong>trusions,<br />

ma<strong>in</strong>ly granodiorite, which form the mounta<strong>in</strong>s bound<strong>in</strong>g<br />

the Watut catchment: Shungol, Missim, Ka<strong>in</strong>di, <strong>and</strong><br />

Amungwiwa. Each <strong>of</strong> these is a centre <strong>of</strong> endemism for<br />

different groups.<br />

Diamond (1972) <strong>in</strong>terpreted the distribution <strong>of</strong> Lonchura<br />

species here as the result <strong>of</strong> recent, unpredictable colonization<br />

± `An extreme example <strong>of</strong> this irregularity occurs <strong>in</strong><br />

the Herzog Mounta<strong>in</strong>s, where four different colonists<br />

occur at four different localities with<strong>in</strong> 35 miles:<br />

L. tristissima <strong>in</strong> the Snake River valley, L. castaneothorax<br />

at Mumena [ˆ Mumeng] Creek, L. gr<strong>and</strong>is at Biolowat<br />

[ˆ Bulowat], <strong>and</strong> L. spectabilis at Wau'. However, this<br />

local vicariance may be related to distribution <strong>of</strong> each<br />

species as a whole, <strong>and</strong> also to the complex tectonic<br />

history <strong>of</strong> the area.<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


912 M. Heads<br />

Milne Bay isl<strong>and</strong>s<br />

The isl<strong>and</strong>s <strong>of</strong> the D'Entrecasteaux <strong>and</strong> Louisiade Archipelagos<br />

form an eastward extension <strong>of</strong> the <strong>New</strong> Gu<strong>in</strong>ea orogen<br />

possibly related to the Owen Stanley terrane (Pigram &<br />

Davies, 1987) <strong>and</strong> the D'Entrecasteaux isl<strong>and</strong>s <strong>in</strong>clude active<br />

metamorphic core complexes (Tregon<strong>in</strong>g et al., 1998). The<br />

low Trobri<strong>and</strong> Isl<strong>and</strong>s to the north also lie with<strong>in</strong> the belt.<br />

<strong>Birds</strong> <strong>of</strong> <strong>paradise</strong> are represented <strong>in</strong> this region only by three<br />

species <strong>of</strong> Manucodia. M. keraudrenii hunste<strong>in</strong>i is endemic<br />

to the three D'Entrecasteaux isl<strong>and</strong>s. M. comrii Sclater is<br />

known only from these same isl<strong>and</strong>s (M. c. comrii) <strong>and</strong>, at<br />

the family's limit, the Trobri<strong>and</strong> Isl<strong>and</strong>s (M. c. trobri<strong>and</strong>i<br />

Mayr); there is a spread<strong>in</strong>g centre <strong>in</strong> the Woodlark Bas<strong>in</strong><br />

(de Boer & Duffels, 1996a; Tregon<strong>in</strong>g et al., 1998) <strong>and</strong> these<br />

ranges may have been split apart by the open<strong>in</strong>g <strong>of</strong> the bas<strong>in</strong>.<br />

F<strong>in</strong>ally, M. atra Lesson has an endemic race, M. a. altera<br />

Rothschild <strong>and</strong> Hartert, on Sudest ( ˆ Tagula) I. <strong>in</strong> the<br />

Louisiades, but is not present on the D'Entrecasteaux or<br />

Trobri<strong>and</strong> Isl<strong>and</strong>s.<br />

It is strik<strong>in</strong>g that the only isl<strong>and</strong>s <strong>of</strong>f <strong>New</strong> Gu<strong>in</strong>ea that<br />

birds <strong>of</strong> <strong>paradise</strong> occur on ± northern Moluccas, Western<br />

Papuan Isl<strong>and</strong>s, Japen, D'Entrecasteaux, Trobri<strong>and</strong>s, <strong>and</strong><br />

Sudest ± all lie with<strong>in</strong> the <strong>New</strong> Gu<strong>in</strong>ea orogen (Fig. 2). The<br />

isl<strong>and</strong>s <strong>of</strong> Manam, Karkar <strong>and</strong> the Bismarck Archipelago lie<br />

outside this belt <strong>and</strong> do not have birds <strong>of</strong> <strong>paradise</strong>. A very<br />

similar distribution on the ma<strong>in</strong>l<strong>and</strong> <strong>and</strong> the Milne Bay<br />

Isl<strong>and</strong>s, but absent from the Bismarck Archipelago, is seen <strong>in</strong><br />

the snake Tropidonophis aenigmaticus Malnate (Fig. 38).<br />

Restricted isl<strong>and</strong> endemics, such as Semioptera <strong>and</strong><br />

Lycocorax on the Moluccas <strong>and</strong> Manucodia atra altera on<br />

Sudest, are usually assumed to have been derived from a<br />

widespread population on the ma<strong>in</strong>l<strong>and</strong>. However, the<br />

isl<strong>and</strong> endemics may once have had a much more extensive<br />

distribution on now-sunken l<strong>and</strong>, for example around<br />

Sudest, which is `obviously submerged' (LoÈ f¯er, 1977). In<br />

this case birds that are currently `ma<strong>in</strong>l<strong>and</strong>' <strong>and</strong> `isl<strong>and</strong>'<br />

forms are probably descendants <strong>of</strong> a common ancestor<br />

formerly widespread over very different Mesozoic <strong>and</strong><br />

Tertiary geography. Likewise, areas <strong>of</strong> ocean ¯oor <strong>in</strong> the<br />

Gulf <strong>of</strong> Papua, such as the Eastern Fields Fan (50,000 km 2 )<br />

between Port Moresby <strong>and</strong> the northern end <strong>of</strong> the Great<br />

Barrier Reef, have been subsid<strong>in</strong>g ever s<strong>in</strong>ce the Coral Sea<br />

began rift<strong>in</strong>g open <strong>in</strong> the Miocene (Mutter, 1975). This<br />

could expla<strong>in</strong> biogeographical connections between the<br />

trans-Fly <strong>and</strong> Port Moresby regions `cutt<strong>in</strong>g the corner'<br />

across the Gulf <strong>of</strong> Papua, seen for example <strong>in</strong> several snakes<br />

mapped by O'Shea (1996).<br />

The isl<strong>and</strong> taxa cited above <strong>in</strong>clude dist<strong>in</strong>ctive endemic<br />

genera, as well as barely differentiated taxa, but the same<br />

pr<strong>in</strong>ciple may apply. M<strong>in</strong>or morphological <strong>and</strong> molecular<br />

differences may re¯ect ancient but rapid <strong>and</strong> m<strong>in</strong>or evolutionary<br />

divergence followed by a long periods <strong>of</strong> stasis, with<br />

possible geographical convergence <strong>of</strong> populations on converg<strong>in</strong>g<br />

terranes.<br />

R<strong>and</strong> & Gilliard (1967) cited many species, for example <strong>in</strong><br />

Eos (Fig. 15), which `favour' small isl<strong>and</strong>s. But perhaps these<br />

taxa have no choice if small islets form the only l<strong>and</strong> currently<br />

available <strong>in</strong> their respective regions. The islets may represent<br />

the last l<strong>and</strong> <strong>in</strong> an area <strong>of</strong> subsidence, <strong>and</strong> competition from<br />

related forms prevents establishment <strong>in</strong> neighbour<strong>in</strong>g territory.<br />

These birds survive on small islets <strong>and</strong> atolls because,<br />

®rstly, they were already <strong>in</strong> the region <strong>in</strong> a prior geography,<br />

<strong>and</strong> secondly, because they either possessed the necessary preadaptations<br />

for this <strong>ecology</strong> or were able to adapt. The vast<br />

majority <strong>of</strong> small islet taxa around <strong>New</strong> Gu<strong>in</strong>ea are not found<br />

on all the many islets available, but only those <strong>in</strong> particular<br />

regions. This implies that someth<strong>in</strong>g other than the small islet<br />

<strong>ecology</strong> is determ<strong>in</strong><strong>in</strong>g the distribution.<br />

Northern limits <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> <strong>and</strong> bowerbirds<br />

Despite be<strong>in</strong>g on the western Papuan Isl<strong>and</strong>s <strong>and</strong> the Milne<br />

Bay isl<strong>and</strong>s, no birds <strong>of</strong> <strong>paradise</strong> or bowerbirds are known<br />

from the <strong>of</strong>fshore isl<strong>and</strong>s <strong>of</strong> Biak, Karkar, Manam, <strong>New</strong><br />

Brita<strong>in</strong>, or <strong>New</strong> Irel<strong>and</strong>, all <strong>of</strong> which provide suitable habitat:<br />

hills with closed ra<strong>in</strong>forest. The isl<strong>and</strong> <strong>of</strong> Karkar, for example<br />

(Fig. 4), is 25 km across <strong>and</strong> 1850 m high, largely covered <strong>in</strong><br />

ra<strong>in</strong>forest <strong>and</strong> only 15 km <strong>of</strong>fshore. Yet there has never been<br />

a s<strong>in</strong>gle record <strong>of</strong> a bird <strong>of</strong> <strong>paradise</strong> or bowerbird there. <strong>New</strong><br />

Brita<strong>in</strong> is a much larger isl<strong>and</strong>, 90 km <strong>of</strong>f <strong>New</strong> Gu<strong>in</strong>ea. A<br />

surpris<strong>in</strong>g 70% <strong>of</strong> the species on the part <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

opposite <strong>New</strong> Brita<strong>in</strong> are not represented on <strong>New</strong> Brita<strong>in</strong><br />

(Mayr, 1940). Gressitt (1982b) frankly admitted that the<br />

absence <strong>of</strong> many <strong>New</strong> Gu<strong>in</strong>ea groups from the Bismarck<br />

Archipelago, `<strong>in</strong> spite <strong>of</strong> proximity <strong>and</strong> isl<strong>and</strong> stepp<strong>in</strong>gstones',<br />

is `puzzl<strong>in</strong>g'. In fact the avifauna <strong>of</strong> these isl<strong>and</strong>s is<br />

both rich (Coates, 1990) <strong>and</strong> quite different from that on the<br />

ma<strong>in</strong>l<strong>and</strong> ± many ¯oristic <strong>and</strong> faunistic works (e.g. R<strong>and</strong> &<br />

Gilliard, 1967; Beehler et al., 1986) are logically limited to<br />

the ma<strong>in</strong>l<strong>and</strong> taxa. Because the <strong>of</strong>fshore isl<strong>and</strong>s are so close it<br />

seems that `dispersal' <strong>in</strong> the sense <strong>of</strong> physical movement, or <strong>in</strong><br />

this case lack <strong>of</strong> dispersal, has noth<strong>in</strong>g to do with the major<br />

faunistic difference. On the other h<strong>and</strong>, it is surely not a<br />

co<strong>in</strong>cidence that the northern boundary <strong>of</strong> the <strong>New</strong> Gu<strong>in</strong>ea<br />

orogen runs along the north coast <strong>and</strong> marks the mutual<br />

boundary <strong>of</strong> the two faunas, <strong>in</strong>clud<strong>in</strong>g the northern limit <strong>of</strong><br />

Paradisaeidae <strong>and</strong> Ptilonorhynchidae.<br />

The dist<strong>in</strong>ctive fauna <strong>of</strong> Karkar <strong>and</strong> the other fr<strong>in</strong>g<strong>in</strong>g<br />

isl<strong>and</strong>s <strong>in</strong>cludes birds such as Charmosyna rubrigularis<br />

(Sclater), Macropygia mack<strong>in</strong>layi (Ramsay), Cacomantis<br />

variolasus fortior (Rothschild & Hartert), Ducula pistr<strong>in</strong>aria<br />

Bonaparte, Monarcha c<strong>in</strong>erascens Temm<strong>in</strong>ck <strong>and</strong> Myzomela<br />

sclateri Forbes (maps <strong>in</strong> Coates, 1990). These are all on<br />

Karkar <strong>and</strong> several <strong>of</strong> the other northern isl<strong>and</strong>s (<strong>New</strong><br />

Brita<strong>in</strong>, etc.) but are not on the <strong>New</strong> Gu<strong>in</strong>ea ma<strong>in</strong>l<strong>and</strong>,<br />

where they are replaced by allied forms. At subspecies level<br />

Gallicolumba b. beccarii (Salvadori) is <strong>in</strong> the mounta<strong>in</strong>s<br />

throughout <strong>New</strong> Gu<strong>in</strong>ea, <strong>and</strong> G. b. johannae (Sclater) is on<br />

Karkar Isl<strong>and</strong> <strong>and</strong> the Bismarck Archipelago. Megapodius<br />

freyc<strong>in</strong>et (Gaimard) shows the boundary well, with<br />

M. f. af®nis Meyer <strong>in</strong> northern <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> M. f.<br />

eremita Hartlaub on Manus, Long Isl<strong>and</strong>, Siassi (ˆ Umboi<br />

or Rooke) Isl<strong>and</strong>, <strong>New</strong> Brita<strong>in</strong>, <strong>and</strong> the Solomon Isl<strong>and</strong>s.<br />

Karkar Isl<strong>and</strong>, on the biogeographical boundary between the<br />

two, has a `mixed population' (R<strong>and</strong> & Gilliard, 1967).<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 913<br />

The Geelv<strong>in</strong>k Bay isl<strong>and</strong>s also have a dist<strong>in</strong>ctive fauna.<br />

Here there are birds <strong>of</strong> <strong>paradise</strong> on Japen Isl<strong>and</strong> but not the<br />

neighbour<strong>in</strong>g Biak Isl<strong>and</strong> to the north. Conversely, the owl<br />

Otus Pennant is widespread <strong>in</strong> America, Africa, <strong>and</strong> Eurasia,<br />

but is represented <strong>in</strong> the <strong>New</strong> Gu<strong>in</strong>ea region only by<br />

O. beccarii Salvadori <strong>of</strong> Biak Isl<strong>and</strong>, the rubiaceous plant<br />

Badusa A. Gray, widespread from the Philipp<strong>in</strong>es through<br />

the Paci®c, is also <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea only on Biak (Smith,<br />

1979±1996), <strong>and</strong> the l<strong>and</strong> snail Pall<strong>in</strong>e ranges through the<br />

Carol<strong>in</strong>e Isl<strong>and</strong>s (Palau <strong>and</strong> Ponape) <strong>and</strong> is elsewhere only<br />

known on Biak (Solem, 1983). The Biak Isl<strong>and</strong> fauna is<br />

related to that <strong>of</strong> the PNG isl<strong>and</strong>s to the east through the<br />

absence <strong>of</strong> groups like Paradisaeidae, <strong>and</strong> also <strong>in</strong> the<br />

presence <strong>of</strong> taxa such as Monarcha brehmii, endemic to<br />

Biak Isl<strong>and</strong> <strong>and</strong> with its nearest relatives <strong>in</strong> the Bismarck<br />

Archipelago (R<strong>and</strong> & Gilliard, 1967).<br />

These <strong>of</strong>fshore isl<strong>and</strong>s should not be seen as hav<strong>in</strong>g a<br />

depauperate avifauna. In Accipiter, <strong>New</strong> Brita<strong>in</strong> has ®ve<br />

species, three endemic. This is the richest Accipiter fauna<br />

<strong>of</strong> any part <strong>of</strong> the world (Wattel, 1973): <strong>New</strong> Gu<strong>in</strong>ea,<br />

twenty-four times the size <strong>of</strong> <strong>New</strong> Brita<strong>in</strong>, has six or seven<br />

species, three endemic, <strong>and</strong> Australia, 200 times the size,<br />

has three species <strong>and</strong> no endemics. Can this mass<strong>in</strong>g <strong>of</strong><br />

Accipiter on <strong>New</strong> Brita<strong>in</strong> <strong>and</strong> the total absence <strong>of</strong><br />

Paradisaeidae <strong>and</strong> Ptilonorhynchidae there really be expla<strong>in</strong>ed<br />

as the result <strong>of</strong> different powers <strong>of</strong> ¯ight <strong>in</strong> these<br />

bird groups? This would account neither for the `strik<strong>in</strong>g<br />

resemblance' Wattel (1973) noted between the <strong>New</strong> Brita<strong>in</strong><br />

endemic A. brachyurus <strong>and</strong> A. erythrauchen <strong>of</strong> the<br />

Moluccas, nor the `cha<strong>in</strong> <strong>of</strong>¼ relict species' on the isl<strong>and</strong>s<br />

which festoon northern <strong>New</strong> Gu<strong>in</strong>ea: A. henicogrammus<br />

(northern Moluccas), A. luteoschistaceus (<strong>New</strong> Brita<strong>in</strong>)<br />

<strong>and</strong> A. imitator Hartert (Solomon Isl<strong>and</strong>s). It seems likely<br />

that the <strong>New</strong> Brita<strong>in</strong> mass<strong>in</strong>g <strong>and</strong> its far-¯ung connections<br />

with Biak <strong>and</strong> the Moluccas have more to do with the<br />

distribution <strong>of</strong> ancestral pre-Accipiter ± proto-Accipiter <strong>in</strong><br />

the region north <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> regional tectonics<br />

than with chance, over-water dispersal.<br />

With<strong>in</strong> Sibley & Ahlquist's Corv<strong>in</strong>ae, the Paradisaeidae,<br />

Cracticidae, Grall<strong>in</strong>idae, Oriolidae are absent as such from<br />

the Bismarck Archipelago, but represented there by other<br />

Corv<strong>in</strong>ae: Corvidae (one species), Campephagidae (®ve<br />

species) <strong>and</strong> Artamidae (one species). Aga<strong>in</strong>, the question<br />

is: are the ®rst four families absent <strong>and</strong> the last three families<br />

present because <strong>of</strong> differences <strong>in</strong> means <strong>of</strong> dispersal/<strong>ecology</strong>,<br />

or because <strong>of</strong> different prior mass<strong>in</strong>gs <strong>and</strong> evolutionary<br />

history? In this connection Artamus <strong>in</strong>signis Sclater (Artamidae),<br />

endemic to <strong>New</strong> Irel<strong>and</strong> <strong>and</strong> <strong>New</strong> Brita<strong>in</strong>, is <strong>of</strong> special<br />

<strong>in</strong>terest. This bird has a completely white back <strong>and</strong> as its<br />

name suggests is very dist<strong>in</strong>ct from the ma<strong>in</strong>l<strong>and</strong> species,<br />

with a black back. Rutgers (1970) observed that A. <strong>in</strong>signis<br />

is undoubtedly closely related to Artamus monachus <strong>of</strong><br />

Sulawesi <strong>and</strong> the Sula Isl<strong>and</strong>s, which differs only <strong>in</strong> that the<br />

w<strong>in</strong>gs <strong>and</strong> tail are not quite so black. Rutgers concluded that<br />

A. <strong>in</strong>signis could even be a local variety <strong>of</strong> A. monachus.<br />

This major disjunction (Fig. 42) is probably a variant <strong>of</strong> the<br />

Moluccas ± <strong>New</strong> Brita<strong>in</strong> connection cited above <strong>in</strong> Accipiter,<br />

Christensenia <strong>and</strong> Spathiphyllum. The Sula Platform is a<br />

Figure 42 Track a: the related species Artamus monachus (two<br />

subspecies; distributions approximate) <strong>and</strong> A. <strong>in</strong>signis. Track b:<br />

af®nities between disjunct species pairs <strong>in</strong> Paradisaea, Astrapia <strong>and</strong><br />

Parotia. Track c: the ma<strong>in</strong> mass<strong>in</strong>g <strong>of</strong> Paradisaeidae.<br />

fragment <strong>of</strong> cont<strong>in</strong>ental crust adjacent to the east arm <strong>of</strong><br />

Sulawesi which may have orig<strong>in</strong>ated <strong>in</strong> central <strong>New</strong> Gu<strong>in</strong>ea<br />

<strong>and</strong> undergone a lateral displacement <strong>of</strong> more than 2500 km<br />

to its present position (Pigram et al., 1985). This could<br />

expla<strong>in</strong> the Artamus pattern.<br />

The Sulawesi ± Bismarcks disjunction <strong>in</strong> Artamus is similar<br />

to disjunctions north <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea <strong>in</strong> other taxa, <strong>in</strong>clud<strong>in</strong>g<br />

that <strong>of</strong> the plants Byttneria Loe¯<strong>in</strong>g, with no records between<br />

the Philipp<strong>in</strong>es ± Sulawesi <strong>and</strong> <strong>New</strong> Brita<strong>in</strong> (sterile collection)<br />

(AveÂ, 1984), Ochthocharis javanica Bl. <strong>in</strong> Pen<strong>in</strong>sular<br />

Malaysia Pen<strong>in</strong>sula <strong>and</strong> Borneo, disjunct at Manus Isl<strong>and</strong><br />

(Hansen & Wickens, 1982), Deplanchea glabra Steen. <strong>in</strong><br />

central east Borneo <strong>and</strong> Central Sulawesi, disjunct at the<br />

Jayapura region (van Steenis, 1977), <strong>and</strong> Tabernaemontana<br />

remota, known only from Sulawesi <strong>and</strong> the Louisiades<br />

(Rossel Isl<strong>and</strong>) (Leeuwenberg, 1991). The last three species<br />

have vicariant congeners on ma<strong>in</strong>l<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea.<br />

Philipp<strong>in</strong>es ± Manus/<strong>New</strong> Irel<strong>and</strong> connections are welldocumented,<br />

for example <strong>in</strong> the ferns Culcita stram<strong>in</strong>ea<br />

(Labill.) Maxon (Holttum, 1963), Coryphopteris squamipes<br />

(Copel.) Holttum (Holttum, 1981), Ctenitis pallens (Brackenr.)<br />

M.G.Price, Tectaria tabonensis M.G. Price/T. subcordata<br />

Holttum (Holttum, 1981), <strong>and</strong> <strong>in</strong> <strong>in</strong>sects the<br />

Leucophoroptera philipp<strong>in</strong>ensis species group (Homoptera:<br />

Miridae) (Schuh & Rosendahl, 1986).<br />

ECOLOGY<br />

<strong>Birds</strong> <strong>of</strong> <strong>paradise</strong> are ma<strong>in</strong>ly con®ned to ra<strong>in</strong>forest <strong>in</strong> a broad<br />

sense, <strong>in</strong>clud<strong>in</strong>g secondary forest <strong>and</strong> regrowth. However,<br />

Manucodia atra commonly <strong>in</strong>habits open savanna woodl<strong>and</strong><br />

as well as lowl<strong>and</strong> ra<strong>in</strong>forest, <strong>and</strong> M. comrii ranges from<br />

mangrove through savanna woodl<strong>and</strong>, low altitude forest<br />

<strong>and</strong> also stunted, mossy, high-altitude forest.<br />

Species <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> occupy different elevation<br />

zones from sea-level to 3500 m, with most (thirty <strong>of</strong> thirtyeight<br />

species) occurr<strong>in</strong>g <strong>in</strong> the 1000±2000 m altitud<strong>in</strong>al<br />

b<strong>and</strong>. Although most species <strong>of</strong> Paradisaeidae are thus<br />

`lower montane', it is <strong>in</strong>terest<strong>in</strong>g that members <strong>of</strong> at least<br />

®ve, possibly six, genera frequent coastal communities such<br />

as mangrove or at least the l<strong>and</strong>ward back-mangrove<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


914 M. Heads<br />

communities that are far more species-rich than is <strong>of</strong>ten<br />

realized. Lycocorax is found <strong>in</strong> mangroves (as illustrated by<br />

Cooper & Forshaw, 1977); Manucodia atra is recorded from<br />

mangroves; M. comrii, M. keraudrenii <strong>and</strong> Ptiloris magnificus<br />

(Vieillot) occasionally frequent mangroves, <strong>and</strong> P.<br />

victoriae Gould is recorded from the l<strong>and</strong>ward edge <strong>of</strong><br />

mangrove (Gilliard, 1969; Frith & Beehler, 1998). Seleucidis<br />

Lesson occurs <strong>in</strong> a range <strong>of</strong> lowl<strong>and</strong> forest types, but shows a<br />

particular af®nity for permanently or seasonally ¯ooded<br />

swamp forest <strong>of</strong>ten with p<strong>and</strong>anus <strong>and</strong> sago palm, <strong>and</strong> has<br />

also been observed <strong>in</strong> or near mangrove (Gilliard, 1969).<br />

Paradisaea raggiana has also been recorded call<strong>in</strong>g <strong>in</strong><br />

mangroves (Frith & Beehler, 1998). In addition, Drepanornis<br />

bruijnii can be found with<strong>in</strong> a kilometre or two <strong>of</strong> the coast<br />

(Frith & Beehler, 1998) (possibly not actually on the coast),<br />

for example <strong>in</strong> limestone hills where it is more abundant<br />

than <strong>in</strong> a nearby site <strong>in</strong> lowl<strong>and</strong> alluvial forest.<br />

Like the birds <strong>of</strong> <strong>paradise</strong>, the bowerbirds also have their<br />

greatest diversity <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, are ma<strong>in</strong>ly forest birds,<br />

<strong>and</strong> are most diverse <strong>in</strong> the 1000±2000 m b<strong>and</strong> (twelve <strong>of</strong><br />

thirteen species) (Cooper & Forshaw, 1977). However,<br />

Ailuroedus crassirostris (Paykull) occurs <strong>in</strong> coastal<br />

scrub, Chlamydera cerv<strong>in</strong>iventris Gould is never far fom<br />

the coast, <strong>of</strong>ten close to beaches, swampl<strong>and</strong>s <strong>and</strong> mangrove<br />

swamps, <strong>and</strong> C. nuchalis Jard<strong>in</strong>e & Selby is rarely found far<br />

from water, either freshwater or salt.<br />

Altitud<strong>in</strong>al `anomalies' <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

Some <strong>of</strong> the most obvious ecological changes <strong>in</strong> mounta<strong>in</strong>ous<br />

areas are those associated with chang<strong>in</strong>g altitude.<br />

Diamond (1972) <strong>and</strong> Frith & Beehler (1998) suggested that<br />

sort<strong>in</strong>g by elevation is perhaps the most important ecological<br />

mechanism permitt<strong>in</strong>g the adaptive radiation <strong>of</strong> birds <strong>of</strong><br />

<strong>paradise</strong>. The elevational distribution <strong>of</strong> the <strong>New</strong> Gu<strong>in</strong>ea<br />

birds is usually assumed to have been atta<strong>in</strong>ed, aga<strong>in</strong>, by<br />

dispersal, usually from a lower altitude centre <strong>of</strong> orig<strong>in</strong> <strong>in</strong>to<br />

new, orig<strong>in</strong>ally sterile regions at higher altitudes. However,<br />

altitud<strong>in</strong>al `anomalies' <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea birds have been noted<br />

by many ornithologists. Iredale (1950) described the altitud<strong>in</strong>al<br />

replacement <strong>of</strong> the paradisaeid genera, but noted that<br />

<strong>in</strong> addition a `locality factor' is present; related forms <strong>in</strong><br />

different parts <strong>of</strong> the isl<strong>and</strong> sometimes occur at different<br />

altitudes (cf. R<strong>and</strong> & Gilliard, 1967, p. 14).<br />

Under the head<strong>in</strong>g `Descent <strong>of</strong> mounta<strong>in</strong> birds to the<br />

lowl<strong>and</strong>s' R<strong>and</strong> & Brass (1940) wrote that `as with plants, a<br />

number <strong>of</strong> birds which over most <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea occur only<br />

<strong>in</strong> the mounta<strong>in</strong>s, such as Cleytoceyx rex <strong>and</strong> Diphyllodes<br />

(Cic<strong>in</strong>nurus) magni®cus, come to near sea level on the upper<br />

Fly River. The prevalence <strong>of</strong> mist <strong>and</strong> cloud conditions,<br />

lower<strong>in</strong>g the light <strong>in</strong>tensity, may have an effect <strong>in</strong> produc<strong>in</strong>g<br />

the conditions recall<strong>in</strong>g cloud-shrouded mounta<strong>in</strong> forest.<br />

However, this will not apply to Myzomela nigrita <strong>and</strong><br />

Ailuroedus melanotis (sometimes <strong>in</strong>cluded <strong>in</strong> A. crassirostris)<br />

which reach the Wassi Kussa River (lower Fly), where<br />

relatively dry, bright conditions prevail much <strong>of</strong> the year'.<br />

(Ailuroedus crassirostris <strong>in</strong> south <strong>New</strong> Gu<strong>in</strong>ea is known only<br />

from sea-level, but `trapped' <strong>in</strong> the Snow Mounta<strong>in</strong>s it<br />

occurs from 810 to 1140 m). Likewise, the bowerbird<br />

Sericulus aureus is <strong>in</strong> the lowl<strong>and</strong>s <strong>and</strong> foothills <strong>of</strong> the Fly<br />

Platform <strong>in</strong> the southern watershed, but <strong>in</strong> northern <strong>New</strong><br />

Gu<strong>in</strong>ea is con®ned to hill forest at 1000±1400 m (Pratt,<br />

1982; Beehler et al., 1986). Diamond (1972) listed the<br />

`enigmatic' distributions <strong>of</strong> twenty-®ve primarily montane<br />

species at or near sea-level at the Fly River mouth, <strong>and</strong> Pratt<br />

(1982) regarded these as `by far the most peculiar geographical<br />

problem <strong>of</strong> hill forest birds'.<br />

Karimui bas<strong>in</strong> (sometimes mapped as `Karimui Plateau')<br />

by Mount Karimui is another classic site <strong>of</strong> altitud<strong>in</strong>al<br />

`anomalies' (Diamond, 1972). It is a ¯at bas<strong>in</strong> about<br />

14 km wide at 1050 m altitude, largely sealed <strong>of</strong>f from the<br />

outside by a r<strong>in</strong>g <strong>of</strong> mounta<strong>in</strong>s. The avifauna is dist<strong>in</strong>ctive<br />

<strong>and</strong>, oddly, typical <strong>of</strong> the sea-level lowl<strong>and</strong>s rather than<br />

hill forest. It <strong>in</strong>cludes twenty-seven lowl<strong>and</strong> species (<strong>in</strong>clud<strong>in</strong>g<br />

Cic<strong>in</strong>nurus regius <strong>and</strong> Ailuroedus buccoides) whose<br />

altitud<strong>in</strong>al ceil<strong>in</strong>g elsewhere lies considerably below<br />

1050 m, <strong>and</strong> some <strong>of</strong> these are only known elsewhere<br />

from sea-level. The bas<strong>in</strong> avifauna is also noteworthy<br />

through the absence <strong>of</strong> some species usually found at this<br />

altitude, <strong>and</strong> by three strik<strong>in</strong>g, locally endemic forms. In<br />

seven cases an unexpected lowl<strong>and</strong> species that is present<br />

<strong>and</strong> an unexpectedly absent highl<strong>and</strong> species are successive<br />

members <strong>of</strong> an altitud<strong>in</strong>al sequence, so that the `wrong'<br />

member is present, for example A. buccoides is present<br />

<strong>in</strong>stead <strong>of</strong> A. crassirostris.<br />

Diamond expla<strong>in</strong>ed these phenomena as `ultimately due to<br />

the ¯atness <strong>of</strong> the bas<strong>in</strong> ¯oor' but Charmosyna placentis<br />

Temm<strong>in</strong>ck seems to contradict this ± it is normally at sealevel,<br />

but ranges beyond the bas<strong>in</strong> to 1425 m on Mount<br />

Karimui.<br />

Altitud<strong>in</strong>al `anomalies' are common <strong>in</strong> other parts <strong>of</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea <strong>and</strong> <strong>in</strong>clude the follow<strong>in</strong>g passer<strong>in</strong>es:<br />

Gerygone magnirostris Gould is usually <strong>in</strong> the lowl<strong>and</strong>s,<br />

but at Baiyer River near Mount Hagen it occurs at 1050 m,<br />

an altitud<strong>in</strong>al record for the species.<br />

Rhipidura leucophrys (Latham) is a widespread lowl<strong>and</strong><br />

species <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea. It is also found <strong>in</strong> montane<br />

grassl<strong>and</strong>, but only from Eastern Highl<strong>and</strong>s Prov<strong>in</strong>ce west<br />

to Telefom<strong>in</strong> where it is ubiquitous. It is strangely absent <strong>in</strong><br />

the montane grassl<strong>and</strong>s <strong>of</strong> the Huon Pen<strong>in</strong>sula, SE <strong>New</strong><br />

Gu<strong>in</strong>ea <strong>and</strong> Irian Jaya.<br />

Pachycephala pectoralis (Latham) is widespread <strong>in</strong><br />

southern <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> the Milne Bay Isl<strong>and</strong>s <strong>in</strong><br />

mangrove swamps <strong>and</strong> other coastal vegetation, but it is<br />

also present <strong>in</strong> Irian Jaya, trapped <strong>in</strong> the upper Balim<br />

Valley below Mount Wilhelm<strong>in</strong>a <strong>in</strong> dry mid-mounta<strong>in</strong><br />

forest at 1350±2310 m.<br />

Altitud<strong>in</strong>al anomalies are <strong>of</strong>ten associated with phylogenetic<br />

differentiation. Populations <strong>of</strong> Pachycephalopsis<br />

modesta (De Vis) at Mount Karimui, Mount Michael <strong>and</strong><br />

the Kubor Mounta<strong>in</strong>s occur at 1800±3300 m, but <strong>in</strong> SE <strong>New</strong><br />

Gu<strong>in</strong>ea other races descend to 1260 m (Owen Stanley<br />

Mounta<strong>in</strong>s) <strong>and</strong> 1050 m (Herzog Mounta<strong>in</strong>s).<br />

Myzomela erythrocephala Gould is restricted to mangrove<br />

swamps <strong>of</strong> northern Australia <strong>and</strong> southern <strong>New</strong> Gu<strong>in</strong>ea,<br />

but shows remarkable similarity <strong>in</strong> colour <strong>and</strong> pattern to the<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 915<br />

smaller M. adolph<strong>in</strong>ae Salvadori which ranges <strong>in</strong> the <strong>New</strong><br />

Gu<strong>in</strong>ea mounta<strong>in</strong>s from 810 to 1800 m (R<strong>and</strong> & Gilliard,<br />

1967).<br />

Altitud<strong>in</strong>al anomalies <strong>in</strong> <strong>New</strong> Zeal<strong>and</strong> taxa have been<br />

expla<strong>in</strong>ed as the direct effect <strong>of</strong> vertical tectonic movements<br />

(Heads, 1989), <strong>and</strong> this may also be true <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea.<br />

Much <strong>of</strong> the north coast <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea has been uplifted<br />

<strong>and</strong> this has led to the formation <strong>of</strong> steep bluffs. Raised coral<br />

reefs are known from Madang, Trobri<strong>and</strong> Isl<strong>and</strong>s, Woodlark<br />

Isl<strong>and</strong>, the Bismarck Archipelago, <strong>and</strong> the northern<br />

Huon Pen<strong>in</strong>sula where they form stair-case-like terrace<br />

sequences more than 600 m high <strong>and</strong> <strong>in</strong>clud<strong>in</strong>g more than<br />

twenty terraces.<br />

On the other h<strong>and</strong>, parts <strong>of</strong> southern PNG, such as Sudest<br />

Isl<strong>and</strong>, have been s<strong>in</strong>k<strong>in</strong>g. On the ma<strong>in</strong>l<strong>and</strong> the south coast<br />

has bluffs <strong>and</strong> cliffs only <strong>in</strong> a few areas, <strong>in</strong>dicat<strong>in</strong>g general<br />

subsidence or lack <strong>of</strong> uplift. Between Mull<strong>in</strong>s Harbour <strong>and</strong><br />

Samarai there are characteristics <strong>of</strong> a drowned coastl<strong>in</strong>e <strong>and</strong><br />

this is also seen <strong>in</strong> the north at Cape Vogel (LoÈ f¯er, 1977).<br />

Uplift <strong>in</strong> the north <strong>and</strong> s<strong>in</strong>k<strong>in</strong>g <strong>in</strong> the south may expla<strong>in</strong><br />

why birds such as Sericornis virgatus Reichenow occur at<br />

600±1250 m <strong>in</strong> the north <strong>and</strong> west <strong>New</strong> Gu<strong>in</strong>ea, while<br />

S. beccarii (Salvadori) <strong>of</strong> the same superspecies is at 0±710 m<br />

<strong>in</strong> southern <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> northern Australia, <strong>and</strong> why<br />

Melidectes foersteri Rothschild & Hartert <strong>of</strong> the Huon<br />

Pen<strong>in</strong>sula is at much higher altitudes (2460±3600 m) than its<br />

sister species M. rufocrissalis Reichenow <strong>of</strong> the central<br />

ranges (1500±2250 m) (Diamond, 1986).<br />

Altitud<strong>in</strong>al `anomalies' <strong>and</strong> `locality factors' <strong>in</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea are not restricted to birds <strong>and</strong> most other groups<br />

show similar patterns. N<strong>in</strong>ety years ago <strong>in</strong> the upper Ramu<br />

valley at Kenejia, Schlechter (1982) was surprised to ®nd<br />

typical sea-shore plants such as the orchid Dendrobium<br />

antennatum L<strong>in</strong>dl. Schlechter also noted uplifted coral at<br />

600 m on the Huon Pen<strong>in</strong>sula, <strong>and</strong> reasoned correctly that<br />

the Ramu-Markham valley was previously ¯ooded by the<br />

sea, but that an `enormous elevation' subsequently jo<strong>in</strong>ed the<br />

Huon Pen<strong>in</strong>sula to the ma<strong>in</strong>l<strong>and</strong>. Similarly, van Steenis<br />

(1984) recorded mangroves <strong>in</strong> Malesia which have been<br />

str<strong>and</strong>ed <strong>in</strong>l<strong>and</strong> through tectonic uplift.<br />

Brook®eld & Hart (1971) noted the raised beaches on the<br />

Huon, while `conversely on the southern pla<strong>in</strong> <strong>of</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea it seems that some forest is be<strong>in</strong>g actively transformed<br />

<strong>in</strong>to swamp forest through depression along axes<br />

transverse to the central cordillera'. Stevens (1982) described<br />

`altitud<strong>in</strong>al irregularities' <strong>in</strong> the ¯ora <strong>of</strong> the upper Fly River<br />

(Kiunga) like those <strong>in</strong> the avifauna there, with species <strong>of</strong><br />

otherwise montane genera present on ridges at only 100 m<br />

elevation. In the Lakekamu bas<strong>in</strong> SW <strong>of</strong> Wau, Takeuchi &<br />

Kulang (1998) reported `unexpected' montane genera <strong>in</strong><br />

families such as Ericaceae, Monimiaceae, Elaeocarpaceae,<br />

W<strong>in</strong>teraceae, Ternstroemiaceae <strong>and</strong> Pittosporaceae at<br />

anomalously low altitude (175 m), very near the alluvialcoastal<br />

pla<strong>in</strong>. Individual species are found there far below<br />

their previously known lower limit. Takeuchi (2000)<br />

<strong>in</strong>ferred `the apparent displacement <strong>of</strong> an entire montane<br />

assemblage to the Papuan lowl<strong>and</strong> environment where the<br />

non-conform<strong>in</strong>g elements now coexist <strong>in</strong> disparate comb<strong>in</strong>ation<br />

with the conventional lowl<strong>and</strong> ¯ora'. As Takeuchi &<br />

Kulang noted, these records are `rather provocative <strong>and</strong><br />

deserv<strong>in</strong>g <strong>of</strong> further enquiry'.<br />

In other fauna, Gressitt (1982b) noted that helm<strong>in</strong>ths <strong>and</strong><br />

crustacea <strong>of</strong> terrestrial caves <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea may have<br />

evolved directly from mar<strong>in</strong>e forms with the uplift <strong>of</strong> the<br />

isl<strong>and</strong>. The ®sh Clupeoides venulosus Weber & de Beaufort<br />

<strong>in</strong>habits the Lorentz <strong>and</strong> Fly rivers up to 500 m <strong>and</strong> is the<br />

only herr<strong>in</strong>g (Clupeidae) to <strong>in</strong>habit mounta<strong>in</strong>ous rivers<br />

(Allen, 1991). Morelia boeleni Brongersma is probably the<br />

only python <strong>in</strong> the world that lives as high as 3000 m<br />

(Mount Albert Edward ± Mackay, 1976).<br />

Discuss<strong>in</strong>g the site <strong>of</strong> most rapid current uplift <strong>in</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea, the Huon Pen<strong>in</strong>sula, Flannery (1995) found it<br />

`remarkable' that mammals normally restricted to middle<br />

altitudes, for example the marsupials Phalanger carmelitae<br />

Thomas <strong>and</strong> Peroryctes rafrayana (Milne-Edwards), extend<br />

there <strong>in</strong>to the alp<strong>in</strong>e zone.<br />

With<strong>in</strong> the <strong>New</strong> Gu<strong>in</strong>ea avifauna as a whole, as with the<br />

¯ora, there is an average decrease <strong>in</strong> size with <strong>in</strong>crease <strong>in</strong><br />

altitude as alp<strong>in</strong>e conditions select aga<strong>in</strong>st large forms.<br />

However, R<strong>and</strong> & Gilliard (1967) observed that with<strong>in</strong><br />

species such as Cacatua galerita Latham (Psittacidae) <strong>and</strong><br />

Collocalia esculenta L<strong>in</strong>naeus (Apodidae) there is an<br />

<strong>in</strong>crease <strong>in</strong> size with altitude. They concluded that `There<br />

is no obvious explanation for the existence <strong>of</strong> these apparently<br />

contradictory patterns', but this contradiction <strong>and</strong><br />

associated cladistic <strong>in</strong>congruence are precisely what would<br />

be expected if prior cl<strong>in</strong>es runn<strong>in</strong>g <strong>in</strong> different directions<br />

were both caught up <strong>in</strong> the same orogeny.<br />

Geological uplift <strong>and</strong> biological `<strong>in</strong>vasion'<br />

<strong>of</strong> the mounta<strong>in</strong>s<br />

Many biologists study<strong>in</strong>g <strong>New</strong> Gu<strong>in</strong>ea communities have<br />

assumed that geological uplift takes place over too long a<br />

time scale to be relevant to biology. Nevertheless, geologists<br />

have calculated the spectacular rates <strong>of</strong> 2.1 m per 1000 years<br />

(Abbott et al., 1997) <strong>and</strong> 3 m per 1000 years (LoÈ f¯er, 1977)<br />

(Beehler et al., 1986; quoted a rate <strong>of</strong> 3 cm per 1000 years,<br />

but this is probably a mispr<strong>in</strong>t). Such a rate gives an<br />

ecologically signi®cant shift <strong>of</strong> up to 300 m <strong>in</strong> 100,000 years,<br />

<strong>and</strong> could turn a mangrove fauna <strong>in</strong>to an upper montane<br />

fauna at 3000 m <strong>in</strong> just 1 Myr. Relic surfaces, presumably<br />

bear<strong>in</strong>g ¯ora <strong>and</strong> fauna, have been lifted high <strong>in</strong>to the<br />

mounta<strong>in</strong>s. For example, the extensive Neon Bas<strong>in</strong> currently<br />

located at 2800 m <strong>in</strong> the Owen Stanley Range, <strong>and</strong> also a<br />

bas<strong>in</strong> near Mendi, have both formed near sea level (LoÈ f¯er,<br />

1977). Relic surfaces rise from 200 m at the eastern tip <strong>of</strong> the<br />

<strong>New</strong> Gu<strong>in</strong>ea ma<strong>in</strong>l<strong>and</strong> (where many otherwise `montane'<br />

genera are present at low altitude) to over 3000 m on Mount<br />

Albert Edward (where the generally lowl<strong>and</strong> pythons occur<br />

at high altitude), <strong>and</strong> show the effects <strong>of</strong> differential Pliocene-<br />

Pleistocene uplift. Relic surfaces are also present around<br />

Goroka, but these are much less regular because <strong>of</strong> a<br />

multitude <strong>of</strong> different movements along major faults.<br />

The well-known phenomenon <strong>in</strong> which taxa occur at<br />

higher altitude on higher mounta<strong>in</strong>s than on small ones, even<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


916 M. Heads<br />

where the taxa do not range to the top <strong>of</strong> the latter, could be<br />

partly expla<strong>in</strong>ed by differential uplift ± the mounta<strong>in</strong>s are<br />

lower <strong>in</strong> Milne Bay, for example, because there has been less<br />

uplift there <strong>and</strong> for the same reason the altitud<strong>in</strong>al vegetation<br />

b<strong>and</strong>s have rema<strong>in</strong>ed telescoped together. The more or<br />

less constant wet-season mists also lie much lower on these<br />

isolated mounta<strong>in</strong>s than <strong>in</strong> the central Highl<strong>and</strong>s, where they<br />

usually only descend to about 2700 m (pers. obser., around<br />

Goroka). This may expla<strong>in</strong> the survival <strong>of</strong> moss forest<br />

communities at low altitudes on the isolated mounta<strong>in</strong>s, but<br />

perhaps not their orig<strong>in</strong>.<br />

It is <strong>of</strong>ten thought that mounta<strong>in</strong>s are uplifted <strong>and</strong> then<br />

<strong>in</strong>vaded by a new ¯ora <strong>and</strong> fauna from elsewhere. However,<br />

before the l<strong>and</strong> was uplifted it was not an ecological vacuum.<br />

There would have been a diverse array <strong>of</strong> plants <strong>and</strong> animals<br />

present, some <strong>of</strong> which would have been able to survive uplift<br />

by pre-adaptation (or adaptation), while many other populations<br />

would die out. This would allow pre-adapted taxa to<br />

atta<strong>in</strong> a very wide altitud<strong>in</strong>al range, <strong>and</strong> many such taxa are<br />

known <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea. Like the family Paradisaeidae, the<br />

most diverse bird genera <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea, Ptil<strong>in</strong>opus Swa<strong>in</strong>son<br />

(fourteen species) <strong>and</strong> Pachycephala (®fteen species),<br />

range from mangrove forest to 3400 <strong>and</strong> 3650 m, respectively,<br />

<strong>and</strong> at species rank trees like Schuurmansia henn<strong>in</strong>gsii<br />

range widely from sea-level to 3000 m (Kanis, 1978).<br />

Whether the `montane' elements occur at low altitude<br />

through downwarp<strong>in</strong>g <strong>of</strong> terranes bear<strong>in</strong>g these populations,<br />

or because there has been relatively little uplift there<br />

compared with the ma<strong>in</strong> central mounta<strong>in</strong>s, it seems<br />

unrealistic to discuss the altitud<strong>in</strong>al range <strong>of</strong> communities<br />

<strong>and</strong> taxa without reference to the geological changes <strong>of</strong><br />

altitude by orogenic <strong>and</strong> epeirogenic uplift, sedimentation,<br />

downwarp<strong>in</strong>g <strong>and</strong> erosion.<br />

Ophiolite endemism<br />

It is suggested here that the distributions <strong>of</strong> the birds <strong>of</strong><br />

<strong>paradise</strong> ma<strong>in</strong>ly re¯ect geological change, <strong>and</strong> are generally<br />

much older than was thought. Unlike chance dispersal <strong>and</strong><br />

chance ext<strong>in</strong>ction this tectonic hypothesis seems to account<br />

for some <strong>of</strong> the st<strong>and</strong>ard aspects <strong>of</strong> the distribution patterns<br />

<strong>and</strong> leads to <strong>in</strong>terest<strong>in</strong>g, testable correlations.<br />

An example <strong>of</strong> biogeographical <strong>and</strong> tectonic correlation is<br />

that <strong>of</strong> endemism on ultrama®c terranes. Rocks with less than<br />

45% silica are rare <strong>and</strong> are termed ultrabasic or ultrama®c<br />

(that is, high <strong>in</strong> magnesium <strong>and</strong> iron). They usually occur as<br />

part <strong>of</strong> ophiolitic igneous suites, or ophiolites, which comprise<br />

pillow basalts, massive gabbros, <strong>and</strong> serpent<strong>in</strong>ized<br />

ultrama®cs. The presence <strong>of</strong> ultrama®cs on the earth's<br />

surface is <strong>of</strong> great tectonic signi®cance as they are sections<br />

<strong>of</strong> oceanic crust <strong>and</strong> upper mantle that have been uplifted <strong>and</strong><br />

obducted onto l<strong>and</strong> (rather than subducted below it). This<br />

has occurred at plate marg<strong>in</strong>s dur<strong>in</strong>g isl<strong>and</strong>-arc collision, <strong>and</strong><br />

accreted arc terranes <strong>and</strong> orogenic belts frequently <strong>in</strong>clude<br />

ophiolites. In the Western Papuan Isl<strong>and</strong>s, Waigeo, Batanta<br />

<strong>and</strong> nearby Ko®au (but not Salawati) comprise an ophiolite<br />

complex, the Waigeo terrane (Pigram & Davies, 1987).<br />

Waigeo <strong>and</strong> Batanta are also dist<strong>in</strong>guished by the presence <strong>of</strong><br />

local endemics such as Cic<strong>in</strong>nurus respublica (Bonaparte)<br />

<strong>and</strong> Paradisaea rubra (Fig. 27). Similarly, Melidora Lesson<br />

(Alced<strong>in</strong>idae) is widespread <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea west to Waigeo<br />

<strong>and</strong> Batanta, but is not on Salawati. The straits between<br />

Salawati <strong>and</strong> Batanta Isl<strong>and</strong>s are less than two miles wide,<br />

but `have prevented the cross<strong>in</strong>g' <strong>of</strong> seventeen species <strong>of</strong><br />

Salawati birds to Batanta <strong>and</strong> ®ve from Batanta to Salawati<br />

(Mayr, 1940). It seems more likely that this strik<strong>in</strong>g faunistic<br />

difference is due to different tectonic <strong>and</strong> evolutionary<br />

histories, rather than to a 2-mile wide sea-barrier.<br />

The <strong>New</strong> Gu<strong>in</strong>ea orogen is characterized by abundant<br />

outcrops <strong>of</strong> ultrama®c rocks. The largest <strong>of</strong> these, the<br />

Papuan Ultrama®c Belt (Bowutu terrane) covers an area<br />

400 ´ 40 km <strong>and</strong> is one <strong>of</strong> the world's most spectacular<br />

ophiolites. It forms a series <strong>of</strong> subsidiary mounta<strong>in</strong> ranges<br />

north <strong>of</strong> the ma<strong>in</strong> ranges <strong>of</strong> the Papuan Pen<strong>in</strong>sula <strong>and</strong> its<br />

emplacement must have been a major tectonic event.<br />

Botanists have long recognized that these northern <strong>New</strong><br />

Gu<strong>in</strong>ea ultrama®cs were strong foci <strong>of</strong> endemism (e.g.<br />

Kairothamnus Airy Shaw ± Airy Shaw, 1980; Calophyllum<br />

streimannii Stevens ± Stevens, 1974a), but it was felt that<br />

much <strong>of</strong> this endemism was the result <strong>of</strong> edaphic rather than<br />

historical factors. Polhemus (1996) po<strong>in</strong>ted out that although<br />

many animals (e.g. Parotia lawesii helenae) show similar<br />

patterns, zoologists have been slow to realize that this<br />

correlation greatly weakens the edaphic hypothesis. Instead,<br />

Polhemus (1996) regarded the ophiolites as biogeographically<br />

signi®cant because they are arc terrane markers. The<br />

most mature phase <strong>of</strong> arc collision is seen <strong>in</strong> old arc fragments<br />

now deeply embedded <strong>in</strong> modern ma<strong>in</strong>l<strong>and</strong>s, such as <strong>New</strong><br />

Gu<strong>in</strong>ea <strong>and</strong> the Philipp<strong>in</strong>es. The remnants <strong>of</strong> these Mesozoic<br />

arc systems have been crushed between even older arcs or<br />

cont<strong>in</strong>ents but have left a biological signature <strong>in</strong> the disjunct<br />

distributions <strong>of</strong> liv<strong>in</strong>g taxa.<br />

Survival <strong>of</strong> taxa <strong>in</strong> situ<br />

At ®rst it seemed unlikely that bird taxa would ma<strong>in</strong>ta<strong>in</strong><br />

their distributions over geological time as precisely as<br />

<strong>in</strong>dicated here. However, results from another ®eld ±<br />

ecological studies <strong>of</strong> current populations ± also show that<br />

<strong>New</strong> Gu<strong>in</strong>ea ra<strong>in</strong>forests <strong>and</strong> their bird fauna have a great<br />

capacity to survive more or less <strong>in</strong> situ, despite high levels <strong>of</strong><br />

disturbance by volcanic activity, movement on faults,<br />

l<strong>and</strong>slides, rivers chang<strong>in</strong>g course, storms, human activity,<br />

<strong>and</strong> as seen dramatically <strong>in</strong> 1997, drought <strong>and</strong> ®re. Life is<br />

`stickier' <strong>and</strong> less easily `eroded' away than biologists <strong>of</strong>ten<br />

assume. Comparatively few <strong>New</strong> Gu<strong>in</strong>ea ra<strong>in</strong>forest trees<br />

regenerate <strong>in</strong> full shade <strong>and</strong> the long-held idea <strong>of</strong> tropical<br />

ra<strong>in</strong>forest as fragile <strong>and</strong> undisturbed has more recently been<br />

rejected by ecologists (Johns, 1986). So it is not surpris<strong>in</strong>g<br />

that while all birds <strong>of</strong> <strong>paradise</strong> are generally found <strong>in</strong> closed<br />

ra<strong>in</strong>forest, the vast majority are also occasionally seen <strong>in</strong> at<br />

least one <strong>of</strong> the follow<strong>in</strong>g: forest edge, secondary or broken<br />

forest, selectively logged forest, disturbed forest near villages,<br />

ab<strong>and</strong>oned gardens, <strong>and</strong> even open agricultural l<strong>and</strong> with<br />

scattered shrubs. Parotia se®lata is most abundant <strong>in</strong> wellestablished<br />

secondary forest, Lophor<strong>in</strong>a superba (Pennant) is<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 917<br />

well-known around gardens <strong>and</strong> on houses, <strong>and</strong> Cic<strong>in</strong>nurus<br />

magni®cus (Pennant) <strong>and</strong> Ptiloris victoriae have been recorded<br />

breed<strong>in</strong>g <strong>in</strong> secondary growth <strong>and</strong> gardens (Frith &<br />

Beehler, 1998). Of the ®ve birds <strong>of</strong> <strong>paradise</strong> recorded only<br />

from `forest', Paradigalla carunculata Lesson, Astrapia nigra<br />

<strong>and</strong> A. rothschildi are very poorly known <strong>in</strong> the ®eld, <strong>and</strong><br />

Manucodia jobiensis Salvadori <strong>and</strong> Paradisaea apoda are<br />

also rather poorly known. The latter at least probably occurs<br />

<strong>in</strong> disturbed vegetation as do all the other Paradisaea species;<br />

P. raggiana is considerably more numerous <strong>in</strong> ecologically<br />

disturbed areas than <strong>in</strong> the forest <strong>in</strong>terior (Diamond, 1972)<br />

<strong>and</strong> <strong>in</strong> some sites P. rudolphi is easily observed <strong>in</strong> gardens<br />

<strong>and</strong> at forest edge (Beehler et al., 1986) although it will not<br />

tolerate <strong>in</strong>tensive garden<strong>in</strong>g (cf. Diamond, 1972).<br />

Mangroves form a succession on shift<strong>in</strong>g <strong>in</strong>tertidal mud<br />

banks. It was mentioned above that at least ®ve out <strong>of</strong><br />

fourteen genera <strong>of</strong> Paradisae<strong>in</strong>ae (35%) are found <strong>in</strong><br />

mangrove <strong>and</strong> associated vegetation. Similarly, <strong>in</strong> the<br />

Sap<strong>in</strong>daceae, an important family <strong>of</strong> ra<strong>in</strong>forest trees, n<strong>in</strong>e<br />

<strong>of</strong> the forty-two Malesian genera (21%) occur <strong>in</strong> or around<br />

mangrove <strong>and</strong> eleven others (26%) are known from coastal<br />

cliffs <strong>and</strong> s<strong>and</strong>s (data from Adema et al., 1994). In <strong>New</strong><br />

Gu<strong>in</strong>ea Euphorbiaceae eleven out <strong>of</strong> fourty-seven genera<br />

(25%) are recorded <strong>in</strong> or around mangroves (Airy Shaw,<br />

1980). In these <strong>and</strong> other birds <strong>and</strong> trees the <strong>New</strong> Gu<strong>in</strong>ea<br />

mangrove shows clear af®nities with dry-l<strong>and</strong> ra<strong>in</strong>forest, <strong>and</strong><br />

there is also an obvious l<strong>in</strong>k between mangrove <strong>and</strong> the more<br />

or less freshwater swamp forests found along the central<br />

depression <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea.<br />

In many birds there are direct ecophyletic l<strong>in</strong>ks among<br />

taxa <strong>of</strong> mangrove, back-mangrove <strong>and</strong> secondary, disturbed<br />

vegetation. For example, Geopelia humeralis (Temm<strong>in</strong>ck) is<br />

particularly associated with mangrove swamps <strong>and</strong> disturbed<br />

places <strong>in</strong> <strong>and</strong> around human habitation (R<strong>and</strong> &<br />

Gilliard, 1967).<br />

F<strong>in</strong>ally, more broken, lower mangrove <strong>of</strong>ten provides an<br />

impenetrable tangle <strong>of</strong> woody vegetation similar to that <strong>of</strong><br />

subalp<strong>in</strong>e forest, <strong>and</strong> Manucodia comrii frequents both.<br />

Because <strong>of</strong> these factors, populations <strong>of</strong> what are currently<br />

mounta<strong>in</strong> birds may not necessarily need mounta<strong>in</strong>s to<br />

survive; as Mayr (1953) noted, birds <strong>of</strong>ten show remarkable<br />

<strong>in</strong>dependence from habitat restrictions.<br />

The unmistakeable ribbon-tailed Astrapia mayeri Stonor,<br />

with the longest tail for its body <strong>of</strong> any bird, is possibly<br />

another example <strong>of</strong> survival more or less <strong>in</strong> place, despite<br />

massive local disturbance. It is only found <strong>in</strong> the Karius<br />

Range (SW <strong>of</strong> Tari), the nearby Doma Peaks, mounta<strong>in</strong>s by<br />

Laiagam, Mount Giluwe <strong>and</strong> Mount Hagen, <strong>and</strong> so is<br />

largely restricted to Quaternary volcanoes. Similarly, the<br />

strik<strong>in</strong>g bowerbird Archboldia papuensis sanfordi Mayr &<br />

Gilliard is only known from Mounts Giluwe <strong>and</strong> Hagen<br />

which are also major centres <strong>of</strong> endemism for plants. Can<br />

prior, Tertiary endemics survive such extensive volcanic<br />

activity? It would usually be <strong>in</strong>ferred that a vast area has<br />

been biologically sterilized <strong>and</strong> must have been repopulated<br />

by long distance dispersal.<br />

Naturally life cannot survive literally <strong>in</strong> situ on molten<br />

lava, but <strong>in</strong>dividual lava ¯ows are <strong>of</strong>ten rather narrow.<br />

Many very recent ones on the volcanic isl<strong>and</strong>s north <strong>of</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea resemble straight, sealed roads runn<strong>in</strong>g through the<br />

ra<strong>in</strong>forest, <strong>and</strong> make for easy walk<strong>in</strong>g. The forest is<br />

obviously elim<strong>in</strong>ated along the path <strong>of</strong> the ¯ow, but<br />

regenerates quickly. Lava ¯ows do not cover an entire isl<strong>and</strong><br />

such as Manam or Karkar all at once, but over thous<strong>and</strong>s or<br />

millions <strong>of</strong> years, eruption by eruption. This allows the biota<br />

to survive, more or less <strong>in</strong> situ, by constantly coloniz<strong>in</strong>g<br />

younger ¯ows from older ones until the entire isl<strong>and</strong> may<br />

eventually be covered by younger strata <strong>and</strong> the older liv<strong>in</strong>g<br />

communities which have `¯oated' on them (cf. Craw et al.,<br />

1999, Figs 2±5). Many plants <strong>of</strong> active marg<strong>in</strong>s are surpris<strong>in</strong>gly<br />

tolerant <strong>of</strong> volcanic activity, <strong>and</strong> the ash is <strong>of</strong>ten highly<br />

fertile. After eruptions on the volcanic isl<strong>and</strong>s north <strong>of</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea ma<strong>in</strong>l<strong>and</strong>, palm nuts germ<strong>in</strong>ate <strong>in</strong> the steam<strong>in</strong>g ash<br />

follow<strong>in</strong>g the ®rst ra<strong>in</strong>, <strong>and</strong> plants such as Thymelaeaceae,<br />

Symplocaceae, Ericaceae <strong>and</strong> Epacridaceae <strong>of</strong>ten thrive <strong>in</strong><br />

active craters around the Asia-Paci®c region (Pers. obser.).<br />

Means <strong>of</strong> dispersal or means <strong>of</strong> survival?<br />

Many ornithologists have questioned the apparent signi®cance<br />

<strong>of</strong> birds' means <strong>of</strong> dispersal <strong>in</strong> establish<strong>in</strong>g their<br />

distributions, as the follow<strong>in</strong>g quotations <strong>in</strong>dicate:<br />

<strong>Birds</strong> <strong>of</strong>fer us one <strong>of</strong> the best means <strong>of</strong> determ<strong>in</strong><strong>in</strong>g the<br />

law <strong>of</strong> distribution; for though at ®rst sight it would<br />

appear that the watery boundaries which keep out the<br />

l<strong>and</strong> quadrupeds could be easily passed over by birds, yet<br />

practically it is not so¼ (Wallace, 1962 [1869]).<br />

To the person who is impressed by the bird's potential<br />

mobility, the occurrence <strong>of</strong> the same or representative<br />

species at widely separated localities is simply a matter<br />

<strong>of</strong> ¯ight from one station to the other¼ But the avian<br />

geographer is not so easily answered. He knows that<br />

most birds are closely con®ned to their own ranges¼<br />

(Chapman, 1926).<br />

Most species <strong>of</strong> birds, especially on tropical isl<strong>and</strong>s, are<br />

extraord<strong>in</strong>arily sedentary (Mayr, 1940).<br />

That birds can ¯y across barriers is one <strong>of</strong> those<br />

apparently simple facts that are not simple. (Darl<strong>in</strong>gton,<br />

1957).<br />

One <strong>of</strong> the ®rst facts that strikes the student <strong>of</strong> bird<br />

distribution is that most birds, <strong>in</strong> spite <strong>of</strong> the very great<br />

mobility result<strong>in</strong>g from the power <strong>of</strong> ¯ight, have sharply<br />

demarked distribution (Van Tyne & Berger, 1959).<br />

Despite powers <strong>of</strong> dispersal through the air, we have the<br />

paradox that ornithologists constantly stress the value <strong>of</strong><br />

birds as objects <strong>of</strong> distributional <strong>and</strong> dispersal studies<br />

derived from the fact that known cases <strong>of</strong> such dispersal<br />

are so rare (Deignan, 1963).<br />

It has been shown many times that the apparent `means <strong>of</strong><br />

dispersal' proposed as an explanation <strong>of</strong> distribution do not<br />

correlate with actual distributions. For example, study<strong>in</strong>g<br />

the eighty-three species <strong>of</strong> swifts (Apodidae) Brooke (1970)<br />

observed that these are among the strongest-¯y<strong>in</strong>g l<strong>and</strong>-birds<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


918 M. Heads<br />

<strong>and</strong> are usually gregarious. He concluded: `One might<br />

suppose that such birds would be exempt from the st<strong>and</strong>ard<br />

zoogeographical patterns, but this is not borne out by an<br />

exam<strong>in</strong>ation <strong>of</strong> their breed<strong>in</strong>g distribution. In fact, st<strong>and</strong>ard<br />

zoogeographical patterns emerge¼' One such pattern is the<br />

curious poverty <strong>of</strong> forms on Madagascar <strong>and</strong> Australasia,<br />

also seen <strong>in</strong> woodpeckers <strong>and</strong> many other groups.<br />

Frith & Beehler (1998) suggested that `both Manucodia<br />

<strong>and</strong> Paradisaea have dispersed across deep-water barriers¼<br />

over water differentiation follows chance dispersal across a<br />

permanent water barrier. Although this is evidently a rare<br />

event <strong>in</strong> the birds <strong>of</strong> <strong>paradise</strong>, it has produced six <strong>in</strong>sular<br />

species¼ Apparently over-water dispersal is a highly effective<br />

pathway to speciation <strong>in</strong> birds <strong>of</strong> <strong>paradise</strong>'.<br />

However, this begs the question: why has over-water<br />

dispersal not been effective <strong>in</strong> gett<strong>in</strong>g the birds to the nearby<br />

isl<strong>and</strong>s fr<strong>in</strong>g<strong>in</strong>g northern PNG?<br />

A related problem with long-distance dispersal is not<br />

concerned with how it could occur <strong>in</strong> the ®rst place ± that<br />

seems obvious <strong>in</strong> birds, mammals, ferns, orchids, etc., all<br />

with their ord<strong>in</strong>ary means <strong>of</strong> survival ± but how <strong>and</strong> why the<br />

`<strong>in</strong>vasion' would be occurr<strong>in</strong>g at one period <strong>in</strong> time <strong>and</strong> then,<br />

for no apparent reason, cease, <strong>and</strong> such a cessation is<br />

necessary for allopatric evolution. To expla<strong>in</strong> this without<br />

<strong>in</strong>vok<strong>in</strong>g geological change biologists have <strong>of</strong>ten employed a<br />

concept <strong>of</strong> `chance dispersal' which can `expla<strong>in</strong>' any pattern<br />

at all, but is ad hoc <strong>and</strong> untestable.<br />

In 1605 Clusius already knew that Paradisaea apoda lives<br />

on the Aru Isl<strong>and</strong>s, while P. m<strong>in</strong>or is on the western Papuan<br />

Isl<strong>and</strong>s (Gilliard, 1969). S<strong>in</strong>ce that time vicariance (that is,<br />

geographical replacement or representation) has been discovered<br />

<strong>in</strong> many birds <strong>and</strong> s<strong>in</strong>ce the 1890s the use <strong>of</strong><br />

tr<strong>in</strong>omials <strong>in</strong> ornithology <strong>and</strong> mammalogy has been based<br />

on the ubiquitous phenomenon. The impression on read<strong>in</strong>g<br />

through a list <strong>of</strong> world birds <strong>and</strong> their ranges is not one <strong>of</strong><br />

active range expansion, but one <strong>of</strong> each bird's localized<br />

distribution <strong>in</strong>terlock<strong>in</strong>g <strong>in</strong> a vicariant way with that <strong>of</strong> its<br />

relatives, form<strong>in</strong>g just one tile <strong>in</strong> a global mosaic. Perhaps<br />

the normally observed powers <strong>of</strong> physical movement <strong>in</strong> birds<br />

that are crucial for survival (feed<strong>in</strong>g, avoid<strong>in</strong>g predation,<br />

reproduction, etc.) are <strong>of</strong> little signi®cance <strong>in</strong> establish<strong>in</strong>g the<br />

geographical range <strong>of</strong> taxa.<br />

Dur<strong>in</strong>g periods <strong>of</strong> major tectonic <strong>and</strong> physiographical<br />

change, such as rift<strong>in</strong>g <strong>and</strong> terrane accretion, whole faunas<br />

may well exp<strong>and</strong> their range, for example along new shore<br />

l<strong>in</strong>es, but <strong>in</strong> birds such as the Paradisaeidae there is no<br />

evidence for recent, long-distance dispersal over modern<br />

geography. In fact most birds <strong>of</strong> <strong>paradise</strong> appear to be<br />

sedentary forest dwellers with relatively small home ranges<br />

(Frith & Beehler, 1998) <strong>and</strong> rather than their <strong>biogeography</strong><br />

be<strong>in</strong>g determ<strong>in</strong>ed by their <strong>ecology</strong>, the <strong>ecology</strong> <strong>of</strong> the birds<br />

(for example, their altitude) may be determ<strong>in</strong>ed by their<br />

prior <strong>biogeography</strong> <strong>and</strong> subsequent tectonic developments.<br />

The age <strong>of</strong> birds<br />

Evidence is mount<strong>in</strong>g that most groups <strong>of</strong> birds are considerably<br />

older than was thought. Ever s<strong>in</strong>ce Matthew's (1915)<br />

very <strong>in</strong>¯uential text on vertebrate palaeontology, a literal<br />

read<strong>in</strong>g <strong>of</strong> the fossil record is the technique which has featured<br />

<strong>in</strong> most work on the chronology <strong>of</strong> evolution. This would<br />

suggest, for example, a Tertiary radiation <strong>of</strong> the mammal <strong>and</strong><br />

bird orders. The fact that no bird <strong>of</strong> <strong>paradise</strong> fossils are<br />

known would be taken as evidence for a very young age <strong>of</strong> the<br />

group. However, new palaeontological <strong>and</strong> molecular evidence<br />

(e.g. Hedges et al., 1996) <strong>in</strong>dicates an earlier, Cretaceous<br />

diversi®cation <strong>of</strong> modern mammal <strong>and</strong> bird l<strong>in</strong>eages,<br />

<strong>and</strong> emphasizes the major gaps <strong>in</strong> the fossil record.<br />

Nearly complete specimens from north-eastern Ch<strong>in</strong>a<br />

show that modern birds as a subclass (Ornithurae) have<br />

existed s<strong>in</strong>ce at least the Late Jurassic (Hou et al., 1996).<br />

Similarly, recent studies <strong>in</strong> palaeontology (Chatterjee, 1998;<br />

Forster et al., 1998; Stidham, 1998) <strong>and</strong> molecular sequenc<strong>in</strong>g<br />

(Cooper & Penny, 1997) <strong>in</strong>dicate that bird diversity is<br />

much older than previously thought, with most or all <strong>of</strong> the<br />

major modern orders present <strong>in</strong> the Cretaceous. For nearly a<br />

century the orthodox school <strong>of</strong> evolutionary chronology has<br />

been devoted to a virtual cult <strong>of</strong> the oldest fossil <strong>of</strong> a taxon<br />

which is <strong>in</strong>ferred, <strong>of</strong>ten implicitly, to have orig<strong>in</strong>ated with it.<br />

But <strong>in</strong> recent times gene sequenc<strong>in</strong>g has been underm<strong>in</strong><strong>in</strong>g<br />

this approach, despite the fact that the gene trees are <strong>of</strong>ten<br />

calibrated us<strong>in</strong>g fossils to give m<strong>in</strong>imum ages. These<br />

molecular studies <strong>in</strong>dicate that the fossil record is severely<br />

¯awed <strong>and</strong> that a literal read<strong>in</strong>g <strong>of</strong> evolutionary detail <strong>in</strong> it is<br />

an unrealistic approach.<br />

Coupled with the traditional chronological paradigm was<br />

the Pleistocene refugium model, an idea proposed <strong>in</strong> the<br />

1970 <strong>and</strong> 1980s to expla<strong>in</strong> tropical diversity. In apply<strong>in</strong>g<br />

the idea to <strong>New</strong> Gu<strong>in</strong>ea, it was suggested that dur<strong>in</strong>g the<br />

Pleistocene ice ages populations <strong>of</strong> forest birds were<br />

fragmented on a large scale <strong>and</strong> only occurred <strong>in</strong> a relatively<br />

small number <strong>of</strong> forest refugia. There are many problems<br />

with this scenario. For example, a long pollen record from<br />

the Amazon ra<strong>in</strong>forest, the area for which the theory was<br />

developed, <strong>in</strong>dicated that there has been cont<strong>in</strong>uous ra<strong>in</strong>forest<br />

there for 40,000 years ± it was not fragmented dur<strong>in</strong>g<br />

the glacial maxima (Col<strong>in</strong>vaux et al., 1996). Likewise DNA<br />

differences between sister species <strong>of</strong> North American birds<br />

<strong>in</strong>dicate a speciation history over the last 5 Myr, imply<strong>in</strong>g a<br />

history ten times longer than that predicted by the Late<br />

Pleistocene orig<strong>in</strong>s model (Klicka & Z<strong>in</strong>k, 1997). Similarly,<br />

<strong>in</strong> the Pseudomyrmex viduus (F. Smith) group <strong>of</strong> ants,<br />

centred <strong>in</strong> the Amazon bas<strong>in</strong>, the geographical ranges <strong>of</strong><br />

most species do not co<strong>in</strong>cide with the proposed Pleistocene<br />

forest refugia. Instead, phylogeny, <strong>biogeography</strong> <strong>and</strong> host<br />

plant speci®city <strong>in</strong>dicate that much <strong>of</strong> the diversi®cation<br />

took place <strong>in</strong> the Tertiary (Ward, 1999).<br />

Cracraft & Prum (1988) criticized the refugium theory,<br />

<strong>and</strong> <strong>in</strong>stead proposed a vicariance event (the ris<strong>in</strong>g <strong>of</strong> the<br />

Andes) to expla<strong>in</strong> birds with western Colombian ± upper<br />

Amazonian disjunctions, support<strong>in</strong>g earlier ideas <strong>of</strong> Chapman<br />

(1917) <strong>and</strong> Croizat (1958).<br />

Recent evidence con®rms that the l<strong>in</strong>eage <strong>of</strong> many Andean<br />

birds <strong>and</strong> mammals differentiated well before the Pleistocene,<br />

<strong>and</strong> probably even before the uplift <strong>of</strong> the Andes.<br />

Many botanists <strong>and</strong> zoologists previously thought that<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 919<br />

species <strong>in</strong> the Andes evolved at most a few million years ago,<br />

but DNA evidence from Thraupidae, Formicariidae, Emberizidae<br />

<strong>and</strong> others shows l<strong>in</strong>eages dat<strong>in</strong>g back 4±10 Myr,<br />

aga<strong>in</strong> an order <strong>of</strong> magnitude older than previous estimates<br />

(conference papers presented by J. Bates, J. Lundberg <strong>and</strong> S.<br />

Hackett, reported <strong>in</strong> M<strong>of</strong>fat, 1996). Roy et al. (1997) also<br />

concluded that the Pleistocene refuge theory cannot account<br />

for speciation patterns <strong>in</strong> South American <strong>and</strong> African<br />

lowl<strong>and</strong> bird faunas, <strong>and</strong> that most <strong>of</strong> the speciation <strong>in</strong><br />

tropical lowl<strong>and</strong> biotas occurred before the Quaternary.<br />

Until recently the oldest fossil passer<strong>in</strong>es known were<br />

from the upper Oligocene (25 Ma), younger than the oldest<br />

fossils <strong>of</strong> other extant bird orders, <strong>and</strong> so passer<strong>in</strong>es have<br />

usually been assumed to actually be a younger group.<br />

However, molecular studies (M<strong>in</strong>dell et al., 1997) <strong>in</strong>dicated<br />

that passer<strong>in</strong>es are basal to the other neognaths ± an<br />

`unexpected' result. As a consequence, M<strong>in</strong>dell et al. noted<br />

the possible signi®cance <strong>of</strong> recently discovered passer<strong>in</strong>e<br />

fossils from the Australian Eocene (54 Ma) (Boles, 1995,<br />

1997), still rather young compared with Cooper & Penny's<br />

(1997) estimate <strong>of</strong> a Cretaceous orig<strong>in</strong> for the order.<br />

These data are compatible with the terrane tectonics<br />

explanation given here for the Paradisaeidae. Based on DNA<br />

hybridization, Sibley & Ahlquist (1985) calculated a date <strong>of</strong><br />

18±20 Ma for the split between Manucodia <strong>and</strong> the other<br />

members <strong>of</strong> subfam. Paradisae<strong>in</strong>ae, which is compatible<br />

with Mayr's (1953) proposal that the family was isolated <strong>in</strong><br />

the <strong>New</strong> Gu<strong>in</strong>ea region <strong>in</strong> the early Tertiary.<br />

Hybridism<br />

Hybridism, past <strong>and</strong>/or present, is especially signi®cant <strong>in</strong><br />

the birds <strong>of</strong> <strong>paradise</strong>, which probably have more <strong>in</strong>terspeci®c<br />

<strong>and</strong> <strong>in</strong>tergeneric wild hybrids than any other bird family<br />

except Anatidae. Perhaps the whole family represents an<br />

ancient hybrid swarm formed when <strong>New</strong> Gu<strong>in</strong>ea was still a<br />

vast series <strong>of</strong> archipelagos <strong>and</strong> later becom<strong>in</strong>g more or less<br />

`®xed' geographically with the consolidation <strong>of</strong> the ma<strong>in</strong>l<strong>and</strong>.<br />

The reproductive barriers among the populations have<br />

rema<strong>in</strong>ed poorly developed <strong>and</strong> are disturbed relatively<br />

easily.<br />

Recomb<strong>in</strong>ation <strong>of</strong> characters, <strong>in</strong> addition to the development<br />

<strong>of</strong> strict synapomorphies, has been an important<br />

mode <strong>of</strong> differentiation among the birds <strong>of</strong> <strong>paradise</strong>. For<br />

example, Frith & Beehler (1998) wrote that adult males <strong>of</strong><br />

Seleucidis comb<strong>in</strong>e characters <strong>of</strong> more bird <strong>of</strong> <strong>paradise</strong><br />

genera than any other, with `plumes <strong>of</strong> Paradisaea,<br />

pectoral fan-like plume feathers <strong>of</strong> Epimachus, bill form<br />

<strong>and</strong> plush chest `cushion' feathers like Ptiloris <strong>and</strong><br />

Paradisaea, iridescent purple <strong>and</strong> green <strong>of</strong> Astrapia <strong>and</strong><br />

Ptiloris, a buff tail <strong>and</strong> ventral barr<strong>in</strong>g like Epimachus <strong>and</strong><br />

Drepanornis (<strong>in</strong> immatures), black head <strong>in</strong> female plumage<br />

as <strong>in</strong> Parotia <strong>and</strong> Lophor<strong>in</strong>a, <strong>and</strong> a red iris as <strong>in</strong><br />

Epimachus. If this species were today known from only<br />

one or two adult male sk<strong>in</strong>s it would probably be<br />

considered a hybrid!'.<br />

Many traded sk<strong>in</strong>s <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> described early on<br />

as new species were relegated <strong>in</strong> the 1930s to `hybrid' status.<br />

However, Iredale (1950), Gilliard (1969) <strong>and</strong> Fuller (1995)<br />

have argued that at least some <strong>of</strong> the `hybrids' are <strong>in</strong>deed<br />

dist<strong>in</strong>ct species which still await discovery <strong>in</strong> the wild. At<br />

least one appears to have a coherent range dist<strong>in</strong>ct from that<br />

<strong>of</strong> the putative parents: the twenty-®ve specimens usually<br />

identi®ed as Cic<strong>in</strong>nurus magni®cus ´ C. regius are `predom<strong>in</strong>antly<br />

from north coastal <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea' (Frith & Beehler,<br />

1998), <strong>and</strong> a distribution map would be very useful.<br />

Utilization <strong>and</strong> conservation<br />

The people <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea have always used the plumes <strong>of</strong><br />

birds <strong>of</strong> <strong>paradise</strong> for decorat<strong>in</strong>g themselves at ceremonial<br />

shows <strong>and</strong> there was also a thriv<strong>in</strong>g <strong>in</strong>ternational trade <strong>in</strong><br />

sk<strong>in</strong>s for the mill<strong>in</strong>ery bus<strong>in</strong>ess <strong>of</strong> the Western world until<br />

this was stopped <strong>in</strong> the 1920s. Because <strong>of</strong> its beauty <strong>and</strong><br />

<strong>in</strong>accessibility the blue bird <strong>of</strong> <strong>paradise</strong>, Paradisaea rudolphi,<br />

was the most valuable species with one sk<strong>in</strong> fetch<strong>in</strong>g<br />

40 pounds (Gilliard, 1969). 80,000 adult males (ma<strong>in</strong>ly<br />

P. raggiana, P. apoda <strong>and</strong> P. m<strong>in</strong>or) were killed <strong>and</strong><br />

exported a year. The younger adult males do not have the<br />

ornamental plumage <strong>and</strong> so are not hunted but they are<br />

reproductively fertile, <strong>and</strong> this meant that the trade had little<br />

if any effect on the population.<br />

However, there is currently another, more serious threat<br />

to the birds as many <strong>of</strong> the lower montane forests they<br />

<strong>in</strong>habit are under pressure from m<strong>in</strong><strong>in</strong>g, logg<strong>in</strong>g <strong>and</strong><br />

agricultural development. The staple crop <strong>in</strong> montane <strong>New</strong><br />

Gu<strong>in</strong>ea, sweet potato (Ipomoea batatas (L.) Lamarck) is<br />

<strong>in</strong>tensively cultivated <strong>and</strong> will grow up to about 2400 m,<br />

above the upper limit <strong>of</strong> most birds <strong>of</strong> <strong>paradise</strong>. Although it<br />

was emphasized that birds <strong>of</strong> <strong>paradise</strong> are surpris<strong>in</strong>gly<br />

tolerant <strong>of</strong> some disturbance <strong>in</strong> the forest, they will not<br />

survive its total removal. A list <strong>of</strong> the twelve `rarest <strong>and</strong> most<br />

threatened birds' <strong>in</strong> PNG (Beehler, 1993) <strong>in</strong>cluded two birds<br />

<strong>of</strong> <strong>paradise</strong> (Epimachus fastuosus <strong>and</strong> Paradisaea rudolphi)<br />

<strong>and</strong> two bowerbirds [Archboldia papuensis R<strong>and</strong> <strong>and</strong><br />

Sericulus bakeri (Chap<strong>in</strong>)]. In their list <strong>of</strong> globally threatened<br />

bird species, Collar et al. (2000) cited Epimachus fastuosus,<br />

Parotia wahnesi <strong>and</strong> Paradisaa rudolphi as Vulnerable, <strong>and</strong><br />

eight other birds <strong>of</strong> <strong>paradise</strong> as Near Threatened. Several<br />

races are also possibly threatened, such as the bowerbird<br />

Chlamydera l. lauterbachi Reichenow, which along with<br />

endemic plants such as Lauterbachia Perk<strong>in</strong>s (Philipson,<br />

1986) is known only from the mid-Ramu Valley, near the<br />

site <strong>of</strong> a proposed large-scale nickel m<strong>in</strong>e.<br />

CONCLUDING DISCUSSION: CONCEPTS<br />

OF DISPERSAL, AND TECTONICS<br />

Concepts <strong>of</strong> dispersal are central to <strong>in</strong>terpretations <strong>of</strong><br />

evolution. Frith & Beehler (1998) speculated as to why<br />

some widespread populations <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> have<br />

differentiated <strong>in</strong>to a series <strong>of</strong> regional forms, whereas<br />

others have not. They assumed this to be at least partly<br />

related to the age <strong>of</strong> the group. It is true that regional<br />

vicariants are almost certa<strong>in</strong>ly <strong>of</strong> geological age, whereas<br />

the distribution <strong>of</strong> a widespread form quite undifferentiated<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


920 M. Heads<br />

throughout, say, Melanesia <strong>and</strong> Australasia might be the<br />

result <strong>of</strong> a recent range expansion. However, two endemic<br />

genera, each found through the <strong>New</strong> Gu<strong>in</strong>ea mounta<strong>in</strong>s,<br />

but one compris<strong>in</strong>g different species <strong>and</strong> the other not, may<br />

well be the result <strong>of</strong> the same phase <strong>of</strong>, for example, early<br />

Tertiary evolution. Taxonomic diversity or dist<strong>in</strong>ctiveness<br />

is proportional neither to the age <strong>of</strong>, nor the time <strong>in</strong>volved<br />

<strong>in</strong>, the group's orig<strong>in</strong>.<br />

The second factor Frith & Beehler cited <strong>in</strong> expla<strong>in</strong><strong>in</strong>g why<br />

some widespread birds <strong>of</strong> <strong>paradise</strong> are diverse is the dispersal<br />

ability <strong>of</strong> local populations, although no examples are given.<br />

The difference between groups that do speciate <strong>and</strong> those that<br />

do not probably has more to do with the different genetic<br />

potentials <strong>of</strong> the ancestral populations. To be expressed, this<br />

potential may need to be exposed to a phase <strong>of</strong> geological<br />

change <strong>and</strong> physiographic <strong>and</strong> ecological dynamism, for<br />

example a period <strong>of</strong> orogeny or terrane accretion.<br />

If the concept <strong>of</strong> dispersal/migration is de®ned broadly as<br />

`any <strong>and</strong> all changes <strong>of</strong> position', it is clear that evolution<br />

should be <strong>in</strong>cluded as a key component <strong>of</strong> dispersal, as the<br />

evolution <strong>of</strong> a form can by itself br<strong>in</strong>g about the distribution<br />

<strong>of</strong> the form. In periods <strong>of</strong> allopatric evolution dispersal as<br />

physical movement can be replaced with a concept <strong>of</strong><br />

dispersal as evolution. In this view, evolution is not seen as a<br />

morphogenetic <strong>and</strong> biogeographical radiation from a monophyletic<br />

po<strong>in</strong>t centre <strong>of</strong> orig<strong>in</strong>, <strong>and</strong> from a s<strong>in</strong>gle, monomorphic,<br />

ancestral species (or even a parent pair). Rather, it<br />

is a process work<strong>in</strong>g on broad geographical <strong>and</strong> phylogenetic<br />

fronts by phases <strong>of</strong> modernization (cf. Kerr, 1997) <strong>of</strong> already<br />

widespread ancestral complexes. (Mayr, 1982; while not yet<br />

accept<strong>in</strong>g this Croizatian idea, regarded it as a `completely<br />

legitimate hypothesis'.) This view implies that evolution<br />

operates ma<strong>in</strong>ly by parallel development <strong>of</strong> characters,<br />

which is clearly seen <strong>in</strong> the Paradisaeidae ± recomb<strong>in</strong>ation<br />

<strong>of</strong> characters <strong>in</strong> the genera has been referred to <strong>in</strong> Semioptera<br />

<strong>and</strong> Seleucidis. In another case, Frith & Beehler (1998)<br />

referred to the `remarkable phenomenon' <strong>of</strong> geographically<br />

<strong>and</strong> morphologically parallel variation <strong>in</strong> the adult females<br />

<strong>of</strong> Lophor<strong>in</strong>a superba <strong>and</strong> Parotia carolae, with the western<br />

populations <strong>of</strong> the two species be<strong>in</strong>g `extremely similar'<br />

(Beehler et al., 1986). Parallel evolution <strong>of</strong> taxa (which may<br />

be cladistically monophyletic, with `uniquely' derived characters)<br />

means that descendant taxa can have the same range<br />

as an ancestral taxon. The range <strong>of</strong> Paradisaeidae, for<br />

example, could have been <strong>in</strong>herited more or less directly<br />

from a preparadisaeid ancestral complex.<br />

Naturally a degree <strong>of</strong> range expansion <strong>and</strong> contraction is<br />

constantly occurr<strong>in</strong>g, <strong>and</strong> <strong>in</strong> certa<strong>in</strong> periods many taxa enter<br />

a phase <strong>of</strong> mobilism. This may have been the case <strong>in</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea <strong>and</strong> <strong>New</strong> Zeal<strong>and</strong> dur<strong>in</strong>g the Oligocene mar<strong>in</strong>e<br />

transgressions <strong>in</strong> downwarped bas<strong>in</strong>s where many new,<br />

shift<strong>in</strong>g coastl<strong>in</strong>es became available for colonization. However,<br />

there is no evidence <strong>of</strong> this be<strong>in</strong>g important for most<br />

birds <strong>in</strong> geologically recent times. On the contrary, the<br />

current distributions <strong>of</strong> the vast majority <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

birds, <strong>and</strong> all the birds <strong>of</strong> <strong>paradise</strong> <strong>and</strong> bowerbirds, seem to<br />

be the result <strong>of</strong> a phase <strong>of</strong> modernization ma<strong>in</strong>ly <strong>in</strong>volv<strong>in</strong>g<br />

vicariant phylogenesis.<br />

It is suggested that populations <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong>,<br />

sedentary forest dwellers with small home ranges but<br />

tolerant <strong>of</strong> disturbance, have been caught <strong>in</strong> the dramatic<br />

geological uplift <strong>and</strong> downwarp<strong>in</strong>g <strong>of</strong> different parts <strong>of</strong> the<br />

<strong>New</strong> Gu<strong>in</strong>ea orogen, lead<strong>in</strong>g to speciation, distributional<br />

breaks <strong>and</strong> disjunctions, <strong>and</strong> altitud<strong>in</strong>al anomalies. The<br />

ancestral complex <strong>of</strong> Paradisaeidae, Ptilonorhynchidae <strong>and</strong><br />

other Corv<strong>in</strong>ae may have <strong>in</strong>cluded birds <strong>of</strong> the mangrove<br />

<strong>and</strong> associated vegetation (back-mangrove, swamp forest,<br />

drier secondary vegetation) some <strong>of</strong> which have been<br />

str<strong>and</strong>ed <strong>in</strong> central Australia follow<strong>in</strong>g mar<strong>in</strong>e transgressions<br />

(Ptilonorhynchidae) <strong>and</strong> others uplifted <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

dur<strong>in</strong>g Tertiary orogeny (Ptilonorhynchidae <strong>and</strong> Paradisaeidae).<br />

The entire sequence: mangrove ± subalp<strong>in</strong>e forest is<br />

occupied by Manucodia comrii.<br />

Populations currently juxtaposed on very narrow terranes<br />

or sets <strong>of</strong> terranes may not always have been so close<br />

together, as the <strong>in</strong>dividual terranes may have travelled<br />

hundreds or even thous<strong>and</strong>s <strong>of</strong> kilometres before dock<strong>in</strong>g.<br />

Furthermore, <strong>in</strong> <strong>New</strong> Zeal<strong>and</strong> <strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea several<br />

accreted terranes have been substantially narrowed by<br />

subduction, fault<strong>in</strong>g <strong>and</strong> erosion subsequent to their formation,<br />

some to just slivers, <strong>and</strong> L<strong>and</strong>is & Blake (1987)<br />

suggested that terranes hundreds <strong>of</strong> kilometres wide may<br />

have disappeared from with<strong>in</strong> the <strong>New</strong> Zeal<strong>and</strong> region.<br />

These vanished terranes would have supported liv<strong>in</strong>g communities,<br />

some <strong>of</strong> which would have transferred to<br />

encroach<strong>in</strong>g terranes <strong>and</strong> given rise to modern plants <strong>and</strong><br />

animals. The slight differentiation between Paradisaea r.<br />

rudolphi <strong>and</strong> P. r. margaritae (Fig. 30), for example, may<br />

<strong>in</strong>dicate a deeper structure, a biological <strong>and</strong> geological faultl<strong>in</strong>e<br />

where populations <strong>of</strong> the birds <strong>of</strong> one terrane have been<br />

grafted onto the birds <strong>and</strong> l<strong>and</strong>scapes <strong>of</strong> another.<br />

Simply because a bird is widespread through <strong>New</strong> Gu<strong>in</strong>ea<br />

on many terranes does not mean this is the result <strong>of</strong> dispersal<br />

from one terrane to another after terrane sutur<strong>in</strong>g. The<br />

taxon might have been widespread before the terranes came<br />

together, as even if the terranes were hundreds <strong>of</strong> kilometres<br />

apart they probably already shared some taxa. There are<br />

many questions concern<strong>in</strong>g the biogeographical relationships<br />

among populations <strong>and</strong> taxa <strong>of</strong> terranes such as the<br />

Jimi, F<strong>in</strong>isterre <strong>and</strong> Owen Stanley terranes, or between areas<br />

on the craton such as the Mimika/Setekwa Rivers, <strong>and</strong> the<br />

areas north <strong>of</strong> the craton.<br />

Biogeographical analysis is not concerned primarily with<br />

the terranes as strata, even less as centres <strong>of</strong> orig<strong>in</strong>, but<br />

rather as tectonic <strong>in</strong>dicators. For example, the lithological<br />

differences between the shelf sediments <strong>of</strong> the craton <strong>and</strong> the<br />

deeper water sediments <strong>of</strong> the Aure Trough probably have<br />

little direct effect on the vegetation, but the dist<strong>in</strong>ct tectonic<br />

histories <strong>of</strong> the two regions as revealed by lithology <strong>and</strong><br />

structure are <strong>of</strong> great signi®cance.<br />

Similarly, the currently exposed strata <strong>of</strong> <strong>in</strong>trusive <strong>and</strong><br />

metamorphic terranes were obviously not colonized by<br />

plants <strong>and</strong> animals as they formed, as this happened beneath<br />

the earth's surface. However, these rocks <strong>in</strong>dicate phases <strong>of</strong><br />

revolutionary physiographical change dur<strong>in</strong>g which plants<br />

<strong>and</strong> animals had ample opportunity for evolution. Later, the<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 921<br />

underly<strong>in</strong>g rocks have been revealed by erosion, <strong>and</strong> the<br />

liv<strong>in</strong>g populations redeposited down onto them.<br />

Many authors have cited the dramatically shift<strong>in</strong>g coastl<strong>in</strong>es<br />

<strong>of</strong> pre-<strong>New</strong> Gu<strong>in</strong>ea <strong>in</strong> the Tertiary <strong>and</strong> the effect this<br />

would have had on biological evolution <strong>in</strong> the region. For<br />

example, Flannery (1995) described the <strong>New</strong> Gu<strong>in</strong>ea mammal<br />

fauna as `extraord<strong>in</strong>arily speciose' with 227 liv<strong>in</strong>g <strong>and</strong> ext<strong>in</strong>ct<br />

species (all the latter from Pleistocene or Pliocene sediments).<br />

This number `seems <strong>in</strong>ord<strong>in</strong>ately high', but `doubtless the<br />

archipelagic nature <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea throughout much <strong>of</strong> the<br />

Tertiary has presented an opportunity for speciation¼'.<br />

On the other side <strong>of</strong> the Paci®c, the Andes are the classic<br />

cordillera. Recent ideas on the structure <strong>of</strong> the Andes are<br />

similar to those suggested here for the <strong>New</strong> Gu<strong>in</strong>ea orogen,<br />

<strong>in</strong> particular the Andes are tectonically more complex than<br />

previously thought, <strong>and</strong> J. Flynn (quoted <strong>in</strong> M<strong>of</strong>fat, 1996)<br />

cited the importance <strong>of</strong> lateral, as well as vertical, movement<br />

on faults. Flynn emphasized that `The Andes are not<br />

homogeneous, biologically or geologically¼ There is no<br />

such th<strong>in</strong>g as ``the Andes''' (cf. Kat<strong>in</strong>as et al., 1999). In a<br />

similar way, neither <strong>New</strong> Gu<strong>in</strong>ea nor its avifauna are a<br />

s<strong>in</strong>gle entity but are the result <strong>of</strong> many separate terranes<br />

be<strong>in</strong>g welded together <strong>and</strong> onto the Australian craton. The<br />

great complexity <strong>of</strong> these geological <strong>and</strong> geomorphological<br />

processes is re¯ected <strong>in</strong> the complexity <strong>of</strong> form <strong>and</strong><br />

behaviour <strong>in</strong> the birds <strong>of</strong> <strong>paradise</strong> <strong>and</strong> bowerbirds, <strong>and</strong> <strong>in</strong><br />

their major species diversity along the <strong>New</strong> Gu<strong>in</strong>ea orogen.<br />

ACKNOWLEDGMENTS<br />

Andy Mack <strong>and</strong> Deb Wright <strong>of</strong> the Wildlife Conservation<br />

Society helped my work <strong>in</strong> many ways. I've enjoyed many<br />

long discussions about <strong>New</strong> Gu<strong>in</strong>ea <strong>biogeography</strong> with<br />

David Frod<strong>in</strong> <strong>and</strong> the late Lyn Gressitt. I'm also grateful to<br />

Ilaiah Bigilale, Lyn Craven, Marie-Claude Lariviere, Ed<br />

Scholes, Silas Sutherl<strong>and</strong>, Jan<strong>in</strong>e Watson, <strong>and</strong> Mark Watson<br />

for literature, data <strong>and</strong> discussion, B.A. Barlow, A.J. de Boer,<br />

N. Collar, Alistair Hay, Chuck L<strong>and</strong>is, Peter L<strong>in</strong>der, the late<br />

Dr F. Markgraf, Michael Parsons, Peter Stevens, B.C. Stone,<br />

Wayne Takeuchi, <strong>and</strong> Peter van Welzen for send<strong>in</strong>g their<br />

repr<strong>in</strong>ts, Ray Forster for a set <strong>of</strong> Archbold Expedition<br />

repr<strong>in</strong>ts, David Bickford <strong>and</strong> the crew for their hospitality <strong>in</strong><br />

Brisbane, <strong>and</strong> Armstrong Bellamy <strong>and</strong> Kapi Rau for <strong>in</strong>troduc<strong>in</strong>g<br />

me to the birds <strong>of</strong> <strong>paradise</strong> 20 years ago.<br />

REFERENCES<br />

Abbott, L.D., Silver, E.A., Anderson, R.S., Smith, R., Ingle, J.C.,<br />

Kl<strong>in</strong>g, S.A., Haig, D., Small, E., Galewsky, J. & Sliter, W.<br />

(1997) Measurement <strong>of</strong> tectonic surface uplift rate <strong>in</strong> a young<br />

collisional mounta<strong>in</strong> belt. Nature, 385, 501±507.<br />

Abbott, L.D., Silver, E.A., Thompson, P.R., Filewicz, M.V.,<br />

Schneider, C. & Abdoerrias (1994) Stratigraphic constra<strong>in</strong>ts<br />

<strong>and</strong> tim<strong>in</strong>g <strong>of</strong> arc-cont<strong>in</strong>ent collision <strong>in</strong> northern Papua <strong>New</strong><br />

Gu<strong>in</strong>ea. Journal <strong>of</strong> Sedimentary Research, B64, 169±183.<br />

Adema, F., Leenhouts, P.W. & van Welzen, P.C. (1994)<br />

Sap<strong>in</strong>daceae. Flora Malesiana I, 11, 419±768.<br />

Airy Shaw, H.K. (1980) The Euphorbiaceae <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea.<br />

Royal Botanic Gardens, Kew.<br />

Allen, G.R. (1991) Field guide to the freshwater ®shes <strong>of</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea. Christensen Research Institute, Madang.<br />

AveÂ, W. (1984) Byttneria Loe¯<strong>in</strong>g (Sterculiaceae). Paci®c Plant<br />

Areas, 4, 256±257.<br />

Axelius, B. (1990) The genus Xanthophytum (Rubiaceae): taxonomy,<br />

phylogeny <strong>and</strong> <strong>biogeography</strong>. Blumea, 34, 425±497.<br />

Axelrod, D.I. & Raven, P.H. (1982) Paleo<strong>biogeography</strong> <strong>and</strong><br />

orig<strong>in</strong> <strong>of</strong> the <strong>New</strong> Gu<strong>in</strong>ea ¯ora. Biogeography <strong>and</strong> <strong>ecology</strong> <strong>of</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea (ed. J.L. Gressitt), pp. 919±941. Junk, The Hague.<br />

Ba<strong>in</strong>, J.H.C., Davies, H.L., Hohnen, P.D., Rybuurn, R.J., Smith,<br />

I.E., Gra<strong>in</strong>ger, R., T<strong>in</strong>gney, R.J. & M<strong>of</strong>fat, M.R. (1972)<br />

Geology <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea. 1:1 000 000 map. Bureau <strong>of</strong><br />

M<strong>in</strong>eral Resources, Canberra.<br />

van Balgooy, M.M.J. (1966a) Picrasma. Paci®c Plant Areas, 2,<br />

124±125.<br />

van Balgooy, M.M.J. (1966b) Leptopteris. Paci®c Plant Areas,<br />

2, 272±273.<br />

van Balgooy, M.M.J. (1993) Hugonia. Paci®c Plant Areas, 5,<br />

132±133.<br />

Barlow, B.A. (1992) Conspectus <strong>of</strong> the genus Amyema Tieghem<br />

(Loranthaceae). Blumea, 36, 293±381.<br />

Beehler, B.M. (1993) Biodiversity <strong>and</strong> conservation <strong>of</strong> the<br />

warm-blooded vertebrates <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea. Papua <strong>New</strong><br />

Gu<strong>in</strong>ea conservation needs assessment, Vol. 2. A biodiversity<br />

analysis for Papua <strong>New</strong> Gu<strong>in</strong>ea (ed. B.M. Beehler), pp.<br />

77±155. Biodiversity Support Program, Wash<strong>in</strong>gton, DC.<br />

Beehler, B.M., Pratt, T.K. & Zimmerman, D.A. (1986) <strong>Birds</strong> <strong>of</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea. Pr<strong>in</strong>ceton University Press, Pr<strong>in</strong>ceton.<br />

Beentje, H.J. (1982) Revision <strong>of</strong> Strophanthus (Apocynaceae).<br />

Meded. L<strong>and</strong>bouwhogeschool Wagen<strong>in</strong>gen, 82(4), 1±310.<br />

Bock, W. (1982) Aves. Synopsis <strong>of</strong> liv<strong>in</strong>g organisms (ed. S.B.<br />

Parker), Vol. 2, pp. 967±1015. McGraw-Hill, <strong>New</strong> York.<br />

de Boer, A.J. (1995a) Isl<strong>and</strong>s <strong>and</strong> cicadas adrift <strong>in</strong> the West-<br />

Paci®c. Biogeographic patterns related to plate tectonics.<br />

Tijdschrift voor Entomologie, 138, 169±244.<br />

de Boer, A.J. (1995b) The taxonomy, phylogeny <strong>and</strong> <strong>biogeography</strong><br />

<strong>of</strong> the cicada genus Gymnotympana StaÊl, 1861<br />

(Homoptera: Tibic<strong>in</strong>idae). Invertebrate Taxonomy, 9, 1±81.<br />

de Boer, A.J. & Duffels, J.P. (1996a) Historical <strong>biogeography</strong> <strong>of</strong><br />

the cicadas <strong>of</strong> Wallacea, <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> the West Paci®c: a<br />

geotectonic explanation. Paleaogeography, Palaeoclimatology,<br />

Palaeo<strong>ecology</strong>, 124, 153±177.<br />

de Boer, A.J. & Duffels, J.P. (1996b) Biogeography <strong>of</strong> Indo-<br />

Paci®c cicadas east <strong>of</strong> Wallace's L<strong>in</strong>e. The orig<strong>in</strong> <strong>and</strong><br />

evolution <strong>of</strong> Paci®c isl<strong>and</strong> biotas, <strong>New</strong> Gu<strong>in</strong>ea to eastern<br />

Polynesia: patterns <strong>and</strong> processes (eds A. Keast <strong>and</strong><br />

S.E. Miller), pp. 297±330. SPB Academic Publish<strong>in</strong>g,<br />

Amsterdam.<br />

Boles, W.E. (1995) The world's oldest songbird. Nature, 374,<br />

21±22.<br />

Boles, W.E. (1997) Fossil songbirds (Passeriformes) from the<br />

early Eocene <strong>of</strong> Australia. Emu, 97, 43±50.<br />

Bonaccorso, F. (1998) Bats <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea. Conservation<br />

International, Wash<strong>in</strong>gton, DC.<br />

Brooke, R.K. (1970) Zoogeography <strong>of</strong> the swifts. Ostrich<br />

Suppl., 8, 47±54.<br />

Brook®eld, H.C. & Hart, D. (1971) Melanesia: a geographical<br />

<strong>in</strong>terpretation <strong>of</strong> an isl<strong>and</strong> world. Methuen, London.<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


922 M. Heads<br />

Brown, W.C. (1991) Lizards <strong>of</strong> the genus Emoia (Sc<strong>in</strong>cidae)<br />

with observations on their evolution <strong>and</strong> <strong>biogeography</strong>.<br />

Memoirs <strong>of</strong> the California Academy <strong>of</strong> Science, 15, 1±94.<br />

Cameron, K.M. (2000) Gondwanan <strong>biogeography</strong> <strong>of</strong> vanilloid<br />

orchids. Abstract only. III southern connection congress<br />

programme <strong>and</strong> abstracts (eds G.H. Stewart <strong>and</strong> H. Shrewsbury),<br />

pp. 25±26. L<strong>in</strong>coln University, <strong>New</strong> Zeal<strong>and</strong>.<br />

Chapman, F.M. (1917) The distribution <strong>of</strong> bird-life <strong>in</strong> Colombia:<br />

a contribution to a biological survey <strong>of</strong> South America.<br />

Bullet<strong>in</strong> <strong>of</strong> the American Mus. Nat. History, 36, 1±729.<br />

Chapman, F.M. (1926) The distribution <strong>of</strong> bird-life <strong>in</strong> Ecuador.<br />

Bullet<strong>in</strong> <strong>of</strong> the American Museum <strong>of</strong> Natural History, 55,<br />

1±784.<br />

Chatterjee, S. (1998) The rise <strong>of</strong> birds: 225 million years <strong>of</strong><br />

evolution. Johns Hopk<strong>in</strong>s University Press, Baltimore, MD.<br />

Coates, B.J. (1985±1990) The birds <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea<br />

<strong>in</strong>clud<strong>in</strong>g the Bismarck Archipelago <strong>and</strong> Bouga<strong>in</strong>ville, 2<br />

Volumes. Dove Publications, Alderley, Queensl<strong>and</strong>.<br />

Col<strong>in</strong>vaux, P.A., De Oliveira, P.E., Moreno, J.E., Miller, M.C. &<br />

Bush, M.B. (1996) A long pollen record from lowl<strong>and</strong> Amazonia:<br />

forest <strong>and</strong> cool<strong>in</strong>g <strong>in</strong> glacial times. Science, 274, 85±88.<br />

Collar, N.J., Crosby, M.J. & Statters®eld, A.J. (2000) <strong>Birds</strong> to<br />

watch 3. The world list <strong>of</strong> threatened birds. BirdLife<br />

International, Cambridge.<br />

Coode, M.J.E. (1987) Cr<strong>in</strong>odendron, Dubouzetia <strong>and</strong> Peripentadenia,<br />

closely related <strong>in</strong> the Elaeocarpaceae. Kew Bullet<strong>in</strong>,<br />

42, 777±814.<br />

Cooper, W.T. & Forshaw, J.M. (1977) The birds <strong>of</strong> <strong>paradise</strong><br />

<strong>and</strong> bowerbirds. Coll<strong>in</strong>s, Sydney.<br />

Cooper, A. & Penny, D. (1997) Mass survival <strong>of</strong> birds across the<br />

Cretaceous±Tertiary boundary: molecular evidence. Science,<br />

275, 1109±1113.<br />

Cracraft, J. & Fe<strong>in</strong>ste<strong>in</strong>, J. (2000) What is not a bird <strong>of</strong> <strong>paradise</strong>?<br />

molecular <strong>and</strong> morphological evidence places macgregoria <strong>in</strong><br />

the meliphagidae <strong>and</strong> the cnemophil<strong>in</strong>ae near the base <strong>of</strong> the<br />

corvoid tree. Proc. Roy. Soc. Lond. B, 267, 233±241.<br />

Cracraft, J. & Prum, R.O. (1988) Patterns <strong>and</strong> processes <strong>of</strong><br />

diversi®cation: speciation <strong>and</strong> historical congruence <strong>in</strong> some<br />

neotropical birds. Evolution, 42, 603±620.<br />

Craw, R.C., Grehan, J.R. & Heads, M.J. (1999) Pan<strong>biogeography</strong>:<br />

track<strong>in</strong>g the history <strong>of</strong> life. Oxford University Press,<br />

<strong>New</strong> York.<br />

Cr<strong>of</strong>t, J.R. (1978) Himat<strong>and</strong>raceae. H<strong>and</strong>books <strong>of</strong> the ¯ora<br />

<strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea (ed. J.S. Womersley), Vol. 1, pp.<br />

126±128. Melbourne University Press, Melbourne.<br />

Cr<strong>of</strong>t, J.R. (1981) Hern<strong>and</strong>iaceae. H<strong>and</strong>books <strong>of</strong> the ¯ora <strong>of</strong><br />

Papua <strong>New</strong> Gu<strong>in</strong>ea (ed. E.E. Henty), Vol. 2, pp. 190±201.<br />

Melbourne University Press, Melbourne.<br />

Croizat, L. (1958) Pan<strong>biogeography</strong>, 3 Volumes. Published by<br />

the author, Caracas.<br />

Daly, M.C., Cooper, M.A., Wilson, I., Smith, D.G. & Hooper,<br />

B.G.D. (1991) Cenozoic plate tectonics <strong>and</strong> bas<strong>in</strong> evolution <strong>in</strong><br />

Indonesia. Mar<strong>in</strong>e Petrological Geology, 8, 1±21.<br />

Darl<strong>in</strong>gton, P.J. (1957) Zoogeography: the geographic distribution<br />

<strong>of</strong> animals. Wiley, <strong>New</strong> York.<br />

Deignan, H.G. (1963) <strong>Birds</strong> <strong>in</strong> the tropical Paci®c. Paci®c bas<strong>in</strong><br />

<strong>biogeography</strong> (ed. J.L. Gressitt), pp. 263±269. Bishop<br />

Museum, Honolulu.<br />

Diamond, J.M. (1972) Avifauna <strong>of</strong> the eastern highl<strong>and</strong>s <strong>of</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea. Nuttall Ornithological Club, Cambridge, MA.<br />

Diamond, J.M. (1973) Distributional <strong>ecology</strong> <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

birds. Science, 179, 759±769.<br />

Diamond, J.M. (1985) <strong>New</strong> distributional records <strong>and</strong> new taxa<br />

from the outly<strong>in</strong>g mounta<strong>in</strong> ranges <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea. Emu, 85,<br />

65±91.<br />

Diamond, J.M. (1986) Evolution <strong>of</strong> ecological segregation <strong>in</strong><br />

the <strong>New</strong> Gu<strong>in</strong>ea montane avifauna. Community <strong>ecology</strong><br />

(eds. J. Diamond <strong>and</strong> T.J. Case), pp. 98±125. Harper & Row,<br />

<strong>New</strong> York.<br />

D<strong>in</strong>g Hou (1960) Thymelaeaceae. Flora Malesiana I, 6, 1±48.<br />

D<strong>in</strong>g Hou (1964) Celastraceae ± II. Flora Malesiana I, 6, 389±421.<br />

Drans®eld, J. (1993) Gulubia. Paci®c Plant Areas, 5, 160±161.<br />

Dug<strong>and</strong>, A. (1948) Notas sobre el CataÂlogo general de las Aves<br />

de Colombia. In R. Meyer de Schauensee. The birds <strong>of</strong> the<br />

Republic <strong>of</strong> Colombia. Part 1. Caldasia, 5, 247±252.<br />

Flannery, T. (1994) Possums <strong>of</strong> the world: a monograph <strong>of</strong> the<br />

Phalangeroidea. Geo Productions/Australian Museum,<br />

Sydney.<br />

Flannery, T. (1995) Mammals <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea, 2nd edn. Reed<br />

Books, <strong>New</strong> South Wales, <strong>and</strong> Cornell University Press,<br />

Ithaca.<br />

Ford, J. (1986) Phylogeny <strong>of</strong> the acanthizid warbler genus<br />

Gerygone based on numerical analysis <strong>of</strong> the morphological<br />

characters. Emu, 86, 12±22.<br />

Forshaw, J.M. & Cooper, W.T. (1978) Parrots <strong>of</strong> the world,<br />

2nd edn. Lansdowne, Melbourne.<br />

Forster, C.A., Sampson, S.D., Chiappe, L.M. & Krause, D.W.E.<br />

(1998) The theropod ancestry <strong>of</strong> birds: new evidence from the<br />

Late Cretaceous <strong>of</strong> Madagascar. Science, 279, 1915±1919.<br />

Frith, C.B. & Beehler, B.M. (1998) <strong>Birds</strong> <strong>of</strong> Paradise. Oxford<br />

University Press, <strong>New</strong> York.<br />

Frod<strong>in</strong>, D.G. (1998) Notes on Osmoxylon (Araliaceae), II. Flora<br />

Malesiana Bullet<strong>in</strong>, 12, 153±156.<br />

Fuller, E. (1995) The lost birds <strong>of</strong> <strong>paradise</strong>. Swan Hill Press,<br />

Shrewsbury.<br />

Gilliard, E.T. (1969) <strong>Birds</strong> <strong>of</strong> <strong>paradise</strong> <strong>and</strong> bowerbirds.<br />

Weidenfeld & Nicolson, London.<br />

Good, R. (1960) On the geographical relationships <strong>of</strong> the<br />

angiosperm ¯ora <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea. Bullet<strong>in</strong> <strong>of</strong> the British<br />

Museum (Natural History) Botany, 2, 205±226.<br />

Good, R. (1963) On the biological <strong>and</strong> physical relationships<br />

between <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> Australia. Proceed<strong>in</strong>gs <strong>of</strong> the 10th<br />

Paci®c science congress, pp. 301±309.<br />

Greer, A.E. (1974) The generic relationships <strong>of</strong> the sc<strong>in</strong>cid lizard<br />

genus Leiolopisma <strong>and</strong> its relatives. Australian Journal <strong>of</strong><br />

Zoology Supplement, 31, 1±67.<br />

Gressitt, J.L. (1982a) Ecology <strong>and</strong> <strong>biogeography</strong> <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

Coleoptera (beetles). In: Biogeography <strong>and</strong> Ecology <strong>of</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea (ed. J.L. Gressitt), pp. 709±734. Junk, The Hague.<br />

Gressitt, J.L. (1982b) Zoogeographical summary. Biogeography<br />

<strong>and</strong> <strong>ecology</strong> <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea (ed. J.L. Gressitt), pp. 897±918.<br />

Junk, The Hague.<br />

Hamilton, W.B. (1977) Subduction <strong>in</strong> the Indonesian region.<br />

American Geophysics Union, Maurice Ew<strong>in</strong>g Series, 1,<br />

15±31.<br />

Hansen, B. (1974) Balanophoraceae. Flora Malesiana, I, 783±<br />

805.<br />

Hansen, B. & Richardson, A. (2000) Parastacoides ± a<br />

Tasmanian Gondwanan relic? (Abstract only). III Southern<br />

connection congress programme <strong>and</strong> abstracts (ed. G.H.<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 923<br />

Stewart <strong>and</strong> H. Shrewsbury), p. 36. L<strong>in</strong>coln University, <strong>New</strong><br />

Zeal<strong>and</strong>.<br />

Hansen, C. & Wickens, G.E. (1982) A revision <strong>of</strong> Ochthocharis<br />

(Melastomataceae), <strong>in</strong>clud<strong>in</strong>g Phaeoneuron <strong>of</strong> Africa. Kew<br />

Bullet<strong>in</strong>, 36, 13±29.<br />

Hay, A. (1990) Aroids <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea. Christensen<br />

Research Institute, Madang.<br />

Hay, A. & Wise, R. (1991) The genus Alocasia (Araceae) <strong>in</strong><br />

Australasia. Blumea, 35, 499±545.<br />

Heads, M. (1989) Integrat<strong>in</strong>g earth <strong>and</strong> life sciences <strong>in</strong> <strong>New</strong><br />

Zeal<strong>and</strong> natural history: the parallel arcs model. <strong>New</strong><br />

Zeal<strong>and</strong> Journal <strong>of</strong> Zoology, 16, 549±586.<br />

Heads, M.J. (1990) Mesozoic tectonics <strong>and</strong> the deconstruction<br />

<strong>of</strong> <strong>biogeography</strong>: a new model <strong>of</strong> Australasian biology.<br />

Journal <strong>of</strong> Biogeography, 17, 223±225.<br />

Heads, M.J. (1994) A biogeographic <strong>review</strong> <strong>of</strong> Parahebe<br />

(Scrophulariaceae). Botanical Journal <strong>of</strong> L<strong>in</strong>nean Society,<br />

115, 65±89.<br />

Heads, M.J. (1998) Biogeographic disjunction along the Alp<strong>in</strong>e<br />

fault, <strong>New</strong> Zeal<strong>and</strong>. Biological Journal <strong>of</strong> L<strong>in</strong>nean Society,<br />

63, 161±176.<br />

Heads, M.J. (1999) Vicariance <strong>biogeography</strong> <strong>and</strong> plate tectonics<br />

<strong>in</strong> the Paci®c: an analysis <strong>of</strong> Abrotanella (Compositae).<br />

Biological Journal <strong>of</strong> L<strong>in</strong>nean Society, 67, 391±432.<br />

Heads, M.J. (<strong>in</strong> press) Regional patterns <strong>of</strong> biodiversity <strong>in</strong> birds<br />

<strong>of</strong> <strong>paradise</strong> <strong>and</strong> bowerbirds. Journal <strong>of</strong> Zoology (London),<br />

<strong>in</strong> press.<br />

Hedges, S.B., Parker, P.H., Sibley, C.G. & Kumar, S. (1996)<br />

Cont<strong>in</strong>ental breakup <strong>and</strong> the ord<strong>in</strong>al diversi®cation <strong>of</strong> birds<br />

<strong>and</strong> mammals. Nature, 381, 226±229.<br />

Holthuis, L.B. (1982) Freshwater Crustacea Decapoda <strong>of</strong> <strong>New</strong><br />

Gu<strong>in</strong>ea. Biogeography <strong>and</strong> <strong>ecology</strong> <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea (ed. J.L.<br />

Gressitt), pp. 603±619. Junk, The Hague.<br />

Holttum, R.E. (1963) Cyatheaceae. Flora Malesiana II, 1,<br />

65±176.<br />

Holttum, R.E. (1976) The genus Christella LeÂveilleÂ, sect.<br />

Christella. Kew Bullet<strong>in</strong>, 31, 293±339.<br />

Holttum, R.E. (1981) Thelypteridaceae. Flora Malesiana II, 1,<br />

331±560.<br />

Honza, E. (1991) The Tertiary arc cha<strong>in</strong> <strong>in</strong> the western Paci®c.<br />

Tectonophysics, 187, 285±303.<br />

Hoogl<strong>and</strong>, R.D. (1979) Studies <strong>in</strong> the Cu<strong>in</strong>oniaceae. II. The<br />

genera Caldcluvia, Pullea, Acsmithia, <strong>and</strong> Spiraeanthemum.<br />

Blumea, 25, 481±505.<br />

Hou, L., Mart<strong>in</strong>, L.D., Zhou, Z. & Feduccia, A. (1996) Early<br />

adaptive radiation <strong>of</strong> birds: evidence from fossils from<br />

northeastern Ch<strong>in</strong>a. Science, 274, 1164±1167.<br />

Howard, R. & Moore, A. (1984) A complete checklist <strong>of</strong> the<br />

birds <strong>of</strong> the world (Revised edition). Macmillan, London.<br />

Hufford, L. & Dickison, W.C. (1992) A phylogenetic analysis <strong>of</strong><br />

Cunoniaceae. Systematic Botany, 17, 181±200.<br />

Huxley, C.R. & Jebb, M.H.P. (1991) The new genus Anthorrhiza<br />

(Rubiaceae). Blumea, 36, 20±35.<br />

Hyl<strong>and</strong>, B.P.M. & van Steenis, C.G.G.J. (1973) The generic<br />

identity <strong>of</strong> Xanthostemon brachy<strong>and</strong>rus C.T. White: L<strong>in</strong>dsayomyrtus<br />

novum genus (Myrtaceae). Blumea, 21, 189±192.<br />

Iredale, T. (1950) <strong>Birds</strong> <strong>of</strong> <strong>paradise</strong> <strong>and</strong> bowerbirds. Georgian<br />

House, Melbourne.<br />

Jansen, M.E. & Ridsdale, C.E. (1983) A revision <strong>of</strong> the genus<br />

Dolicholobium (Rubiaceae). Blumea, 29, 251±311.<br />

Johns, R.J. (1980) Notes on <strong>New</strong> Gu<strong>in</strong>ea Myrtaceae. Kl<strong>in</strong>kii<br />

[Lae], 1, 50±67.<br />

Johns, R.J. (1986) The <strong>in</strong>stability <strong>of</strong> the tropical ecosystem <strong>in</strong><br />

<strong>New</strong> Gu<strong>in</strong>ea. Blumea, 31, 341±371.<br />

Johns, R.J. & Bellamy, A. (1981) The ferns <strong>and</strong> fern-allies <strong>of</strong><br />

Papua <strong>New</strong> Gu<strong>in</strong>ea. Parts 6±12. Res. Report PNG University<br />

<strong>of</strong> Technology [Lae] R-48±81.<br />

Johns, R.J. & Hay, A. (1981) A student's guide to the<br />

Monocotyledons <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea. Part 1. Papua <strong>New</strong><br />

Gu<strong>in</strong>ea Forestry College, Bulolo.<br />

Kanis, A. (1978) Ochnaceae. H<strong>and</strong>books <strong>of</strong> the ¯ora <strong>of</strong> Papua<br />

<strong>New</strong> Gu<strong>in</strong>ea (ed. J.S. Womersley), Vol. 1, pp. 216±221.<br />

Melbourne University Press, Melbourne.<br />

Kat<strong>in</strong>as, L., Morrone, J.J. & Crisci, J.V. (1999) Track analysis<br />

reveals the composite nature <strong>of</strong> the Andean biota. Australian<br />

Systematic Botany, 47, 111±130.<br />

Keast, A. (1961) Bird speciation on the Australian cont<strong>in</strong>ent.<br />

Bullet<strong>in</strong> <strong>of</strong> the Museum <strong>of</strong> Comparative Zoology, 123,<br />

1±495.<br />

Kerr, R.A. (1997) Does evolutionary history take million-year<br />

breaks? Science, 278, 576±577.<br />

Klicka, J. & Z<strong>in</strong>k, R.M. (1997) The importance <strong>of</strong> Recent ice ages<br />

<strong>in</strong> speciation: a failed paradigm. Science, 277, 1666±1669.<br />

L<strong>and</strong>is, C. & Blake, M. (1987) Tectonostratigraphic terranes <strong>of</strong><br />

the Croisilles Harbour region, South Isl<strong>and</strong>, <strong>New</strong> Zeal<strong>and</strong>.<br />

Terrane accretion <strong>and</strong> orogenic belts (eds E. Leitch <strong>and</strong><br />

E. Scheibner), pp. 179±198. American Geophysical Union,<br />

Wash<strong>in</strong>gton, DC.<br />

de Laubenfels, D.J. (1984) Decussocarpus. Paci®c Plant Areas,<br />

4, 212±213.<br />

de Laubenfels, D.J. (1988) Coniferales. Flora Malesiana I, 10,<br />

367±442.<br />

Leeuwenberg, A.J.M. (1991) A revision <strong>of</strong> Tabernaemontana. 1<br />

The old world species. Royal Botanic Gardens, Kew.<br />

Levi, H.W. (1983) The orb-weaver genera Argiope, Gea <strong>and</strong><br />

Neogea from the western Paci®c region (Araneae: Araneidae).<br />

Bullet<strong>in</strong> <strong>of</strong> the Museum <strong>of</strong> Comparative Zoology, Harvard,<br />

150, 247±338.<br />

Li, H.-L. (1953) A reclassi®cation <strong>of</strong> Libocedrus <strong>and</strong> Cupressaceae.<br />

Journal <strong>of</strong> the Arnold Arboretum, 34, 17±34.<br />

LoÈ f¯er, E. (1977) Geomorphology <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea.<br />

CSIRO/Australian National University, Canberra.<br />

Mack, A. (2000) <strong>Birds</strong> <strong>of</strong> the Wapoga area, Irian Jaya,<br />

Indonesia. A biological assessment <strong>of</strong> the Wapoga River area<br />

<strong>of</strong> northwestern Irian Jaya, Indonesia (eds A.L. Mack <strong>and</strong><br />

L.E. Alonso), pp. 58±61. Conservation International, Wash<strong>in</strong>gton,<br />

DC.<br />

Mackay, R.D. (1976) <strong>New</strong> Gu<strong>in</strong>ea. Time-Life, Amsterdam.<br />

Markgraf, F. (1977) Florae Malesianae praecursores LV.<br />

Apocynaceae IV. Alyxia. Blumea, 23, 377±414.<br />

Matthew, W.D. (1915) Climate <strong>and</strong> evolution. Annals <strong>of</strong> the<br />

<strong>New</strong> York Academy <strong>of</strong> Sciences, 24, 171±416.<br />

Mayr, E. (1940) The orig<strong>in</strong> <strong>and</strong> history <strong>of</strong> the bird fauna <strong>of</strong><br />

Polynesia. Proceed<strong>in</strong>gs <strong>of</strong> the 6th Paci®c science congress<br />

(California) vol. 4, pp. 197±216.<br />

Mayr, E. (1953) Fragments <strong>of</strong> a Papuan ornithogeography.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the 7th Paci®c science congress, 1949 Vol. 4,<br />

pp. 11±19.<br />

Mayr, E. (1964) [1942]. Systematics <strong>and</strong> the orig<strong>in</strong> <strong>of</strong> species.<br />

Dover, <strong>New</strong> York.<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


924 M. Heads<br />

Mayr, E. (1982) Review <strong>of</strong> G. Nelson & D.E. Rosen `Vicariance<br />

Biogeography'. Auk, 99, 618±622.<br />

Michaux, B. (1994) L<strong>and</strong> movements <strong>and</strong> animal distributions<br />

<strong>in</strong> east Wallacea (eastern Indonesia, Papua <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong><br />

Melanesia). Palaeogeography, Palaeoclimatology, Palaeo<strong>ecology</strong>,<br />

112, 323±343.<br />

M<strong>in</strong>dell, D.P., Sorenson, M.D., Huddleston, C.J., Mir<strong>and</strong>a,<br />

H.C. Jr, Knight, A., Sawchuk, S.J. & Yuri, T. (1997)<br />

Phylogenetic relationships among <strong>and</strong> with<strong>in</strong> select avian<br />

orders based on mitochondrial DNA. Avian Molecular<br />

Evolution <strong>and</strong> Systematics (ed. D.P. M<strong>in</strong>dell), pp. 215±243.<br />

Academic Press, San Diego.<br />

M<strong>of</strong>fat, A.S. (1996) Biogeographers take a new view <strong>of</strong> the<br />

ancient Andes. Science, 272, 1420±1421.<br />

Mutter, J.C. (1975) A structural analysis <strong>of</strong> the Gulf <strong>of</strong> Papua<br />

<strong>and</strong> northwest Coral Sea region. Bureau <strong>of</strong> M<strong>in</strong>eral Resources<br />

Geology <strong>and</strong> Geophysics Report 179. Government Publish<strong>in</strong>g<br />

Service, Canberra.<br />

Nicholson, D.H. (1969) A revision <strong>of</strong> the genus Aglaonema<br />

(Araceae). Smithsonian Contributions <strong>in</strong> Botany, 1, 1±66.<br />

Nielsen, I., Baretta-Kuipers, T. & Gu<strong>in</strong>et, P. (1984) The genus<br />

Archidendron (Legum<strong>in</strong>osae ± Mimosoideae). Opera Botanica,<br />

76, 1±120.<br />

O'Shea, M. (1996) A guide to the snakes <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea.<br />

Independent Publish<strong>in</strong>g, Port Moresby.<br />

Parris, B. (1983) A taxonomic revision <strong>of</strong> the genus Grammitis<br />

Swartz (Grammitidaceae: Filicales) <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea. Blumea,<br />

29, 13±222.<br />

Parsons, M.J. (1996) Gondwanan evolution <strong>of</strong> the troid<strong>in</strong>e<br />

swallowtails (Lepidoptera: Papilionidae): cladistic reappraisals<br />

us<strong>in</strong>g ma<strong>in</strong>ly immature stage characters, with focus on the<br />

birdw<strong>in</strong>gs Ornithoptera Boisduval. Bullet<strong>in</strong> <strong>of</strong> the Kitakyushu<br />

Museum <strong>of</strong> Natural History, 15, 43±118.<br />

Parsons, M.J. (1999) The butter¯ies <strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea:<br />

their systematics <strong>and</strong> biology. Academic Press, London.<br />

Penn<strong>in</strong>gton, T.D. (1991) The Genera <strong>of</strong> Sapotaceae. Royal<br />

Botanic Gardens, Kew.<br />

Philipson, W.R. (1980) Kairoa, a new genus <strong>of</strong> Monimiaceae<br />

from Papua <strong>New</strong> Gu<strong>in</strong>ea. Blumea, 26, 367±372.<br />

Philipson, W.R. (1986) Monimiaceae. Flora Malesiana I, 10,<br />

255±326.<br />

Pigram, C.J. & Davies, P.J. (1987) Terranes <strong>and</strong> the accretion<br />

history <strong>of</strong> the <strong>New</strong> Gu<strong>in</strong>ea orogen. BMR Journal <strong>of</strong><br />

Australian Geology <strong>and</strong> Geophysics, 10, 193±212.<br />

Pigram, C.J., Surono & Sup<strong>and</strong>jono, J.B. (1985) Orig<strong>in</strong> <strong>of</strong> the<br />

Sula Platform, eastern Indonesia. Geology, 13, 246±248.<br />

Polhemus, D.A. (1996) Isl<strong>and</strong> arcs, <strong>and</strong> their <strong>in</strong>¯uence on Indo-<br />

Paci®c <strong>biogeography</strong>. The orig<strong>in</strong> <strong>and</strong> evolution <strong>of</strong> Paci®c<br />

isl<strong>and</strong> biotas, <strong>New</strong> Gu<strong>in</strong>ea to eastern Polynesia: patterns <strong>and</strong><br />

processes (eds A. Keast <strong>and</strong> S.E. Miller), pp. 51±66. SPB<br />

Academic Publish<strong>in</strong>g, Amsterdam.<br />

Polhemus, D.A. & Polhemus, J.T. (1998) Assembl<strong>in</strong>g <strong>New</strong><br />

Gu<strong>in</strong>ea: 40 million years <strong>of</strong> isl<strong>and</strong> arc accretion as <strong>in</strong>dicated<br />

by the distributuions <strong>of</strong> aquatic Heteroptera (Insecta).<br />

Biogeography <strong>and</strong> geological volution <strong>of</strong> SE Asia (eds<br />

R. Hall <strong>and</strong> J.D. Holloway), pp. 327±340. Backhuys, Leiden.<br />

Pratt, T.K. (1982) Biogeography <strong>of</strong> birds <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea.<br />

Biogeography <strong>and</strong> <strong>ecology</strong> <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea (ed. J.L. Gressitt),<br />

pp. 815±836. Junk, The Hague.<br />

R<strong>and</strong>, A.L. & Brass, L.J. (1940) Results <strong>of</strong> the Archbold<br />

expeditions, no. 29. Bullet<strong>in</strong> <strong>of</strong> the American Museum <strong>of</strong><br />

Natural History, 72, 341±380.<br />

R<strong>and</strong>, A.L. & Gilliard, E.T. (1967) H<strong>and</strong>book <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

<strong>Birds</strong>. Weidenfeld & Nicolson, London.<br />

Richards, S., Isk<strong>and</strong>ar, D.T. & Allison, A. (2000) Amphibians<br />

<strong>and</strong> reptiles <strong>of</strong> the Wapoga River area, Irian Jaya, Indonesia. A<br />

biological assessment <strong>of</strong> the Wapoga river area <strong>of</strong> northwestern<br />

Irian Jaya, Indonesia (eds A.L. Mack <strong>and</strong> L.E. Alonso),<br />

pp. 54±57. Conservation International, Wash<strong>in</strong>gton, DC.<br />

Roos, M.C. (1984) Fl<strong>in</strong>dersia. Paci®c Plant Areas, 4, 234±235.<br />

Roy, M.S., Cardoso da Silva, J.M., Arct<strong>and</strong>er, P., GarcõÂa-<br />

Moreno, J. & Fjeldsa, P. (1997) The speciation <strong>of</strong> South<br />

American <strong>and</strong> African birds <strong>in</strong> montane regions. Avian<br />

molecular evolution <strong>and</strong> systematics (ed. D.P. M<strong>in</strong>dell),<br />

pp. 325±343. Academic Press, San Diego.<br />

van Royen, P. (1979±1983) Alp<strong>in</strong>e Flora <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea, 4<br />

Volumes. Cramer, Vaduz.<br />

Rutgers, A. (1970) <strong>Birds</strong> <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea: illustrations from the<br />

lithographs <strong>of</strong> John Gould. Methuen, London.<br />

Schlechter, R. (1982) The Orchidaceae <strong>of</strong> German <strong>New</strong> Gu<strong>in</strong>ea<br />

(Translation <strong>of</strong> the 1911±14 German edition). Australian<br />

Orchid Foundation, Melbourne.<br />

Schodde, R. & Calaby, J.H. (1972) The <strong>biogeography</strong> <strong>of</strong> the<br />

Australo-Papuan bird <strong>and</strong> mammal faunas <strong>in</strong> relation to<br />

Torres Strait. Bridge <strong>and</strong> barrier: the natural <strong>and</strong> cultural<br />

history <strong>of</strong> Torres Strait (ed. D. Walker), pp. 257±300.<br />

Australian National University, Canberra.<br />

Schuh, R.T. & Rosendahl, G.M. (1986) Historical <strong>biogeography</strong><br />

<strong>in</strong> the Indo-Paci®c: a cladistic approach. Cladistics, 2,<br />

337±355.<br />

Scott, A.J. (1979a) A revision <strong>of</strong> Rhodamnia (Myrtaceae). Kew<br />

Bullet<strong>in</strong>, 33, 429±459.<br />

Scott, A.J. (1979b) A revision <strong>of</strong> Xanthomyrtus (Myrtaceae).<br />

Kew Bullet<strong>in</strong>, 33, 461±484.<br />

Sibley, C.G. & Ahlquist, J.E. (1985) The phylogeny <strong>and</strong><br />

classi®cation <strong>of</strong> the Australo-Papuan passer<strong>in</strong>e birds. Emu,<br />

85, 1±14.<br />

Sibley, C.G. & Ahlquist, J.E. (1990) Phylogeny <strong>and</strong> classi®cation<br />

<strong>of</strong> birds. Yale University Press, <strong>New</strong> Haven.<br />

Sleumer, H. (1971) Icac<strong>in</strong>aceae. Flora Malesiana I, 7, 1±87.<br />

Sleumer, H. (1973) <strong>New</strong> species <strong>and</strong> noteworthy records <strong>of</strong><br />

Rhododendron <strong>in</strong> Malesia (Ericaceae). Blumea, 21, 357±376.<br />

Sleumer, H. (1986) A revision <strong>of</strong> the genus Rapanea Aubl.<br />

(Myrs<strong>in</strong>aceae) <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea. Blumea, 31, 245±269.<br />

Smith, A.C. (1979±1996) Flora Vitiensis Nova: a new ¯ora <strong>of</strong><br />

Fiji, 6 Volumes. Paci®c Tropical Botanical Garden, Lawai,<br />

Kauai, Hawaii.<br />

Solem, A. (1983) Endodontoid l<strong>and</strong> snails from the Paci®c Isl<strong>and</strong>s<br />

(Mollusca: Pulmonata: Sigmurethra) Part II Families Punctidae<br />

<strong>and</strong> Charopidae, zoogeography. Field Museum, Chicago.<br />

van Steenis, C.G.G.J. (1961) Soulamea. Paci®c Plant Areas, 1,<br />

66±67.<br />

van Steenis, C.G.G.J. (1977) Bignoniaceae. Flora Malesiana I, 8,<br />

114±186.<br />

van Steenis, C.G.G.J. (1978) Miscellaneous botanical notes<br />

XXV. Blumea, 24, 479±484.<br />

van Steenis, C.G.G.J. (1984) Three more mangrove trees<br />

grow<strong>in</strong>g locally <strong>in</strong> nature <strong>in</strong> freshwater. Blumea, 29, 395±397.<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925


Biogeography <strong>of</strong> birds <strong>of</strong> <strong>paradise</strong> 925<br />

van Steenis, C.G.G.J. (1986) Sphenostemonaceae. Flora Malesiana<br />

I, 10, 145±149.<br />

Stevens, P.F. (1974a) A <strong>review</strong> <strong>of</strong> Calophyllum L. (Guttiferae) <strong>in</strong><br />

Papuasia. Australian Journal <strong>of</strong> Botany, 22, 349±411.<br />

Stevens, P.F. (1974b) Mammea L. <strong>and</strong> Mesua L. (Guttiferae) <strong>in</strong><br />

Papuasia. Australian Journal <strong>of</strong> Botany, 22, 413±423.<br />

Stevens, P.F. (1978) Generic limits <strong>in</strong> the Xeroteae. Journal <strong>of</strong><br />

the Arnold Arboretum, 59, 129±155.<br />

Stevens, P.F. (1982) Phytogeography <strong>and</strong> evolution <strong>of</strong> the<br />

Ericaceae. Biogeography <strong>and</strong> <strong>ecology</strong> <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

(ed. J.L. Gressitt), pp. 331±354. Junk, The Hague.<br />

Stidham, T.A. (1998) A lower jaw from a Cretaceous parrot.<br />

Nature, 396, 29±30.<br />

Stone, B.C. (1992) The <strong>New</strong> Gu<strong>in</strong>ea species <strong>of</strong> P<strong>and</strong>anus sect.<br />

Maysops St John (P<strong>and</strong>anaceae). Blumea, 37, 31±61.<br />

Streimann, H. (1983) The plants <strong>of</strong> the upper Watut watershed<br />

<strong>of</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea. National Botanic Gardens, Canberra.<br />

Symon, D.E. (1984) Lycianthes subg. Polymeris sect. Asiomelanesia<br />

Bitter. Paci®c Plant Areas, 4, 248±249.<br />

Symon, D.E. (1985) The Solanaceae <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea. Journal <strong>of</strong><br />

the Adelaide Botanical Garden, 8, 1±171.<br />

Szekeres, M. (1980) Some notes on the distribution <strong>of</strong> the South<br />

American Clausiliidae (Gastropoda, Pulmonata). World wide<br />

snails (eds A. Siem <strong>and</strong> A.C. van Bruggen), pp. 172±177. Brill/<br />

Backhuys, Leiden.<br />

Takeuchi, W. (2000) Rhododendron loranthi¯orum (Ericaceae)<br />

from ma<strong>in</strong>l<strong>and</strong> <strong>New</strong> Gu<strong>in</strong>ea. A distributional record <strong>and</strong> new<br />

subspecies. Ed<strong>in</strong>burgh Journal <strong>of</strong> Botany 57, 333±337.<br />

Takeuchi, W. & Kulang, J. (1998) Vegetation Part 2. Botanical<br />

survey. A biological assessment <strong>of</strong> the Lakekamu Bas<strong>in</strong>,<br />

Papua <strong>New</strong> Gu<strong>in</strong>ea (ed. A. Mack), pp. 36±39, 126±130.<br />

Conservation International, Wash<strong>in</strong>gton, DC.<br />

Taylor, R.W. (1972) Biogeography <strong>of</strong> <strong>in</strong>sects <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

<strong>and</strong> Cape York. Bridge <strong>and</strong> barrier: the natural <strong>and</strong> cultural<br />

history <strong>of</strong> Torres Strait (ed. D. Walker), pp. 213±230.<br />

Australian National University, Canberra.<br />

Tregon<strong>in</strong>g, P., Lambeck, K., Stolz, A., Morgan, P., McClusky,<br />

S.C., van der Beek, P., McQueen, H., Jackson, R.J., Little,<br />

R.P., La<strong>in</strong>g, A. & Murphy, B. (1998) Estimation <strong>of</strong> current<br />

plate motions <strong>in</strong> Papua <strong>New</strong> Gu<strong>in</strong>ea from Global Position<strong>in</strong>g<br />

System observations. Journal <strong>of</strong> Geophysical Research, 103<br />

B6, 12,181±12,203.<br />

Turner, H. (1995) Cladistic <strong>and</strong> biogeographic analyses <strong>of</strong><br />

Arytera Blume <strong>and</strong> Mischarytera gen. nov. (Sap<strong>in</strong>daceae)<br />

with notes on methodology <strong>and</strong> a full taxonomic revision.<br />

Blumea Supplement, 9, 1±230.<br />

Tyler, M.J. (1968) Papuan hylid frogs <strong>of</strong> the genus Hyla.<br />

Zoology Verh<strong>and</strong> [Leiden], 96, 1±185.<br />

Uhl, N.W. & Drans®eld, J. (1987) Genera Palmarum: a<br />

Classi®cation <strong>of</strong> Palms Based on the Work <strong>of</strong> Harold E<br />

Moore Jr. L.H. Bailey Hortorium <strong>and</strong> the International Palm<br />

Society, Lawrence, Kansas.<br />

Van Tyne, J. & Berger, A.J. (1959) Fundamentals <strong>of</strong> Ornithology.<br />

Wiley, <strong>New</strong> York.<br />

Verdcourt, B. (1979) A manual <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea legumes. Of®ce<br />

<strong>of</strong> Forests, Lae.<br />

V<strong>in</strong>k, W. (1957) Hamamelidaceae. Flora Malesiana I, 5, 363±379.<br />

V<strong>in</strong>k, W. (1970) The W<strong>in</strong>teraceae <strong>of</strong> the Old World. I.<br />

Pseudow<strong>in</strong>tera <strong>and</strong> Drimys ± morphology <strong>and</strong> taxonomy.<br />

Blumea, 18, 225±354.<br />

V<strong>in</strong>k, W. (1995) Revision <strong>of</strong> Magodendron (Sapotaceae) with<br />

observations on ¯oral development <strong>and</strong> morphology. Blumea,<br />

40, 91±107.<br />

de Vogel, E.F. (1975a) Pterostylis R.Br. (Orchidaceae). Paci®c<br />

Plant Areas, 3, 274±275.<br />

de Vogel, E.F. (1975b) Prosopis <strong>in</strong>sularum. Paci®c Plant Areas,<br />

3, 312±313.<br />

Wallace, A.R. (1962) [1869] The Malay archipelago: the l<strong>and</strong><br />

<strong>of</strong> the orang-utan <strong>and</strong> the bird <strong>of</strong> <strong>paradise</strong>. Dover,<br />

<strong>New</strong> York.<br />

Ward, P.S. (1999) Systematics, <strong>biogeography</strong> <strong>and</strong> host plant<br />

associations <strong>of</strong> the Pseudomyrmex viduus group (Hymenoptera:<br />

Formicidae), Triplaris- <strong>and</strong> Tachigali-<strong>in</strong>habit<strong>in</strong>g ants.<br />

Zoological Journal <strong>of</strong> L<strong>in</strong>nean Society, 126, 451±540.<br />

Wattel, J. (1973) Geographical differentiation <strong>in</strong> the Genus<br />

Accipiter. Nuttall Ornithological Club, Cambridge, MA.<br />

van Welzen, P. (1997) Increased speciation <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea:<br />

tectonic causes? Plant diversity <strong>in</strong> Malesia III (eds J. Drans-<br />

®eld, M.J.E. Coode <strong>and</strong> D.A. Simpson), pp. 363±387. Royal<br />

Botanic Gardens, Kew.<br />

van Welzen, P., Piskaut, P. & W<strong>in</strong>dadri, F.I. (1992) Lepidopetalum<br />

Blume (Sap<strong>in</strong>daceae): taxonomy, phylogeny <strong>and</strong> historical<br />

<strong>biogeography</strong>. Blumea, 36, 439±465.<br />

White, C.T. (1951) Some new <strong>and</strong> noteworthy Myrtaceae from<br />

the Moluccas, <strong>New</strong> Gu<strong>in</strong>ea <strong>and</strong> the Solomon Isl<strong>and</strong>s. Journal<br />

<strong>of</strong> the Arnold Arboretum, 32, 139±149.<br />

White, C.M.N. & Bruce, M.D. (1986) The birds <strong>of</strong> Wallacea<br />

(Sulawesi, the Moluccas` <strong>and</strong> Lesser Sunda Isl<strong>and</strong>s, Indonesia).<br />

British Ornithologists' Union, London.<br />

de Wilde, W.J.J.O. (1975) Hollrungia. Paci®c Plant Areas, 3,<br />

380±381.<br />

Ziegler, A.C. (1982) An ecological check-list <strong>of</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

Recent mammals. Biogeography <strong>and</strong> <strong>ecology</strong> <strong>in</strong> <strong>New</strong> Gu<strong>in</strong>ea<br />

(ed. J.L. Gressitt), pp. 863±894. Junk, The Hague.<br />

Zona, S. (1999) Revision <strong>of</strong> Drymophloeus (Arecaceae: Arecoideae).<br />

Blumea, 44, 1±24.<br />

Zweifel, R.G. (1958) Results <strong>of</strong> the Archbold expeditions, no.<br />

78. Frogs <strong>of</strong> the Papuan hylid genus Nyctimestes. American<br />

Museum Novitates, 1896, 1±51.<br />

Zweifel, R.G. (1985) Australian frogs <strong>of</strong> the family Microhylidae.<br />

Bullet<strong>in</strong> <strong>of</strong> the American Museum <strong>of</strong> Natural History,<br />

182, 265±388.<br />

BIOSKETCH<br />

Michael Heads has taught biology at universities <strong>in</strong> Papua<br />

<strong>New</strong> Gu<strong>in</strong>ea, Fiji, Zimbabwe <strong>and</strong> Ghana. In the early<br />

1980s he acted as LeÂon Croizat's literary executor <strong>in</strong><br />

Venezuela <strong>and</strong> jo<strong>in</strong>ed Rob<strong>in</strong> Craw to form the <strong>New</strong><br />

Zeal<strong>and</strong> school <strong>of</strong> pan<strong>biogeography</strong> (R.C. Craw, J.R.<br />

Grehan & M.J. Heads, 1999. Pan<strong>biogeography</strong>: track<strong>in</strong>g<br />

the history <strong>of</strong> life. Oxford U.P., <strong>New</strong> York). He is<br />

<strong>in</strong>terested <strong>in</strong> ra<strong>in</strong>forest <strong>ecology</strong> <strong>and</strong> tree architecture <strong>and</strong><br />

recently carried out ®eld-work <strong>in</strong> Jamaica <strong>and</strong> the Cook<br />

Isl<strong>and</strong>s. He is currently writ<strong>in</strong>g a book on the <strong>biogeography</strong><br />

<strong>of</strong> Africa.<br />

Ó Blackwell Science Ltd 2001, Journal <strong>of</strong> Biogeography, 28, 893±925

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!