28.06.2014 Views

Slice regular functions on real alternative algebras

Slice regular functions on real alternative algebras

Slice regular functions on real alternative algebras

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Slice</str<strong>on</strong>g> <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>real</strong> <strong>alternative</strong><br />

<strong>algebras</strong><br />

R. Ghil<strong>on</strong>i, A. Perotti ∗<br />

Department of Mathematics<br />

University of Trento<br />

Via Sommarive, 14<br />

I38123 Povo Trento ITALY<br />

perotti@science.unitn.it<br />

February 8, 2010<br />

Abstract<br />

In this paper we develop a theory of slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> a <strong>real</strong><br />

<strong>alternative</strong> algebra A. Our approach is based <strong>on</strong> a wellknown Fueter's<br />

c<strong>on</strong>structi<strong>on</strong>. Two recent functi<strong>on</strong> theories can be included in our general<br />

theory: the <strong>on</strong>e of slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of a quaterni<strong>on</strong>ic or oct<strong>on</strong>i<strong>on</strong>ic<br />

variable and the theory of slice m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of a Cliord variable.<br />

Our approach permits to extend the range of these functi<strong>on</strong> theories and to<br />

obtain new results. In particular, we get a str<strong>on</strong>g form of the fundamental<br />

theorem of algebra for an ample class of polynomials with coecients in<br />

A and we prove a Cauchy integral formula for slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of class C 1 .<br />

Keywords: Functi<strong>on</strong>s of a hypercomplex variable, Quaterni<strong>on</strong>s, Oct<strong>on</strong>i<strong>on</strong>s,<br />

Fundamental theorem of algebra, Cauchy integral formula<br />

Math. Subj. Class: 30C15, 30G35, 32A30, 13J30<br />

1 Introducti<strong>on</strong><br />

In [13], R. Fueter proposed a simple method, which is now known as Fueter's<br />

Theorem, to generate quaterni<strong>on</strong>ic <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> using complex holomorphic<br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> (we refer the reader to [37] and [26] for the theory of Fueter <str<strong>on</strong>g>regular</str<strong>on</strong>g><br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>). Given a holomorphic functi<strong>on</strong> (the stem functi<strong>on</strong>)<br />

F (z) = u(α, β) + i v(α, β)<br />

(z = α + iβ complex, u, v <strong>real</strong>valued)<br />

∗ Work partially supported by MIUR (PRIN Project Proprietà geometriche delle varietà<br />

<strong>real</strong>i e complesse") and GNSAGA of INdAM<br />

1


in the upper complex halfplane, <strong>real</strong>valued <strong>on</strong> R, the formula<br />

f(q) := u (q 0 , | Im(q)|) + Im(q)<br />

| Im(q)| v (q 0, | Im(q)|)<br />

(q = q 0 + q 1 i + q 2 j + q 3 k ∈ H, Im(q) = q 1 i + q 2 j + q 3 k) gives rise to a radially<br />

holomorphic functi<strong>on</strong> <strong>on</strong> H, whose Laplacian ∆f is Fueter <str<strong>on</strong>g>regular</str<strong>on</strong>g>. Fueter's<br />

c<strong>on</strong>structi<strong>on</strong> was later extended to higher dimensi<strong>on</strong>s by Sce [33], Qian [31] and<br />

Sommen [36] in the setting of oct<strong>on</strong>i<strong>on</strong>ic and Cliord analysis.<br />

By means of a slight modicati<strong>on</strong> of Fueter's c<strong>on</strong>structi<strong>on</strong>, it is possible<br />

to obtain a more general class of <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>. It is the class of slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> (or<br />

Cullen <str<strong>on</strong>g>regular</str<strong>on</strong>g> ) <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of a quaterni<strong>on</strong>ic variable that was recently introduced<br />

by Gentili and Struppa [19, 20]. This noti<strong>on</strong> of <str<strong>on</strong>g>regular</str<strong>on</strong>g>ity do not coincide with<br />

the <strong>on</strong>e of Fueter. In fact, the set of slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> a ball B R centered<br />

in the origin of H coincides with that of all power series ∑ i qi a i that c<strong>on</strong>verges<br />

in B R , which fail to be Fueter <str<strong>on</strong>g>regular</str<strong>on</strong>g>. If u and v are Hvalued <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> the<br />

upper complex half-plane, then the same formula given above denes a Cullen<br />

<str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> <strong>on</strong> H, whose Laplacian ∆f is still Fueter <str<strong>on</strong>g>regular</str<strong>on</strong>g>.<br />

In the present paper, we extend Fueter's c<strong>on</strong>structi<strong>on</strong> in order to develop a<br />

theory of slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> a <strong>real</strong> <strong>alternative</strong> algebra A. These <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

will be obtained simply by taking Avalued comp<strong>on</strong>ents u, v of the stem functi<strong>on</strong><br />

F . As stated before, if A is the algebra of quaterni<strong>on</strong>s, we get the theory<br />

of Cullen <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>. If A is the algebra of oct<strong>on</strong>i<strong>on</strong>s, we obtain the<br />

corresp<strong>on</strong>ding theory of <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> already c<strong>on</strong>sidered in [18, 17] and [24].<br />

If A is the Cliord algebra R n with signature (0, n) (cf. e.g. [26] for properties of<br />

these <strong>algebras</strong>), slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> will be dened <strong>on</strong> a proper subset of R n , what we<br />

call the quadratic c<strong>on</strong>e of the algebra. In particular, by restricting the Cliord<br />

variables to the subspace of paravectors, which is c<strong>on</strong>tained in the quadratic<br />

c<strong>on</strong>e, we get the theory of slice m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> introduced by Colombo,<br />

Sabadini and Struppa in [9].<br />

We describe in more detail the structure of the paper. In Secti<strong>on</strong> 2, we<br />

introduce some basic deniti<strong>on</strong>s about <strong>real</strong> <strong>alternative</strong> <strong>algebras</strong> with an antiinvoluti<strong>on</strong>.<br />

We dene the normal c<strong>on</strong>e and the quadratic c<strong>on</strong>e of an algebra A and<br />

prove (Propositi<strong>on</strong> 3) that the quadratic c<strong>on</strong>e is a uni<strong>on</strong> of complex planes of A.<br />

This property is the starting point for the extensi<strong>on</strong> of Fueter's c<strong>on</strong>structi<strong>on</strong>.<br />

In Secti<strong>on</strong> 3, we introduce complex intrinsic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> with values in the complexied<br />

algebra A ⊗ R C and use them as stem <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> to generate Avalued<br />

(left) slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>. This approach, not being based up<strong>on</strong> power series, does<br />

not require the holomorphy of the stem functi<strong>on</strong>. Moreover, slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> can<br />

be dened also <strong>on</strong> domains which do not intersect the <strong>real</strong> axis of A (i.e. the<br />

subspace generated by the unity of A). In Propositi<strong>on</strong>s 5 and 6, we show that<br />

the natural domains of deniti<strong>on</strong> for slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> are circular domains of A,<br />

those that are invariant for the acti<strong>on</strong> of the square roots of −1.<br />

In Secti<strong>on</strong> 4, we restrict our attenti<strong>on</strong> to slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> with holomorphic<br />

stem functi<strong>on</strong>, what we call (left) slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> A. These <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

forms <strong>on</strong> every circular domain Ω D a right Amodule SR(Ω D ) that is not closed<br />

2


w.r.t. the pointwise product in A. However, the pointwise product for stem<br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> in the complexied algebra induces a natural product <strong>on</strong> slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

(cf. Secti<strong>on</strong> 5), that generalizes the usual product of polynomials and power<br />

series.<br />

In Secti<strong>on</strong>s 6 and 7, we study the zero set of slice and slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.<br />

To this aim, a fundamental tool is the normal functi<strong>on</strong> of a slice functi<strong>on</strong>, which<br />

is dened by means of the product and the antiinvoluti<strong>on</strong>. This c<strong>on</strong>cept leads<br />

us to restrict our attenti<strong>on</strong> to admissible slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>, which preserve<br />

many relevant properties of classical holomorphic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>. We generalize to<br />

our setting a structure theorem for the zero set proved by Pogorui and Shapiro<br />

[30] for quaterni<strong>on</strong>ic polynomials and by Gentili and Stoppato [16] for quaterni<strong>on</strong>ic<br />

power series. A Remainder Theorem (Theorem 22) gives us the possibility<br />

to dene a noti<strong>on</strong> of multiplicity for zeros of an admissible slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong>.<br />

In Secti<strong>on</strong> 7.3, we prove a versi<strong>on</strong> of the fundamental theorem of algebra for<br />

slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> admissible polynomials. This theorem was proved for quaterni<strong>on</strong>ic<br />

polynomials by Eilenberg and Niven [29, 11] and for oct<strong>on</strong>i<strong>on</strong>ic polynomials<br />

by Jou [27]. In [12, pp. 308], Eilenberg and Steenrod gave a topological<br />

proof of the theorem valid for a class of <strong>real</strong> <strong>algebras</strong> including C, H and O.<br />

See also [38], [32] and [23] for other proofs. Gord<strong>on</strong> and Motzkin [25] proved,<br />

for polynomials <strong>on</strong> a (associative) divisi<strong>on</strong> ring, that the number of c<strong>on</strong>jugacy<br />

classes c<strong>on</strong>taining zeros of p cannot be greater than the degree m of p. This<br />

estimate was improved <strong>on</strong> the quaterni<strong>on</strong>s by Pogorui and Shapiro [30]: if p<br />

has s spherical zeros and l n<strong>on</strong>spherical zeros, then 2s + l ≤ m. Gentili and<br />

Struppa [21] showed that, using the right deniti<strong>on</strong> of multiplicity, the number<br />

of zeros of p equals the degree of the polynomial. In [24], this str<strong>on</strong>g form was<br />

generalized to the oct<strong>on</strong>i<strong>on</strong>s. Recently, Colombo, Sabadini and Struppa [9, 7]<br />

and Yang and Qian [40] proved some results <strong>on</strong> the structure of the set of zeros<br />

of a polynomial with paravector coecients in a Cliord algebra.<br />

We obtain a str<strong>on</strong>g form of the fundamental theorem of algebra, which c<strong>on</strong>tains<br />

and generalizes the above results. We prove (Theorem 26) that the sum<br />

of the multiplicities of the zeros of a slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> admissible polynomial is equal<br />

to its degree.<br />

Secti<strong>on</strong> 8 c<strong>on</strong>tains a Cauchy integral formula for slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of class C 1 .<br />

We dene a Cauchy kernel, which in the quaterni<strong>on</strong>ic case was already introduced<br />

in [3], and for slice m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> in [5]. This kernel was applied in<br />

[8] to get Cauchy formulas for C 1 <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> a class of domains intersecting<br />

the <strong>real</strong> axis.<br />

2 The quadratic c<strong>on</strong>e of a <strong>real</strong> <strong>alternative</strong> algebra<br />

Let A be a nitedimensi<strong>on</strong>al <strong>alternative</strong> <strong>real</strong> algebra with a unity. We refer<br />

to [10, 34] for the main properties of such <strong>algebras</strong>. We assume that A has<br />

dimensi<strong>on</strong> d > 1 as a <strong>real</strong> vector space. We will identify the eld of <strong>real</strong> numbers<br />

with the subalgebra of A generated by the unity. Recall that an algebra is<br />

<strong>alternative</strong> if the associator (x, y, z) := (xy)z − x(yz) of three elements of A is<br />

3


an alternating functi<strong>on</strong> of its arguments.<br />

In a <strong>real</strong> algebra, we can c<strong>on</strong>sider the imaginary space c<strong>on</strong>sisting of all n<strong>on</strong><br />

<strong>real</strong> elements whose square is <strong>real</strong> (cf. [10, Ÿ8.1]).<br />

Deniti<strong>on</strong> 1. Let Im(A) := {x ∈ A | x 2 ∈ R, x /∈ R \ {0}}. The elements of<br />

Im(A) are called purely imaginary elements of A.<br />

Remark 1. As we will see in the examples below, in general, the imaginary space<br />

Im(A) is not a vector subspace of A. However, if A is a quadratic algebra, then<br />

a Frobenius's Lemma tells that Im(A) is a subspace of A (cf. e.g. [10, Ÿ8.2.1]).<br />

In what follows, we will assume that <strong>on</strong> A an involutory antiautomorphism<br />

(also called an antiinvoluti<strong>on</strong>) is xed. It is a linear map x ↦→ x c of A into A<br />

satisfying the following properties:<br />

• (x c ) c = x<br />

∀x ∈ A<br />

• (xy) c = y c x c<br />

∀x, y ∈ A<br />

• x c = x for every <strong>real</strong> x.<br />

Deniti<strong>on</strong> 2. For every element x of A, the trace of x is t(x) := x + x c ∈ A<br />

and the (squared) norm of x is n(x) := xx c ∈ A. Note that we do not assume<br />

that t(x) and n(x) are <strong>real</strong> for every x ∈ A.<br />

Now we introduce the main objects of this secti<strong>on</strong>, two subsets of A that will<br />

be called respectively the normal c<strong>on</strong>e and the quadratic c<strong>on</strong>e of the algebra.<br />

The sec<strong>on</strong>d name is justied by two properties proved below: the quadratic c<strong>on</strong>e<br />

is a <strong>real</strong> c<strong>on</strong>e whose elements satisfy a quadratic equati<strong>on</strong>.<br />

Deniti<strong>on</strong> 3. We call normal c<strong>on</strong>e of the algebra A the subset<br />

N A := {0} ∪ {x ∈ A | n(x) = n(x c ) is a <strong>real</strong> n<strong>on</strong>zero number }.<br />

The quadratic c<strong>on</strong>e of the algebra A is the set<br />

Q A := R ∪ {x ∈ A \ R | t(x) ∈ R, n(x) ∈ R, 4n(x) > t(x) 2 }.<br />

We also set S A := {J ∈ Q A | J 2 = −1} ⊆ Im(A). Elements of S A will be called<br />

square roots of −1 in the algebra A.<br />

Examples 1. (1) Let A be the associative n<strong>on</strong>commutative algebra H of the<br />

quaterni<strong>on</strong>s or the <strong>alternative</strong> n<strong>on</strong>associative algebra O of the oct<strong>on</strong>i<strong>on</strong>s. Let<br />

x c = ¯x be the usual c<strong>on</strong>jugati<strong>on</strong> mapping. Then Im(A) is a subspace, A =<br />

R ⊕ Im(A) and Q H = H, Q O = O. In these cases, S H is a two-dimensi<strong>on</strong>al<br />

sphere and S O is a six-dimensi<strong>on</strong>al sphere.<br />

(2) Let A be the <strong>real</strong> Cliord algebra Cl 0,n = R n with the Cliord c<strong>on</strong>jugati<strong>on</strong><br />

dened by<br />

x c = ([x] 0 + [x] 1 + [x] 2 + [x] 3 + [x] 4 + · · · ) c<br />

= [x] 0 − [x] 1 − [x] 2 + [x] 3 + [x] 4 − · · · ,<br />

4


where [x] k denotes the kvector comp<strong>on</strong>ent of x in R n (cf. for example [26, Ÿ3.2]<br />

for deniti<strong>on</strong>s and properties of Cliord numbers). If n ≥ 3, Im(A) is not a<br />

subspace of A. For example, the basis elements e 1 , e 23 bel<strong>on</strong>g to Im(A), but<br />

their sum e 1 + e 23 is not purely imaginary.<br />

For any n > 1, the subspace of paravectors,<br />

R n+1 := {x ∈ R n | [x] k = 0 for every k > 1}<br />

is a (proper) subset of the quadratic c<strong>on</strong>e Q Rn . For x ∈ R n+1 , t(x) = 2x 0 ∈ R<br />

and n(x) = |x| 2 ≥ 0 (the euclidean norm). The (n − 1)dimensi<strong>on</strong>al sphere<br />

S = {x = x 1 e 1 + · · · x n e n ∈ R n+1 | x 2 1 + · · · + x 2 n = 1} of unit 1vectors is<br />

(properly) c<strong>on</strong>tained in S Rn . The normal c<strong>on</strong>e c<strong>on</strong>tains also the Cliord group<br />

Γ n and its subgroups Pin(n) and Spin(n).<br />

(3) We c<strong>on</strong>sider in more detail the case of R 3 . An element x ∈ R 3 can be<br />

represented as a sum<br />

x = x 0 +<br />

3∑<br />

x i e i +<br />

i=1<br />

3∑<br />

j,k=1<br />

j


(4) x ∈ Q A is equivalent to x c ∈ Q A . Moreover, Q A ⊆ N A .<br />

(5) Every n<strong>on</strong>zero x ∈ N A is invertible: x −1 = xc<br />

n(x) .<br />

(6) S A = {J ∈ A | t(J) = 0, n(J) = 1}. In particular J c = −J for every<br />

J ∈ S A .<br />

(7) Q A = A if and <strong>on</strong>ly if A is isomorphic to <strong>on</strong>e of the divisi<strong>on</strong> <strong>algebras</strong> C, H<br />

or O with the usual c<strong>on</strong>jugati<strong>on</strong>.<br />

Proof. The rst two statements are immediate c<strong>on</strong>sequences of the linearity<br />

of the antiinvoluti<strong>on</strong>. For every x ∈ Q A , the equality n(x) = n(x c ) holds,<br />

since x c = t(x) − x commutes with x. From this fact comes the quadratic<br />

equati<strong>on</strong> and also the fourth and fth statement. We recall Artin's Theorem<br />

for <strong>alternative</strong> <strong>algebras</strong> (cf. [34]): the subalgebra generated by two elements is<br />

always associative. If J ∈ S A , then 1 = n(J 2 ) = (JJ)(J c J c ) = J n(J c )J c =<br />

n(J) 2 . Then n(J) = 1 and J(J + J c ) = −1 + n(J) = 0, from which it follows,<br />

multiplying by J <strong>on</strong> the left, that J + J c = 0.<br />

The last property follows from properties (3), (4), (5) and a result proved<br />

by Frobenius and Zorn (cf. [10, Ÿ8.2.4] and Ÿ9.3.2), which states that, if A is a<br />

quadratic <strong>alternative</strong> <strong>real</strong> algebra without divisors of zero, then A is isomorphic<br />

to <strong>on</strong>e of the <strong>algebras</strong> C, H or O.<br />

Propositi<strong>on</strong> 2. Let A be an <strong>alternative</strong> <strong>real</strong> algebra with a xed antiinvoluti<strong>on</strong><br />

x ↦→ x c . For every x ∈ Q A , there exist uniquely determined elements x 0 ∈ R,<br />

y ∈ Im(A) ∩ Q A , with t(y) = 0, such that<br />

x = x 0 + y.<br />

Proof. If x ∈ R, then the result is evident. Let x ∈ Q A \ R. Dene x 0 :=<br />

(x + x c )/2 = t(x)/2 and y := (x − x c )/2. By deniti<strong>on</strong> of Q A , x 0 ∈ R and hence<br />

y /∈ R. It remains to prove that y bel<strong>on</strong>gs to Im(A). C<strong>on</strong>diti<strong>on</strong> 4n(x) > t(x) 2<br />

given in the deniti<strong>on</strong> of the quadratic c<strong>on</strong>e assures that y bel<strong>on</strong>gs to Im(A):<br />

4y 2 = −4n(y) = (x − x c ) 2 = x 2 − 2n(x) + (x c ) 2 =<br />

= t(x)x − n(x) − 2n(x) + t(x c )x c − n(x c ) = t(x) 2 − 4n(x) < 0.<br />

Uniqueness follows from the equality t(x) = t(x 0 ) = 2x 0 .<br />

Using the notati<strong>on</strong> of the above propositi<strong>on</strong>, for every x ∈ Q A , we set<br />

Re(x) := x 0 = x+xc<br />

2<br />

, Im(x) := y = x−xc<br />

2<br />

. Therefore x = Re(x) + Im(x) for<br />

every x ∈ Q A . The norm of x ∈ Q A is given by the formula<br />

n(x) = (x 0 + y)(x 0 + y c ) = x 2 0 − y 2 = (Re(x)) 2 − (Im(x)) 2 .<br />

For every J ∈ S A square root of −1, we will denote by C J := 〈1, J〉 ≃ C the<br />

subalgebra of A generated by J.<br />

6


Propositi<strong>on</strong> 3. Under the same assumpti<strong>on</strong>s of the preceding propositi<strong>on</strong>, if<br />

Q A ≠ R, the following statements hold:<br />

(1) Q A = ⋃ J∈S A<br />

C J .<br />

(2) If I, J ∈ S A , I ≠ ±J, then C I ∩ C J = R.<br />

Proof. If x ∈ Q A \ R and y = Im(x) ≠ 0, set J := y/ √ n(y). Then J 2 =<br />

y 2 /n(y) = −1 and therefore J ∈ S A and x = Re(x)+ √ n(y)J ∈ C J . C<strong>on</strong>versely,<br />

from Propositi<strong>on</strong> 1 (properties (1),(2)) every complex plane C J is c<strong>on</strong>tained in<br />

Q A .<br />

The sec<strong>on</strong>d statement follows from the Independence Lemma for <strong>alternative</strong><br />

<strong>algebras</strong> (cf. [10, Ÿ8.1]): since two elements I, J ∈ S A , I ≠ ±J, are linearly<br />

independent, then also the triple {1, I, J} is linearly independent. This last<br />

c<strong>on</strong>diti<strong>on</strong> is equivalent to C I ∩ C J = R.<br />

Corollary 4. For every x ∈ Q A , also the powers x k bel<strong>on</strong>g to Q A .<br />

3 <str<strong>on</strong>g>Slice</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

3.1 Astem <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

In this and the following secti<strong>on</strong>s, A will denote an <strong>alternative</strong> <strong>real</strong> algebra with<br />

a xed antiinvoluti<strong>on</strong> x ↦→ x c . We will always assume that Q A ≠ R, i.e. that<br />

S A ≠ ∅.<br />

Let A C = A⊗ R C be the complexicati<strong>on</strong> of A. We will use the representati<strong>on</strong><br />

A C = {w = x + iy | x, y ∈ A}<br />

(i 2 = −1).<br />

A C is an <strong>alternative</strong> complex algebra with a unity w.r.t. the product given by<br />

the formula<br />

(x + iy)(x ′ + iy ′ ) = xx ′ − yy ′ + i(xy ′ + yx ′ ).<br />

The algebra A can be identied with the <strong>real</strong> subalgebra A ′ := {w = x+iy | y =<br />

0} of A C and the unity of A C then coincides with the <strong>on</strong>e of A. In A C two<br />

commuting operators are dened: the complexlinear antiinvoluti<strong>on</strong> w ↦→ w c =<br />

(x+iy) c = x c +iy c and the complex c<strong>on</strong>jugati<strong>on</strong> dened by w = x + iy = x−iy.<br />

Deniti<strong>on</strong> 4. Let D ⊆ C be an open subset. If a functi<strong>on</strong> F : D → A C is<br />

complex intrinsic, i.e. it satises the c<strong>on</strong>diti<strong>on</strong><br />

F (z) = F (z) for every z ∈ D such that z ∈ D,<br />

then F is called an Astem functi<strong>on</strong> <strong>on</strong> D.<br />

The noti<strong>on</strong> of stem functi<strong>on</strong> was introduced by Fueter in [13] for complex<br />

valued <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> in order to c<strong>on</strong>struct radially holomorphic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> the<br />

space of quaterni<strong>on</strong>s.<br />

7


In the preceding deniti<strong>on</strong>, there is no restricti<strong>on</strong> to assume that D is symmetric<br />

w.r.t. the <strong>real</strong> axis, i.e. D = c<strong>on</strong>j(D) := {z ∈ C | ¯z ∈ D}. In fact, if this<br />

is not the case, the functi<strong>on</strong> F can be extended to D ∪ c<strong>on</strong>j(D) by imposing<br />

complex intrinsicity. It must be noted, however, that the extended set will be<br />

n<strong>on</strong>c<strong>on</strong>nected if D ∩ R = ∅, even if D is c<strong>on</strong>nected.<br />

Remarks 3. (1) A functi<strong>on</strong> F is an Astem functi<strong>on</strong> if and <strong>on</strong>ly if the Avalued<br />

comp<strong>on</strong>ents F 1 , F 2 of F = F 1 + iF 2 form an evenodd pair w.r.t. the imaginary<br />

part of z, i.e.<br />

F 1 (z) = F 1 (z), F 2 (z) = −F 2 (z) for every z ∈ D.<br />

(2) Let d be the dimensi<strong>on</strong> of A as a <strong>real</strong> vector space. By means of a basis<br />

B = {u k } k=1,...,d of A, F can be identied with a complex intrinsic curve in C d .<br />

Let F (z) = F 1 (z) + iF 2 (z) = ∑ d<br />

k=1 F B k(z)u k, with FB k (z) ∈ C. Then<br />

˜F B = (F 1 B, . . . , F d B) : D → C d<br />

satises ˜F B (z) = ˜F B (z). Giving to A the unique manifold structure as a <strong>real</strong><br />

vector space, we get that a stem functi<strong>on</strong> F is of class C k (k = 0, 1, . . . , ∞)<br />

or <strong>real</strong>analytic if and <strong>on</strong>ly if the same property holds for ˜F B . This noti<strong>on</strong> is<br />

clearly independent of the choice of the basis of A.<br />

3.2 Avalued slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

Given an open subset D of C, let Ω D be the subset of A obtained by the acti<strong>on</strong><br />

<strong>on</strong> D of the square roots of −1:<br />

Ω D := {x = α + βJ ∈ C J | α, β ∈ R, α + iβ ∈ D, J ∈ S A }.<br />

Sets of this type will be called circular sets in A. It follows from Propositi<strong>on</strong> 3<br />

that Ω D is a relatively open subset of the quadratic c<strong>on</strong>e Q A .<br />

Deniti<strong>on</strong> 5. Any stem functi<strong>on</strong> F : D → A C induces a left slice functi<strong>on</strong><br />

f = I(F ) : Ω D → A. If x = α + βJ ∈ D J := Ω D ∩ C J , we set<br />

f(x) := F 1 (z) + JF 2 (z)<br />

(z = α + iβ).<br />

The slice functi<strong>on</strong> f is welldened, since (F 1 , F 2 ) is an evenodd pair w.r.t.<br />

β and then f(α + (−β)(−J)) = F 1 (z) + (−J)F 2 (z) = F 1 (z) + JF 2 (z). There<br />

is an analogous deniti<strong>on</strong> for right slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> when the element J ∈ S A<br />

is placed <strong>on</strong> the right of F 2 (z). In what follows, the term slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> will<br />

always mean left slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.<br />

We will denote the set of (left) slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> Ω D by<br />

S(Ω D ) := {f : Ω D → A | f = I(F ), F : D → A C Astem functi<strong>on</strong>}.<br />

Remark 4. S(Ω D ) is a right Amodule, since I(F + G) = I(F ) + I(G) and<br />

I(F a) = I(F )a for every complex intrinsic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> F , G and every a ∈ A.<br />

8


Examples 2. Assume A = H or A = O, with the usual c<strong>on</strong>jugati<strong>on</strong> mapping.<br />

(1) For any element a ∈ A, F (z) := z n a = Re(z n )a + i (Im(z n )a) induces<br />

the m<strong>on</strong>omial f(x) = x n a ∈ S(A).<br />

(2) By linearity, we get all the standard polynomials p(x) = ∑ n<br />

j=0 xj a j with<br />

right quaterni<strong>on</strong>ic or oct<strong>on</strong>i<strong>on</strong>ic coecients. More generally, every c<strong>on</strong>vergent<br />

power series ∑ j xj a j , with (possibly innite) c<strong>on</strong>vergence radius R (w.r.t. |x| =<br />

√<br />

n(x)), bel<strong>on</strong>gs to the space S(BR ), where B R is the open ball of A centered<br />

in the origin with radius R.<br />

(3) Also G(z) := Re(z n )a and H(z) := i (Im(z n )a) are complex intrinsic <strong>on</strong><br />

C. They induce respectively the slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> g(x) = Re(x n )a and h(x) =<br />

f(x) − g(x) = (x n − Re(x n ))a <strong>on</strong> A. The dierence G(z) − H(z) = ¯z n a induces<br />

g(x) − h(x) = (2 Re(x n ) − x n )a = ¯x n a ∈ S(A).<br />

The above examples generalize to standard polynomials in x = I(z) and x c =<br />

I(¯z) with coecients in A. The domain of slice polynomial <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> or series<br />

must be restricted to subsets of the quadratic c<strong>on</strong>e. For example, when A = R 3 ,<br />

standard polynomials in x with right Cliord coecients can be c<strong>on</strong>sidered as<br />

slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> for x ∈ R 3 such that x 123 = 0, x 1 x 23 − x 2 x 13 + x 3 x 12 = 0 (cf.<br />

Example 1(3) in Secti<strong>on</strong> 2). In particular, they are dened <strong>on</strong> the space of<br />

paravectors R 4 = {x ∈ R 3 | x 12 = x 13 = x 23 = x 123 = 0}.<br />

3.3 Representati<strong>on</strong> formulas<br />

For an element J ∈ S A , let C + J<br />

denote the upper half plane<br />

C + J<br />

= {x = α + βJ ∈ A | β ≥ 0}.<br />

Propositi<strong>on</strong> 5. Let J, K ∈ S A with J − K invertible. Every slice functi<strong>on</strong> f ∈<br />

S(Ω D ) is uniquely determined by its values <strong>on</strong> the two distinct half planes C + J<br />

and C + K<br />

. In particular, taking K = −J, we have that f is uniquely determined<br />

by its values <strong>on</strong> a complex plane C J .<br />

Proof. For f ∈ S(Ω D ), let f + J<br />

be the restricti<strong>on</strong><br />

f + J := f |C + J ∩Ω D : C+ J ∩ Ω D → A.<br />

It is sucient to show that the stem functi<strong>on</strong> F such that I(F ) = f can be<br />

recovered from the restricti<strong>on</strong>s f + J , f + K<br />

. This follows from the formula<br />

f + J (α + βJ) − f + K (α + βK) = (J − K)F 2(α + iβ)<br />

which holds for every α + iβ ∈ D with β ≥ 0. In particular, it implies the<br />

vanishing of F 2 when β = 0. Then F 2 is determined also for β < 0 by imposing<br />

oddness w.r.t. β. Moreover, the formula<br />

f + J (α + βJ) − JF 2(α + iβ) = F 1 (α + iβ)<br />

denes the rst comp<strong>on</strong>ent F 1 as an even functi<strong>on</strong> <strong>on</strong> D.<br />

9


We also obtain the following representati<strong>on</strong> formulas for slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.<br />

Propositi<strong>on</strong> 6. Let f ∈ S(Ω D ). Let J, K ∈ S A with J − K invertible. Then<br />

the following formula holds:<br />

f(x) = (I − K) ( (J − K) −1 f(α + βJ) ) − (I − J) ( (J − K) −1 f(α + βK) ) (1)<br />

for every I ∈ S A and for every x = α + βI ∈ D I = Ω D ∩ C I . In particular, for<br />

K = −J, we get the formula<br />

f(x) = 1 2 (f(α + βJ) + f(α − βJ)) − I (J (f(α + βJ) − f(α − βJ))) (2)<br />

2<br />

Proof. Let z = α + iβ. From the proof of the preceding propositi<strong>on</strong>, we get<br />

F 2 (z) = (J − K) −1 (f(α + βJ) − f(α + βK))<br />

and<br />

F 1 (z) = f(α+βJ)−JF 2 (z) = f(α+βJ)−J((J−K) −1 (f(α + βJ) − f(α + βK)) .<br />

Therefore<br />

f(α + βI) = f(α + βJ) + (I − J)((J − K) −1 (f(α + βJ) − f(α + βK))) =<br />

= ((J − K) + (I − J))((J − K) −1 f(α + βJ)) − (I − J)((J − K) −1 f(α + βK)) =<br />

= (I − K) ( (J − K) −1 f(α + βJ) ) − (I − J) ( (J − K) −1 f(α + βK) ) .<br />

We used the fact that, in any <strong>alternative</strong> algebra A, the equality b = (aa −1 )b =<br />

a(a −1 b) holds for every elements a, b in A, a invertible.<br />

Representati<strong>on</strong> formulas for quaterni<strong>on</strong>ic Cullen <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> appeared<br />

in [3] and [4]. For slice m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of a Cliord variable, they were<br />

given in [5, 6].<br />

In the particular case when I = J, formula (2) reduces to the trivial decompositi<strong>on</strong><br />

f(x) = 1 2 (f(x) + f(xc )) + 1 2 (f(x) − f(xc )) .<br />

But 1 2 (f(x) + f(xc )) = F 1 (z) and 1 2 (f(x) − f(xc )) = JF 2 (z), where x = α+βJ,<br />

z = α + iβ.<br />

Deniti<strong>on</strong> 6. Let f ∈ S(Ω D ). We call spherical value of f in x ∈ Ω D the<br />

element of A<br />

v s f(x) := 1 2 (f(x) + f(xc )) .<br />

We call spherical derivative of f in x ∈ Ω D \ R the element of A<br />

∂ s f(x) := 1 2 Im(x)−1 (f(x) − f(x c )).<br />

10


In this way, we get two slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> associated with f: v s f is induced <strong>on</strong><br />

Ω D by the stem functi<strong>on</strong> F 1 (z) and ∂ s f is induced <strong>on</strong> Ω D \ R by F 2 (z)/Im(z).<br />

Since these stem <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> are Avalued, v s f and ∂ s f are c<strong>on</strong>stant <strong>on</strong> every<br />

sphere<br />

S x := {y ∈ Q A | y = α + βI, I ∈ S A }.<br />

Therefore ∂ s (∂ s f) = 0 and ∂ s (v s f) = 0 for every f. Moreover, ∂ s f(x) = 0<br />

if and <strong>on</strong>ly if f is c<strong>on</strong>stant <strong>on</strong> S x . In this case, f has value v s f(x) <strong>on</strong> S x . If<br />

Ω D ∩ R ≠ ∅, under mild <str<strong>on</strong>g>regular</str<strong>on</strong>g>ity c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> F , we get that ∂ s f can be<br />

c<strong>on</strong>tinuously extended as a slice functi<strong>on</strong> <strong>on</strong> Ω D . For example, it is sucient to<br />

assume that F 2 (z) is of class C 1 . By deniti<strong>on</strong>, the following identity holds for<br />

every x ∈ Ω D :<br />

f(x) = v s f(x) + Im(x) ∂ s f(x).<br />

Example 3. Simple computati<strong>on</strong>s show that v s x n = 1 2 t(xn ) for every n, while<br />

∂ s x = 1, ∂ s x 2 = x + x c = t(x), ∂ s x 3 = x 2 + (x c ) 2 + xx c = t(x 2 ) + n(x).<br />

In general, the spherical derivative of a polynomial ∑ n<br />

j=0 xj a j of degree n is a<br />

<strong>real</strong>valued polynomial in x and x c of degree n − 1. If A n and B n denote the<br />

<strong>real</strong> comp<strong>on</strong>ents of the complex power z n = (α + iβ) n , i.e. z n = A n + iB n , then<br />

B n (α, β) = βB n(α, ′ β 2 ), for a polynomial B n. ′ Then<br />

(<br />

∂ s x n = B n<br />

′ x + x c ( ) )<br />

x − x<br />

c 2<br />

, −<br />

.<br />

2 2<br />

3.4 Smoothness of slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

Given a subset B of A, a functi<strong>on</strong> g : B → A and a positive integer s or<br />

s ∈ {∞, ω}, we will say that g is of class C s (B) if g can be extended to an open<br />

set as a functi<strong>on</strong> of class C s in the usual sense.<br />

Propositi<strong>on</strong> 7. Let f = I(F ) ∈ S(Ω D ) be a slice functi<strong>on</strong>. Then the following<br />

statements hold:<br />

(1) If F ∈ C 0 (D), then f ∈ C 0 (Ω D ). Moreover, v s f ∈ C 0 (Ω D ) and ∂ s f ∈<br />

C 0 (Ω D \ R).<br />

(2) If F ∈ C 2s+1 (D) for a positive integer s, then f, v s f and ∂ s f are of class<br />

C s (Ω D ). As a c<strong>on</strong>sequence, if F ∈ C ∞ (D), then the <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> f, v s f, ∂ s f<br />

are of class C ∞ (Ω D ).<br />

(3) If F ∈ C ω (D), then f, v s f and ∂ s f are of class C ω (Ω D ).<br />

Proof. Assume that F ∈ C 0 (D). For any x ∈ Q A , let x = Re(x) + Im(x)<br />

be the decompositi<strong>on</strong> given in Propositi<strong>on</strong> 2. Since Im(x) is purely imaginary,<br />

Im(x) 2 is a n<strong>on</strong>positive <strong>real</strong> number. The map that associates x ∈ Q A with<br />

z = Re(x)+i √ − Im(x) 2 ∈ C is c<strong>on</strong>tinuous <strong>on</strong> Q A \R. The same property holds<br />

for the map that sends x to J = Im(x)/ √ n(Im(x)). These two facts imply<br />

11


that <strong>on</strong> Ω D \ R the slice functi<strong>on</strong> f = I(F ) has the same smoothness as the<br />

restricti<strong>on</strong> of the stem functi<strong>on</strong> F <strong>on</strong> D \ R. C<strong>on</strong>tinuity at <strong>real</strong> points of Ω D is<br />

an immediate c<strong>on</strong>sequence of the evenodd character of the pair (F 1 (z), F 2 (z))<br />

w.r.t. the imaginary part of z.<br />

If F is C 2s+1 smooth or C ω and z = α + iβ, it follows from a result of<br />

Whitney [39] that there exist F ′ 1, F ′ 2 of class C s or C ω respectively, such that<br />

F 1 (α, β) = F ′ 1(α, β 2 ), F 2 (α, β) = βF ′ 2(α, β 2 ) <strong>on</strong> D.<br />

(Here F j (α, β) means F j (z) as a functi<strong>on</strong> of α and β, j = 1, 2.) Then, for x =<br />

Re(x) + Im(x) ∈ Q A ∩ C J , Re(x) = α, Im(x) = Jβ, β 2 = − Im(x) 2 = n(Im(x)),<br />

it holds:<br />

( ( ))<br />

x + x<br />

v s f(x) = F 1(Re(x), ′ n(Im(x))) = F 1<br />

′ c x − x<br />

c<br />

, n<br />

,<br />

2 2<br />

( ( ))<br />

x + x<br />

∂ s f(x) = F 2(Re(x), ′ n(Im(x))) = F 2<br />

′ c x − x<br />

c<br />

, n<br />

2 2<br />

and f(x) = v s f(x) + Im(x) ∂ s f(x) = v s f(x) + 1 2 (x − xc ) ∂ s f(x). These formulas<br />

imply the sec<strong>on</strong>d and third statements.<br />

We will denote by<br />

S 1 (Ω D ) := {f = I(F ) ∈ S(Ω D ) | F ∈ C 1 (D)}<br />

the right Amodule of slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> with stem functi<strong>on</strong> of class C 1 .<br />

Let f = I(F ) ∈ S 1 (Ω D ) and z = α + iβ ∈ D. Then the partial derivatives<br />

∂F /∂α and i∂F /∂β are c<strong>on</strong>tinuous Astem <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> D. The same property<br />

holds for their linear combinati<strong>on</strong>s<br />

∂F<br />

∂z = 1 2<br />

( ∂F<br />

∂α − i∂F ∂β<br />

)<br />

and<br />

Deniti<strong>on</strong> 7. Let f = I(F ) ∈ S 1 (Ω D ). We set<br />

)<br />

,<br />

(<br />

∂f ∂F<br />

∂x := I ∂z<br />

∂F<br />

∂¯z = 1 ( )<br />

∂F<br />

2 ∂α + i∂F .<br />

∂β<br />

(<br />

∂f ∂F<br />

∂x c := I ∂¯z<br />

These <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> are c<strong>on</strong>tinuous slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> Ω D .<br />

The notati<strong>on</strong> ∂f/∂x c is justied by the following properties: x c = I(¯z) and<br />

therefore ∂x c /∂x c = 1, ∂x/∂x c = 0.<br />

4 <str<strong>on</strong>g>Slice</str<strong>on</strong>g> <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

Left multiplicati<strong>on</strong> by i denes a complex structure <strong>on</strong> A C . With respect to this<br />

structure, a C 1 functi<strong>on</strong> F = F 1 + iF 2 : D → A C is holomorphic if and <strong>on</strong>ly if<br />

its comp<strong>on</strong>ents F 1 , F 2 satisfy the CauchyRiemann equati<strong>on</strong>s:<br />

∂F 1<br />

∂α = ∂F 2<br />

∂β , ∂F 1<br />

∂β = −∂F 2<br />

∂α<br />

)<br />

.<br />

(z = α + iβ ∈ D), i.e.<br />

12<br />

∂F<br />

∂¯z = 0.


This c<strong>on</strong>diti<strong>on</strong> is equivalent to require that, for any basis B, the complex<br />

curve ˜F B (cf. Remark 3 in Subsecti<strong>on</strong> 3.1) is holomorphic.<br />

Deniti<strong>on</strong> 8. A (left) slice functi<strong>on</strong> f ∈ S 1 (Ω D ) is (left) slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> if its<br />

stem functi<strong>on</strong> F is holomorphic. We will denote the right Amodule of slice<br />

<str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> Ω D by<br />

SR(Ω D ) := {f ∈ S 1 (Ω D ) | f = I(F ), F : D → A C holomorphic}.<br />

Remarks 5. (1) A functi<strong>on</strong> f ∈ S 1 (Ω D ) is slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> if and <strong>on</strong>ly if the slice<br />

functi<strong>on</strong> ∂f/∂x c (cf. Deniti<strong>on</strong> 7) vanishes identically. Moreover, if f is slice<br />

<str<strong>on</strong>g>regular</str<strong>on</strong>g>, then also ∂f/∂x = I (∂F /∂z) is slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <strong>on</strong> Ω D .<br />

(2) Since v s f and ∂ s f are Avalued, they are slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <strong>on</strong>ly when they<br />

are locally c<strong>on</strong>stant <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.<br />

As seen in the Examples 2 of Subsecti<strong>on</strong> 3.2, polynomials with right coecients<br />

bel<strong>on</strong>ging to A can be c<strong>on</strong>sidered as slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> the<br />

quadratic c<strong>on</strong>e. If f(x) = ∑ m<br />

j=0 xj a j , then f = I(F ), with F (z) = ∑ m<br />

j=0 zj a j .<br />

Assume that <strong>on</strong> A is dened a positive scalar product x · y whose associated<br />

norm satises an inequality |xy| ≤ C|x||y| for a positive c<strong>on</strong>stant C and such<br />

that |x| 2 = n(x) for every x ∈ Q A . Then we also have |x k | = |x| k for every k > 0,<br />

x ∈ Q A . In this case we can c<strong>on</strong>sider also c<strong>on</strong>vergent power series ∑ k xk a k as<br />

slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> the intersecti<strong>on</strong> of the quadratic c<strong>on</strong>e with a ball<br />

(w.r.t. the norm |x|) centered in the origin. See for example [26, Ÿ4.2] for the<br />

quaterni<strong>on</strong>ic and Cliord algebra cases, where we can take as product x · y the<br />

euclidean product in R 4 or R 2n , respectively.<br />

Propositi<strong>on</strong> 8. Let f = I(F ) ∈ S 1 (Ω D ). Then f is slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <strong>on</strong> Ω D if and<br />

<strong>on</strong>ly if the restricti<strong>on</strong><br />

f J := f |CJ ∩Ω D<br />

: D J = C J ∩ Ω D → A<br />

is holomorphic for every J ∈ S A with respect to the complex structures <strong>on</strong> D J<br />

and A dened by left multiplicati<strong>on</strong> by J.<br />

Proof. Since f J (α + βJ) = F 1 (α + iβ) + JF 2 (α + iβ), if F is holomorphic then<br />

∂f J<br />

∂α + J ∂f J<br />

∂β = ∂F 1<br />

∂α + J ∂F (<br />

2<br />

∂α + J ∂F1<br />

∂β + J ∂F )<br />

2<br />

= 0<br />

∂β<br />

at every point x = α + βJ ∈ D J . C<strong>on</strong>versely, assume that f J is holomorphic<br />

for every J ∈ S A . Then<br />

0 = ∂f J<br />

∂α + J ∂f J<br />

∂β = ∂F 1<br />

∂α − ∂F (<br />

2<br />

∂β + J ∂F2<br />

∂α + ∂F )<br />

1<br />

∂β<br />

at every point z = α+iβ ∈ D. From the arbitrariness of J it follows that F 1 , F 2<br />

satisfy the CauchyRiemann equati<strong>on</strong>s.<br />

13


Remark 6. The evenodd character of the pair (F 1 , F 2 ) and the proof of the<br />

preceding propositi<strong>on</strong> show that, in order to get slice <str<strong>on</strong>g>regular</str<strong>on</strong>g>ity of f = I(F ),<br />

F ∈ C 1 , it is sucient to assume that two <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> f J , f K (J −K invertible) are<br />

holomorphic <strong>on</strong> domains C + J ∩ Ω D and C + K ∩ Ω D, respectively (cf. Propositi<strong>on</strong> 5<br />

for notati<strong>on</strong>s). The possibility K = −J is not excluded: it means that the single<br />

functi<strong>on</strong> f J must be holomorphic <strong>on</strong> D J .<br />

Propositi<strong>on</strong> 8 implies that if A is the algebra of quaterni<strong>on</strong>s or oct<strong>on</strong>i<strong>on</strong>s,<br />

and the domain D intersects the <strong>real</strong> axis, then f is slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <strong>on</strong> Ω D if and<br />

<strong>on</strong>ly if it is Cullen <str<strong>on</strong>g>regular</str<strong>on</strong>g> in the sense introduced by Gentili and Struppa in<br />

[19, 20] for quaterni<strong>on</strong>ic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> and in [18, 17] for oct<strong>on</strong>i<strong>on</strong>ic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.<br />

If A is the <strong>real</strong> Cliord algebra R n , slice <str<strong>on</strong>g>regular</str<strong>on</strong>g>ity generalizes the c<strong>on</strong>cept<br />

of slice m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> introduced by Colombo, Sabadini and Struppa in<br />

[9]. From Propositi<strong>on</strong> 8 and from the inclusi<strong>on</strong> of the set R n+1 of paravectors<br />

in the quadratic c<strong>on</strong>e (cf. Example 1 of Secti<strong>on</strong> 2), we get the following result.<br />

Corollary 9. Let A = R n be the Cliord algebra. If f = I(F ) ∈ SR(Ω D ),<br />

F ∈ C 1 (D) and D intersects the <strong>real</strong> axis, then the restricti<strong>on</strong> of f to the<br />

subspace of paravectors is a slice m<strong>on</strong>ogenic functi<strong>on</strong><br />

f |ΩD ∩R n+1 : Ω D ∩ R n+1 → R n .<br />

Note that every slice m<strong>on</strong>ogenic functi<strong>on</strong> is the restricti<strong>on</strong> to the subspace<br />

of paravectors of a unique slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> (cf. Propositi<strong>on</strong>s 5 and 6).<br />

5 Product of slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

In general, the pointwise product of two slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> is not a slice functi<strong>on</strong>.<br />

However, pointwise product in the algebra A C of Astem <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> induces a<br />

natural product <strong>on</strong> slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.<br />

Deniti<strong>on</strong> 9. Let f = I(F ), g = I(G) ∈ S(Ω D ). The product of f and g is the<br />

slice functi<strong>on</strong><br />

f · g := I(F G) ∈ S(Ω D ).<br />

The preceding deniti<strong>on</strong> is wellposed, since the pointwise product F G =<br />

(F 1 + iF 2 )(G 1 + iG 2 ) = F 1 G 1 − F 2 G 2 + i(F 1 G 2 + F 2 G 1 ) of complex intrinsic<br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> is still complex intrinsic. It follows directly from the deniti<strong>on</strong> that<br />

the product is distributive. It is also associative if A is an associative algebra.<br />

The spherical derivative satises a Leibniztype product rule, where evaluati<strong>on</strong><br />

is replaced by spherical value:<br />

∂ s (f · g) = (∂ s f)(v s g) + (v s f)(∂ s g).<br />

Remark 7. In general, (f · g)(x) ≠ f(x)g(x). If x = α + βJ bel<strong>on</strong>gs to D J =<br />

Ω D ∩ C J and z = α + iβ, then<br />

(f · g)(x) = F 1 (z)G 1 (z) − F 2 (z)G 2 (z) + J (F 1 (z)G 2 (z)) + J (F 2 (z)G 1 (z)) ,<br />

14


while<br />

f(x)g(x) = F 1 (z)G 1 (z) + (JF 2 (z))(JG 2 (z)) + F 1 (z)(JG 2 (z)) + (JF 2 (z))G 1 (z).<br />

If the comp<strong>on</strong>ents F 1 , F 2 of the rst stem functi<strong>on</strong> F are <strong>real</strong>valued, or if F<br />

and G are both Avalued, then (f · g)(x) = f(x)g(x) for every x ∈ Ω D . In this<br />

case, we will use also the notati<strong>on</strong> fg in place of f · g.<br />

Deniti<strong>on</strong> 10. A slice functi<strong>on</strong> f = I(F ) is called <strong>real</strong> if the Avalued comp<strong>on</strong>ents<br />

F 1 , F 2 of its stem functi<strong>on</strong> are <strong>real</strong>valued. Equivalently, f is <strong>real</strong> if the<br />

spherical value v s f and the spherical derivative ∂ s f are <strong>real</strong>valued.<br />

A <strong>real</strong> slice functi<strong>on</strong> f has the following property: for every J ∈ S A , the<br />

image f(C J ∩Ω D ) is c<strong>on</strong>tained in C J . More precisely, this c<strong>on</strong>diti<strong>on</strong> characterizes<br />

the <strong>real</strong>ity of f.<br />

Propositi<strong>on</strong> 10. A slice functi<strong>on</strong> f ∈ S(Ω D ) is <strong>real</strong> if and <strong>on</strong>ly if f(C J ∩Ω D ) ⊆<br />

C J for every J ∈ S A .<br />

Proof. Assume that f(C J ∩ Ω D ) ⊆ C J for every J . Let f = I(F ). If x =<br />

α+βJ ∈ Ω D and z = α+iβ, then f(x) = F 1 (z)+JF 2 (z) ∈ C J and f(x c ) = f(α−<br />

βJ) = F 1 (¯z) + JF 2 (¯z) = F 1 (z) − JF 2 (z) ∈ C J . This implies that F 1 (z), F 2 (z) ∈<br />

∩ J C J = R (cf. Propositi<strong>on</strong> 3).<br />

Propositi<strong>on</strong> 11. If f, g are slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <strong>on</strong> Ω D , then the product f · g is slice<br />

<str<strong>on</strong>g>regular</str<strong>on</strong>g> <strong>on</strong> Ω D .<br />

Proof. Let f = I(F ), g = I(G), H = F G. If F and G satisfy the Cauchy<br />

Riemann equati<strong>on</strong>s, the same holds for H. This follows from the validity of the<br />

Leibniz product rule, that can be checked using a basis representati<strong>on</strong> of F and<br />

G.<br />

Let f(x) = ∑ j xj a j and g(x) = ∑ k xk b k be polynomials or c<strong>on</strong>vergent<br />

power series with coecients a j , b k ∈ A. The usual product of polynomials,<br />

where x is c<strong>on</strong>sidered to be a commuting variable (cf. for example [28] and<br />

[15, 14]), can be extended to power series (cf. [16, 21] for the quaterni<strong>on</strong>ic case)<br />

in the following way: the star product f ∗ g of f and g is the c<strong>on</strong>vergent power<br />

series dened by setting<br />

(f ∗ g)(x) := ∑ n xn( ∑ j+k=n a jb k<br />

)<br />

.<br />

Propositi<strong>on</strong> 12. Let f(x) = ∑ j xj a j and g(x) = ∑ k xk b k be polynomials or<br />

c<strong>on</strong>vergent power series (a j , b k ∈ A). Then the product of f and g, viewed<br />

as slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>, coincides with the star product f ∗ g, i.e. I(F G) =<br />

I(F ) ∗ I(G).<br />

Proof. Let f = I(F ), g = I(G), H = F G. Denote by A n (z) and B n (z) the<br />

<strong>real</strong> comp<strong>on</strong>ents of the complex power z n = (α + iβ) n . Since R ⊗ R C ≃ C is<br />

c<strong>on</strong>tained in the commutative and associative center of A C , we have<br />

H(z) = F (z)G(z) = ( ∑ j zj a j<br />

)( ∑<br />

k zk b k<br />

)<br />

=<br />

∑j,k zj z k (a j b k ).<br />

15


Let c n = ∑ j+k=n a jb k for each n. Therefore, we have<br />

H(z) = ∑ z n c n = ∑ (A n (z) + iB n (z))c n = ∑<br />

n<br />

n<br />

n<br />

=: H 1 (z) + iH 2 (z)<br />

A n (z)c n + i ( ∑ )<br />

B n (z)c n =<br />

n<br />

and then, if x = α + βJ and z = α + iβ,<br />

I(H)(x) = H 1 (z) + JH 2 (z) = ∑ n A n(z)c n + J ( ∑ n B n(z)c n<br />

)<br />

.<br />

On the other hand, (f ∗ g)(x) = ∑ n (α + βJ)n c n = ∑ n (A n(z) + JB n (z))c n and<br />

the result follows.<br />

Example 4. Let A = H, I, J ∈ S H . Let F (z) = z − I, G(z) = z − J. Then<br />

f(x) = x − I, g(x) = x − J, (F G)(z) = z 2 − z(I + J) + IJ and (f · g)(x) =<br />

(x − I) · (x − J) = I(F G) = x 2 − x(I + J) + IJ = I(F ) ∗ I(G).<br />

Note that (f · g)(x) is dierent from f(x)g(x) = (x − I)(x − J) = x 2 − xJ −<br />

Ix + IJ for every x not lying in C I .<br />

6 Normal functi<strong>on</strong> and admissibility<br />

We now associate to every slice functi<strong>on</strong> a new slice functi<strong>on</strong>, the normal functi<strong>on</strong>,<br />

which will be useful in the following secti<strong>on</strong>s when dealing with zero sets.<br />

Our deniti<strong>on</strong> is equivalent to the <strong>on</strong>e given in [16] for (Cullen <str<strong>on</strong>g>regular</str<strong>on</strong>g>) quaterni<strong>on</strong>ic<br />

power series. There the normal functi<strong>on</strong> was named the symmetrizati<strong>on</strong><br />

of the power series.<br />

Deniti<strong>on</strong> 11. Let f = I(F ) ∈ S(Ω D ). Then also F c (z) := F (z) c = F 1 (z) c +<br />

iF 2 (z) c is an Astem functi<strong>on</strong>. We set:<br />

• f c := I(F c ) ∈ S(Ω D ).<br />

• CN(F ) := F F c = F 1 F 1 c − F 2 F 2 c + i(F 1 F 2 c + F 2 F 1 c ) = n(F 1 ) − n(F 2 ) +<br />

i t(F 1 F 2 c ).<br />

• N(f) := f · f c = I(CN(F )) ∈ S(Ω D ).<br />

The slice functi<strong>on</strong> N(f) will be called the normal functi<strong>on</strong> of f.<br />

Remarks 8. (1) Partial derivatives commute with the antiinvoluti<strong>on</strong> x ↦→ x c .<br />

From this fact and from Propositi<strong>on</strong> 11, it follows that, if f is slice <str<strong>on</strong>g>regular</str<strong>on</strong>g>, then<br />

also f c and N(f) are slice <str<strong>on</strong>g>regular</str<strong>on</strong>g>.<br />

(2) Since x ↦→ x c is an antiinvoluti<strong>on</strong>, (F G) c = G c F c and then (f · g) c =<br />

g c · f c . Moreover, N(f) = N(f) c , while N(f c ) ≠ N(f) in general.<br />

(3) For every slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> f, g, we have v s (f c ) = (v s f) c , ∂ s (f c ) = (∂ s f) c<br />

and ∂ s N(f) = (∂ s f)(v s f c ) + (v s f)(∂ s f c ).<br />

16


If A is the algebra of quaterni<strong>on</strong>s or oct<strong>on</strong>i<strong>on</strong>s, then CN(F ) is complex<br />

valued and then the normal functi<strong>on</strong> N(f) is <strong>real</strong>. For a general algebra A,<br />

this is not true for every slice functi<strong>on</strong>. This is the motivati<strong>on</strong> for the following<br />

deniti<strong>on</strong>.<br />

Deniti<strong>on</strong> 12. A slice functi<strong>on</strong> f = I(F ) ∈ S(Ω D ) is called admissible if the<br />

spherical value of f at x bel<strong>on</strong>gs to the normal c<strong>on</strong>e N A for every x ∈ Ω D and<br />

the <strong>real</strong> vector subspace 〈v s f(x), ∂ s f(x)〉 of A, generated by the spherical value<br />

and the spherical derivative at x, is c<strong>on</strong>tained in the normal c<strong>on</strong>e N A for every<br />

x ∈ Ω D \ R. Equivalently,<br />

〈F 1 (z), F 2 (z)〉 ⊆ N A for every z ∈ D.<br />

Remarks 9. (1) If A = H or O, then every slice functi<strong>on</strong> is admissible, since<br />

N A = Q A = A.<br />

(2) If f is admissible, then CN(F ) is complexvalued and then N(f) is <strong>real</strong>.<br />

Indeed, if F 1 (z), F 2 (z) and F 1 (z) + F 2 (z) bel<strong>on</strong>g to N A , n(F 1 (z)) and n(F 2 (z))<br />

are <strong>real</strong> and t(F 1 (z)F 2 (z) c ) = n(F 1 (z) + F 2 (z)) − n(F 1 (z)) − n(F 2 (z)) is <strong>real</strong>.<br />

(3) If f is <strong>real</strong>, f c = f, N(f) = f 2 and f is admissible.<br />

(4) If f is <strong>real</strong> and g is admissible, also fg is admissible.<br />

Propositi<strong>on</strong> 13. If n(x) = n(x c ) ≠ 0 for every x ∈ A \ {0} such that n(x) is<br />

<strong>real</strong>, then a slice functi<strong>on</strong> f is admissible if and <strong>on</strong>ly if N(f) and N(∂ s f) are<br />

<strong>real</strong>.<br />

Proof. Let z ∈ D \ R. N(∂ s f) is <strong>real</strong> if and <strong>on</strong>ly if n(F 2 (z)) ∈ R. Assume that<br />

also N(f) is <strong>real</strong>. Then n(F 1 (z)) and n(F 1 (z) + F 2 (z)) are <strong>real</strong>, from which<br />

it follows that n(αF 1 (z) + βF 2 (z)) is <strong>real</strong> for every α, β ∈ R. Since n(x) <strong>real</strong><br />

implies x ∈ N A , we get that 〈F 1 (z), F 2 (z)〉 ⊆ N A for every z ∈ D \ R. If z<br />

is <strong>real</strong>, then N(f)(z) = n(F 1 (z)) is <strong>real</strong> and F 2 (z) = 0. This means that the<br />

c<strong>on</strong>diti<strong>on</strong> of admissibility is satised for every z ∈ D.<br />

Example 5. C<strong>on</strong>sider the Cliord algebra R 3 with the usual c<strong>on</strong>jugati<strong>on</strong>. Its<br />

normal c<strong>on</strong>e<br />

N R3 = {x ∈ R 3 | x 0 x 123 − x 1 x 23 + x 2 x 13 − x 3 x 12 = 0}<br />

c<strong>on</strong>tains the subspace R 4 of paravectors (cf. Examples 1 of Secti<strong>on</strong> 2). Every<br />

polynomial p(x) = ∑ n xn a n with paravectors coecients a n ∈ R 4 is an admissible<br />

slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> <strong>on</strong> Q R3 , since P (z) = ∑ n zn a n = ∑ n A n(z)a n +<br />

i( ∑ n B n(z)a n ) bel<strong>on</strong>gs to R 4 ⊗ R C for every z ∈ C.<br />

The polynomial p(x) = xe 23 + e 1 is an example of a n<strong>on</strong>admissible slice<br />

<str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> <strong>on</strong> R 3 , since ∂ s p(x) = e 23 ∈ N A for every x, but v s p(x) =<br />

Re(x)e 23 + e 1 /∈ N A if Re(x) ≠ 0.<br />

Theorem 14. Let A be associative or A = O. Then<br />

for every admissible f, g ∈ S(Ω D ).<br />

N(f · g) = N(f) N(g)<br />

17


Proof. Assume that A is associative. Let f = I(F ), g = I(G) be admissible<br />

and z ∈ D. Denote the norm of w ∈ A C by cn(w) := ww c = n(x) − n(y) +<br />

i t(xy c ) ∈ A C . Then CN(F G)(z) = cn(F (z)G(z)) = (F (z)G(z))(F (z)G(z)) c =<br />

cn(F (z)) cn(G(z)), since cn(F (z)) and cn(G(z)) are in the center of A C . Then<br />

N(f · g) = I(CN(F G)) = I(CN(F ) CN(G)) = N(f) N(g).<br />

If A = H or O, a dierent proof can be given. A C is a complex <strong>alternative</strong><br />

algebra with an antiinvoluti<strong>on</strong> x ↦→ x c such that x + x c , xx c ∈ C ∀x. Then A C<br />

is an algebra with compositi<strong>on</strong> (cf. [34, p.58]): the complex norm cn(x) = xx c is<br />

multiplicative (for O⊗ R C it follows from Artin's Theorem) and we can c<strong>on</strong>clude<br />

as before.<br />

The multiplicativity of the normal functi<strong>on</strong> of oct<strong>on</strong>i<strong>on</strong>ic power series was<br />

already proved in [24] by a direct computati<strong>on</strong>.<br />

Corollary 15. Let A be associative or A = O. Assume that n(x) = n(x c ) ≠ 0<br />

for every x ∈ A \ {0} such that n(x) is <strong>real</strong>. If f and g are admissible slice<br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>, then also the product f · g is admissible.<br />

Proof. We apply Propositi<strong>on</strong> 13. If N(f) and N(g) are <strong>real</strong>, then N(f · g) =<br />

N(f)N(g) is <strong>real</strong>. Now c<strong>on</strong>sider the spherical derivatives: N(∂ s (f · g)) =<br />

N((∂ s f)(v s g)) + N((v s f)(∂ s g)) = N(∂ s f)N(v s g) + N(v s f)N(∂ s g) is <strong>real</strong>, since<br />

all the slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> are <strong>real</strong>.<br />

Example 6. Let A = R 3 . This algebra satises the c<strong>on</strong>diti<strong>on</strong> of the preceding<br />

corollary: if n(x) is <strong>real</strong>, then n(x) = n(x c ) (cf. e.g. [26]). C<strong>on</strong>sider the admissible<br />

polynomials f(x) = xe 2 + e 1 , g(x) = xe 3 + e 2 . Then (f · g)(x) = x 2 e 23 +<br />

x(e 13 − 1) + e 12 is admissible, N(f) = N(g) = x 2 + 1 and N(f · g) = (x 2 + 1) 2 .<br />

7 Zeros of slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

The zero set V (f) = {x ∈ Q A | f(x) = 0} of an admissible slice functi<strong>on</strong><br />

f ∈ S(Ω D ) has a particular structure. We will see in this secti<strong>on</strong> that, for every<br />

xed x = α + βJ ∈ Q A , the sphere<br />

S x = {y ∈ Q A | y = α + βI, I ∈ S A }<br />

is entirely c<strong>on</strong>tained in V (f) or it c<strong>on</strong>tains at most <strong>on</strong>e zero of f. Moreover, if f<br />

is not <strong>real</strong>, there can be isolated, n<strong>on</strong><strong>real</strong> zeros. These dierent types of zeros<br />

of a slice functi<strong>on</strong> corresp<strong>on</strong>d, at the level of the stem functi<strong>on</strong>, to the existence<br />

of zerodivisors in the complexied algebra A C .<br />

Propositi<strong>on</strong> 16. Let f ∈ S(Ω D ). If the spherical derivative of f at x ∈<br />

Ω D \ R bel<strong>on</strong>gs to N A , then the restricti<strong>on</strong> of f to S x is injective or c<strong>on</strong>stant.<br />

In particular, either S x ⊆ V (f) or S x ∩ V (f) c<strong>on</strong>sists of a single point.<br />

18


Proof. If ∂ s f(x) ∈ N A , then it is not a zerodivisor of A. Given x, x ′ ∈ S x , if<br />

f(x) = f(x ′ ), then (Im(x)−Im(x ′ )) ∂ s f(x) = (x−x ′ ) ∂ s f(x) = 0. If ∂ s f(x) ≠ 0,<br />

this implies x = x ′ .<br />

Remark 10. The same c<strong>on</strong>clusi<strong>on</strong> of the preceding propositi<strong>on</strong> holds for any slice<br />

functi<strong>on</strong> when the functi<strong>on</strong> is restricted to a subset of S x that does not c<strong>on</strong>tain<br />

pairs of points x, x ′ such that x − x ′ is a left zerodivisor in A. This is the case<br />

e.g. of the slice m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>, which are dened <strong>on</strong> the paravector space<br />

of a Cliord algebra (cf. Corollary 9 and [9]).<br />

Theorem 17 (Structure of V (f)). Let f = I(F ) ∈ S(Ω D ). Let x = α + βJ ∈<br />

Ω D and z = α + iβ ∈ D. Assume that v s f(x) ∈ N A and that, if x /∈ R, then<br />

∂ s f(x) ∈ N A . Then <strong>on</strong>e of the following mutually exclusive statements holds:<br />

(1) S x ∩ V (f) = ∅.<br />

(2) S x ⊆ V (f). In this case x is called a <strong>real</strong> (if x ∈ R) or spherical (if<br />

x /∈ R) zero of f.<br />

(3) S x ∩ V (f) c<strong>on</strong>sists of a single, n<strong>on</strong><strong>real</strong> point. In this case x is called an<br />

S A isolated n<strong>on</strong><strong>real</strong> zero of f.<br />

These three possibilities corresp<strong>on</strong>d, respectively, to the following properties of<br />

F (z) ∈ A C :<br />

(1 ′ ) CN(F )(z) = F (z)F (z) c ≠ 0.<br />

(2 ′ ) F (z) = 0.<br />

(3 ′ ) F (z) ≠ 0 and CN(F )(z) = 0 (i.e. F (z) is a zerodivisor of A C ).<br />

Before proving the theorem, we collect some algebraic results in the following<br />

lemma.<br />

Lemma 18. Let w = x + iy ∈ A C , with y ∈ N A . Let cn(w) := ww c =<br />

n(x) − n(y) + i t(xy c ) ∈ A C . Then the following statements hold:<br />

(1) cn(w) = 0 if and <strong>on</strong>ly if w = 0 or there exists a unique K ∈ S A such that<br />

x + Ky = 0.<br />

(2) If 〈x, y〉 ⊆ N A , then cn(w) ∈ C. Moreover, cn(w) ≠ 0 if and <strong>on</strong>ly if w is<br />

invertible in A C .<br />

Proof. In the proof we use that (u, v −1 , v) = 0 for every u, v, with v invertible.<br />

If cn(w) = 0, w ≠ 0, then n(x) = n(y) ≠ 0 and y is invertible, with<br />

inverse y c /n(y). Moreover, (z, y c , y) = 0 for every z. Set K := −xy −1 . Then<br />

Ky = −(xy −1 )y = −x(y −1 y) = −x. Moreover, from t(xy c ) = xy c + yx c = 0 it<br />

follows that<br />

K c = − yxc<br />

n(y) = xyc<br />

n(y) = −K and<br />

19


) )<br />

K 2 =<br />

(−<br />

(− xyc xyc = − (xyc )(yx c )<br />

n(y) n(y) n(x)n(y)<br />

= − x(yc y)x c<br />

n(x)n(y) = −1.<br />

Then K ∈ S A . Uniqueness of K ∈ S A such that x + Ky = 0 comes immediately<br />

from the invertibility of y ∈ N A , y ≠ 0. C<strong>on</strong>versely, if x + Ky = 0 for some<br />

K ∈ S A , then n(x) = (−Ky)(y c K) = −K 2 n(y) = n(y) and xy c + yx c =<br />

−(Ky)y c + y(y c K) = 0. Therefore cn(w) = 0.<br />

If x, y and x + y bel<strong>on</strong>g to N A , n(x + y) − n(x) − n(y) = t(xy c ) is <strong>real</strong>, which<br />

implies that cn(w) is complex. Let cn(w) =: u + iv ≠ 0, with u, v <strong>real</strong>. Then<br />

w ′ := (x c + iy c )(u − iv)/(u 2 + v 2 ) is the inverse of w. On the other hand, if<br />

cn(w) = 0, w is a divisor of zero of A C .<br />

Proof of Theorem 17. If x = α is <strong>real</strong>, then S x = {x} and f(x) = F 1 (α) = 0 if<br />

and <strong>on</strong>ly if F (α) = 0, since F 2 vanishes <strong>on</strong> the <strong>real</strong> axis. Therefore f(x) = 0 is<br />

equivalent to F (z) = 0.<br />

Now assume that x /∈ R. If F (z) = 0, then f(α + βI) = F 1 (z) + IF 2 (z) = 0<br />

for every I ∈ S A . Then S x ⊆ V (f) (a spherical zero). Since ∂ s f(x) ∈ N A ,<br />

also F 2 (z) ∈ N A and Lemma 18 can be applied to w = F (z). If F (z) ≠ 0 and<br />

CN(F )(z) = 0, there exists a unique K ∈ S A such that F 1 (z) + KF 2 (z) = 0,<br />

i.e. f(α + βK) = 0. Therefore S x ∩ V (f) = {α + βK}. The last case to c<strong>on</strong>sider<br />

is CN(F )(z) ≠ 0. From Lemma 18 we get that f(α + βI) = F 1 (z) + IF 2 (z) ≠ 0<br />

for every I ∈ S A , which means that S x ∩ V (f) = ∅.<br />

Remark 11. From the preceding proofs, we get that an S A isolated n<strong>on</strong><strong>real</strong> zero<br />

x of f is given by the formula x = α + βK, with K := −F 1 (z)F 2 (z) c /n(F 2 (z)),<br />

CN(F )(z) = 0. This formula can be rewritten in a form that resembles Newt<strong>on</strong>'s<br />

method for nding roots:<br />

Corollary 19. It holds:<br />

x = Re(x) − v s f(x) (∂ s f(x)) −1 .<br />

(1) A <strong>real</strong> slice functi<strong>on</strong> has no S A isolated n<strong>on</strong><strong>real</strong> zeros.<br />

(2) For every admissible slice functi<strong>on</strong> f, we have<br />

V (N(f)) =<br />

⋃<br />

x∈V (f)<br />

S x .<br />

Proof. If f = I(F ) is <strong>real</strong>, then CN(F ) = F 2 . Therefore the third case of the<br />

theorem is excluded. If f is admissible, then Theorem 17 can be applied. If<br />

x ∈ V (f), x = α + βJ, the propositi<strong>on</strong> gives CN(F )(z) = 0 (z = α + iβ) and<br />

when applied to N(f) tells that S x ⊆ V (N(f)). C<strong>on</strong>versely, since N(f) is <strong>real</strong>,<br />

N(f)(x) = 0 implies 0 = CN(CN(F ))(z) = CN(F )(z) 2 , i.e. CN(F )(z) = 0.<br />

From the propositi<strong>on</strong> applied to f, we get at least <strong>on</strong>e point y ∈ S x ∩ V (f).<br />

Then x ∈ S y , y ∈ V (f).<br />

20


Theorem 20. Let Ω D be c<strong>on</strong>nected. If f is slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> and admissible <strong>on</strong><br />

Ω D , and N(f) does not vanish identically, then C J ∩ ⋃ x∈V (f) S x is closed and<br />

discrete in D J = C J ∩ Ω D for every J ∈ S A . If Ω D ∩ R ≠ ∅, then N(f) ≡ 0 if<br />

and <strong>on</strong>ly if f ≡ 0.<br />

Proof. The normal functi<strong>on</strong> N(f) is a <strong>real</strong> slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> <strong>on</strong> Ω D . For<br />

every J ∈ S A , the restricti<strong>on</strong> N(f) J : D J → C J is a holomorphic functi<strong>on</strong>, not<br />

identically zero (otherwise it would be N(f) ≡ 0). Therefore its zero set<br />

C J ∩ V (N(f)) = C J ∩<br />

⋃<br />

x∈V (f)<br />

is closed and discrete in D J . If there exists x ∈ Ω D ∩ R and N(f)(x) =<br />

n(F 1 (x)) = 0, then F (x) = F 1 (x) = 0. Since F is holomorphic, it can vanish<br />

<strong>on</strong> Ω D ∩ R <strong>on</strong>ly if f ≡ 0 <strong>on</strong> D.<br />

In the quaterni<strong>on</strong>ic case, the structure theorem for the zero set of slice <str<strong>on</strong>g>regular</str<strong>on</strong>g><br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> was proved by Pogorui and Shapiro [30] for polynomials and by Gentili<br />

and Stoppato [16] for power series.<br />

Remark 12. If Ω D does not intersect the <strong>real</strong> axis, a not identically zero slice<br />

<str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> f can have normal functi<strong>on</strong> N(f) ≡ 0. For example, let J ∈ S H<br />

be xed. The admissible slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> dened <strong>on</strong> H \ R by<br />

S x<br />

f(x) = 1 − IJ (x = α + βI ∈ C + I )<br />

is induced by a locally c<strong>on</strong>stant stem functi<strong>on</strong> and has zero normal functi<strong>on</strong>. Its<br />

zero set V (f) is the half plane C + −J<br />

\ R. The functi<strong>on</strong> f can be obtained by the<br />

representati<strong>on</strong> formula (2) by choosing the c<strong>on</strong>stant values 2 <strong>on</strong> C + J \ R and 0<br />

<strong>on</strong> C + −J \ R.<br />

If an admissible slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> f has N(f) ≢ 0, then the S A isolated<br />

n<strong>on</strong><strong>real</strong> zeros are genuine isolated points in Ω D . In this case, V (f) is a uni<strong>on</strong><br />

of isolated spheres S x and isolated points.<br />

7.1 The Remainder Theorem<br />

In this secti<strong>on</strong>, we prove a divisi<strong>on</strong> theorem, which generalizes a result proved<br />

by Beck [1] for quaterni<strong>on</strong>ic polynomials and by Serôdio [35] for oct<strong>on</strong>i<strong>on</strong>ic<br />

polynomials.<br />

Deniti<strong>on</strong> 13. For any y ∈ Q A , the characteristic polynomial of y is the slice<br />

<str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> <strong>on</strong> Q A<br />

∆ y (x) := N(x − y) = (x − y) · (x − y c ) = x 2 − x t(y) + n(y).<br />

Propositi<strong>on</strong> 21. The characteristic polynomial ∆ y of y ∈ Q A is <strong>real</strong>. Two<br />

characteristic polynomials ∆ y and ∆ y ′ coincides if and <strong>on</strong>ly if S y = S y ′. Moreover,<br />

∆ y ≡ 0 <strong>on</strong> S y .<br />

21


Proof. The rst property comes from the deniti<strong>on</strong> of the quadratic c<strong>on</strong>e. Since<br />

n(x) = n(Re(x)) + n(Im(x)) for every x ∈ Q A , two elements y, y ′ ∈ Q A have<br />

equal trace and norm if and <strong>on</strong>ly if Re(y) = Re(y ′ ) and n(Im(y)) = n(Im(y ′ )).<br />

Since S y is completely determined by its center α = Re(y) and its squared<br />

radius β 2 = n(Im(y)), ∆ y = ∆ y ′ if and <strong>on</strong>ly if S y = S y ′. The last property<br />

follows from ∆ y (y) = 0 and the <strong>real</strong>ity of ∆ y .<br />

Theorem 22 (Remainder Theorem). Let f ∈ SR(Ω D ) be an admissible slice<br />

<str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong>. Let y ∈ V (f) = {x ∈ Q A | f(x) = 0}. Then the following<br />

statements hold.<br />

(1) If y is a <strong>real</strong> zero, then there exists g ∈ SR(Ω D ) such that<br />

f(x) = (x − y) g(x).<br />

(2) If y ∈ Ω D \ R, then there exists h ∈ SR(Ω D ) and a, b ∈ A such that<br />

〈a, b〉 ⊆ N A and f(x) = ∆ y (x) h(x) + xa + b. Moreover,<br />

• y is a spherical zero of f if and <strong>on</strong>ly if a = b = 0.<br />

• y is an S A isolated n<strong>on</strong><strong>real</strong> zero of f if and <strong>on</strong>ly if a ≠ 0 (in this<br />

case y = −ba −1 ).<br />

If there exists a <strong>real</strong> subspace V ⊆ N A such that F (z) ∈ V ⊗ C ∀z ∈ D, then g<br />

and h are admissible. If f is <strong>real</strong>, then g, h are <strong>real</strong> and a = b = 0.<br />

Proof. We can suppose that c<strong>on</strong>j(D) = D. In the proof, we will use the following<br />

fact. For every holomorphic functi<strong>on</strong> F : D → A C , there is a unique<br />

decompositi<strong>on</strong> F = F + + F − , with F ± holomorphic, F + complex intrinsic and<br />

F − satisfying F − (¯z) = −F − (z). It is enough to set F ± (z) := 1 2<br />

(F (z) ± F (¯z)).<br />

Assume that y is a <strong>real</strong> zero of f = I(F ). Then F (y) = 0 and therefore, by<br />

passing to a basis representati<strong>on</strong>, we get F (z) = (z − y) G(z) for a holomorphic<br />

mapping G : D → A C . G is complex intrinsic: F (¯z) = (¯z − y) G(¯z) = F (z) =<br />

(¯z −y) G(z), from which it follows that G(z) = G(¯z) for every z ≠ y and then <strong>on</strong><br />

D by c<strong>on</strong>tinuity. Let g = I(G) ∈ SR(Ω D ). Then f(x) = (x − y) g(x). Assume<br />

that F (z) ∈ V ⊗ C ∀z ∈ D. Since x − y is <strong>real</strong>, G 1 (z) and G 2 (z) bel<strong>on</strong>g to<br />

V ⊆ N A for every z ≠ y and then also for z = y. Therefore g is admissible.<br />

Now assume that y = α + βJ ∈ V (f) \ R. Let ζ = α + iβ ∈ D. If F (ζ) ≠ 0,<br />

there exists a unique K ∈ S A such that F 1 (ζ) + KF 2 (ζ) = 0 (cf. Theorem 17).<br />

Otherwise, let K be any square root of −1. Let F K := (1 − iK)F . Then F K is<br />

a holomorphic mapping from D to A C , vanishing at ζ:<br />

F K (ζ) = F 1 (ζ) + iF 2 (ζ) − iKF 1 (ζ) + KF 2 (ζ) = 0.<br />

Then there exists a holomorphic mapping G : D → A C such that<br />

F K (z) = (z − ζ) G(z).<br />

Let G 1 (z) be the holomorphic mapping such that G(z) − G(¯ζ) = (z − ¯ζ) G 1 (z)<br />

<strong>on</strong> D. Then<br />

F K (z) = (z − ζ)((z − ¯ζ) G 1 (z) + G(¯ζ)) = ∆ y (z) G 1 (z) + (z − ζ)G(¯ζ).<br />

22


Here ∆ y (z) denotes the complex intrinsic polynomial z 2 − z t(y) + n(y), which<br />

induces the characteristic polynomial ∆ y (x).<br />

Let F + K be the complex intrinsic part of F K It holds F + K = F :<br />

Therefore<br />

F + K (z) = 1 2 (F K(z) + F K (z)) = 1 − iK<br />

2<br />

F (z) + 1 + iK F (z) = F (z).<br />

2<br />

F (z) = ∆ y (z) G + 1 (z) + 1 2 ((z − ζ) G(ζ) + (z − ζ) G(ζ)) = ∆ y(z) H(z) + za + b,<br />

where H = G + 1 is complex intrinsic and a, b ∈ A. Since F (ζ) = ζa + b, the<br />

elements a = β −1 F 2 (ζ) and b = F 1 (ζ) − αβ −1 F 2 (ζ) bel<strong>on</strong>g to 〈F 1 (ζ), F 2 (ζ)〉 ⊆<br />

N A . If there exists V ⊆ N A such that F (z) ∈ V ⊗ C ∀z ∈ D, then it follows<br />

that F (z) − za − b = ∆ y (z) H(z) bel<strong>on</strong>gs to V ⊗ C for all z ∈ D. From<br />

this and from the <strong>real</strong>ity of ∆ y , it follows, by a c<strong>on</strong>tinuity argument, that<br />

H(z) ∈ V ⊗ C ∀z ∈ D, i.e. h is admissible.<br />

If f is <strong>real</strong>, then 〈F 1 (z), F 2 (z)〉 ⊆ R for every z ∈ D and we get the last<br />

asserti<strong>on</strong> of the theorem.<br />

Remark 13. A simple computati<strong>on</strong> shows that<br />

∂ s ∆ y (x) = t(x) − t(y) and v s ∆ y (x) = 1 t(x)(t(x) − t(y)) − n(x) + n(y).<br />

2<br />

It follows that, for every n<strong>on</strong><strong>real</strong> y ∈ V (f), the element a ∈ N A which appears<br />

in the statement of the preceding theorem is the spherical derivative of f at<br />

x ∈ S y .<br />

Example 7. The functi<strong>on</strong> f(x) = 1−IJ (J xed in S H , x = α+βI ∈ H\R, β > 0)<br />

of Remark 12 of Secti<strong>on</strong> 7 vanishes at y = −J. The divisi<strong>on</strong> procedure gives<br />

f(x) = (x 2 + 1) h(x) − xJ + 1<br />

with h = I(H) induced <strong>on</strong> H \ R by the holomorphic functi<strong>on</strong><br />

H(z) =<br />

{<br />

J<br />

z+i<br />

<strong>on</strong> C + = {z ∈ C | Im(z) > 0}<br />

J<br />

z−i<br />

<strong>on</strong> C − = {z ∈ C | Im(z) < 0}<br />

.<br />

Remark 14. In [24], it was proved that when A = H or O, part (1) of the<br />

preceding theorem holds for every y ∈ V (f): f(x) = (x − y) · g(x). This can<br />

be seen in the following way (we refer to the notati<strong>on</strong> used in the proof of the<br />

Remainder Theorem). From<br />

F (z) = (z − ζ)(z − ¯ζ) H(z) + za + b = (z − y)((z − y c ) H(z) + a) + ya + b,<br />

we get f(x) = (x − y) · g(x) + ya + b, where g = I((z − y c ) H(z) + a). But<br />

ya + b = 0 and then we get the result.<br />

23


Corollary 23. Let f ∈ SR(Ω D ) be admissible. If S y c<strong>on</strong>tains at least <strong>on</strong>e zero<br />

of f, of whatever type, then ∆ y divides N(f).<br />

Proof. If y ∈ R, then ∆ y (x) = (x − y) 2 . From the Theorem, f = (x − y) g,<br />

f c = (x − y) g c , and then N(f) = (x − y) 2 g · g c = ∆ y N(g). If y is a spherical<br />

zero, then f = ∆ y h and therefore f c = ∆ y h c , N(f) = f · f c = ∆ 2 y N(h). If<br />

y 1 ∈ V (f) ∩ S y is an S A isolated, n<strong>on</strong><strong>real</strong> zero, then<br />

from which it follows that<br />

f = ∆ y h + xa + b, f c = ∆ y h c + xa c + b c ,<br />

N(f) = ∆ y<br />

[<br />

∆y N(h) + h · (xa c + b c ) + h c · (xa + b) ] +<br />

+ x 2 n(a) + x t(ab c ) + n(b).<br />

Since y 1 a + b = 0 with 〈a, b〉 c<strong>on</strong>tained in N A , it follows that n(b) = n(y 1 )n(a),<br />

the trace of ab c is <strong>real</strong>, and<br />

t(y 1 )n(a) = (y 1 + y c 1)(aa c ) = (y 1 a)a c + a(a c y c 1) = −ba c − ab c = −t(ab c ).<br />

Then x 2 n(a) + x t(ab c ) + n(b) = ∆ y1 n(a) = ∆ y n(a) and ∆ y | N(f).<br />

Let f ∈ SR(Ω D ) be admissible. Let y = α + βJ ∈ Ω D , ζ = α + iβ. Since<br />

f is admissible, N(f) is <strong>real</strong> and therefore if N(f) = ∆ s y g, also the quotient<br />

g is <strong>real</strong>. The relati<strong>on</strong> N(f) = ∆ s y g is equivalent to the complex equality<br />

CN(F )(z) = ∆ ζ (z) s G(z), where ∆ ζ (z) = z 2 − z t(y) + n(y) = (z − ζ)(z − ¯ζ)<br />

and I(G) = g. If N(f) ≢ 0, then CN(F ) ≢ 0 and therefore ζ has a multiplicity<br />

as a (isolated) zero of the holomorphic functi<strong>on</strong> CN(F ) <strong>on</strong> D.<br />

In this way, we can introduce, for any admissible slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong> f<br />

with N(f) ≢ 0, the c<strong>on</strong>cept of multiplicity of its zeros.<br />

Deniti<strong>on</strong> 14. Let f ∈ SR(Ω D ) be admissible, with N(f) ≢ 0. Given a n<strong>on</strong><br />

negative integer s and an element y of V (f), we say that y is a zero of f of<br />

multiplicity s if ∆ s y | N(f) and ∆ s+1<br />

y ∤ N(f). We will denote the integer s,<br />

called multiplicity of y, by m f (y).<br />

In the case of y <strong>real</strong>, the preceding c<strong>on</strong>diti<strong>on</strong> is equivalent to (x − y) s | f<br />

and (x − y) s+1 ∤ f. If y is a spherical zero, then ∆ y divides f and f c . Therefore<br />

m f (y) is at least 2. If m f (y) = 1, y is called a simple zero of f.<br />

Remark 15. In the case of <strong>on</strong> quaterni<strong>on</strong>ic polynomials, the preceding deniti<strong>on</strong><br />

is equivalent to the <strong>on</strong>e given in [2] and in [21].<br />

7.2 Zeros of products<br />

Propositi<strong>on</strong> 24. Let A be associative. Let f, g ∈ S(Ω D ). Then V (f) ⊆ V (f ·g).<br />

24


Proof. Assume that f(y) = 0. Let y = α + βJ, z = α + iβ (with β = 0 if y is<br />

<strong>real</strong>). Then 0 = f(y) = F 1 (z) + JF 2 (z). Therefore<br />

(f · g)(y) = (F 1 (z)G 1 (z) − F 2 (z)G 2 (z)) + J(F 1 (z)G 2 (z) + F 2 (z)G 1 (z)) =<br />

= (−JF 2 (z)G 1 (z) − F 2 (z)G 2 (z)) + J(−JF 2 (z)G 2 (z) + F 2 (z)G 1 (z)) = 0.<br />

As shown in [35] for oct<strong>on</strong>i<strong>on</strong>ic polynomials and in [24] for oct<strong>on</strong>i<strong>on</strong>ic power<br />

series, if A is not associative the statement of the propositi<strong>on</strong> is no more true.<br />

However, we can still say something about the locati<strong>on</strong> of the zeros of f · g. For<br />

quaterni<strong>on</strong>ic and oct<strong>on</strong>i<strong>on</strong>ic power series, we refer to [24] for the precise relati<strong>on</strong><br />

linking the zeros of f and g to those of f · g. For the associative case, see also<br />

[28, Ÿ16].<br />

Propositi<strong>on</strong> 25. Let A be associative or A = O. Assume that n(x) = n(x c ) ≠ 0<br />

for every x ∈ A \ {0} such that n(x) is <strong>real</strong>. If f and g are admissible slice<br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> Ω D , then it holds:<br />

⋃<br />

⋃<br />

S x =<br />

x∈V (f·g)<br />

x∈V (f)∪V (g)<br />

or, equivalently, given any x ∈ Ω D , V (f · g) ∩ S x is n<strong>on</strong>empty if and <strong>on</strong>ly if<br />

(V (f) ∪ V (g))∩S x is n<strong>on</strong>empty. In particular, the zero set of f ·g is c<strong>on</strong>tained<br />

in the uni<strong>on</strong> ⋃ x∈V (f)∪V (g) S x.<br />

Proof. By combining Corollary 19, Theorem 14 and Corollary 15, we get:<br />

⋃<br />

x∈V (f·g) S ⋃<br />

x = V (N(f · g)) = V (N(f)) ∪ V (N(g)) =<br />

S x .<br />

Since V (f · g) ⊆ V (N(f · g)), the proof is complete.<br />

S x<br />

x∈V (f)∪V (g)<br />

Example 8. Let A = R 3 . C<strong>on</strong>sider the polynomials f(x) = xe 2 + e 1 , g(x) =<br />

xe 3 + e 2 of Example 6 of Secti<strong>on</strong> 6. Then (f · g)(x) = x 2 e 23 + x(e 13 − 1) + e 12 .<br />

The zero sets of f and g are V (f) = {e 12 }, V (g) = {e 23 }. The Remainder<br />

Theorem gives f · g = ∆ e12 e 23 + x(e 13 − 1) + (e 12 − e 23 ), from which we get the<br />

unique isolated zero e 12 of f · g, of multiplicity 2.<br />

7.3 The Fundamental Theorem of Algebra<br />

In this secti<strong>on</strong>, we focus our attenti<strong>on</strong> <strong>on</strong> the zero set of slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> admissible<br />

polynomials. If p(x) = ∑ m<br />

j=0 xj a j is an admissible polynomial of degree m with<br />

coecients a j ∈ A, the normal polynomial<br />

N(p)(x) = (p ∗ p c )(x) = ∑ n xn( ∑ j+k=n a )<br />

ja c ∑<br />

k =:<br />

n xn c n<br />

25


has degree 2m and <strong>real</strong> coecients. The last property is immediate when Q A =<br />

A (i.e. A = H or O), since<br />

c n =<br />

∑<br />

j+k=n<br />

a j a c k =<br />

[ n−1<br />

2 ]<br />

∑<br />

j=0<br />

t(a j a c n−j) + n(a n/2 )<br />

(if n is odd the last term is missing). In the general case, if p is admissible and<br />

p = I(P ), N(p) is <strong>real</strong>, i.e. the polynomial CN(P )(z) = ∑ 2m<br />

n=0 zn c n is complex<br />

valued. From this, it follows easily that the coecients c n must be <strong>real</strong>. Indeed,<br />

c 0 = CN(P )(0) ∈ C ∩ A = R. Moreover, since CN(P )(z) − c 0 is complex for<br />

every z, also c 1 + zc 2 + · · · + z 2m−1 c 2m ∈ C and then c 1 ∈ R. By repeating this<br />

argument, we get that every c n is <strong>real</strong>.<br />

Theorem<br />

∑<br />

26 (Fundamental Theorem of Algebra with multiplicities). Let p(x) =<br />

m<br />

j=0 xj a j be a polynomial of degree m > 0 with coecients in A. Assume<br />

that f is admissible (for example, in the case in which the <strong>real</strong> vector subspace<br />

〈a 0 , . . . , a m 〉 of A is c<strong>on</strong>tained in N A ). Then V (p) = {y ∈ Q A | p(y) = 0} is<br />

n<strong>on</strong>empty. More precisely, there are distinct spheres S x1 , . . . , S xt such that<br />

V (p) ⊆<br />

t⋃<br />

S xk = V (N(p)), V (p) ∩ S xj ≠ ∅ for every j,<br />

k=1<br />

and, for any choice of zeros y 1 ∈ S x1 , . . . , y t ∈ S xt of p, the following equality<br />

holds:<br />

t∑<br />

m p (y k ) = m.<br />

k=1<br />

Proof. Let p = I(P ). The polynomial p is an admissible slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong>,<br />

since the c<strong>on</strong>diti<strong>on</strong> 〈a 0 , . . . , a m 〉 ⊆ N A implies that P (z) ∈ 〈a 0 , . . . , a m 〉 ⊗ C ⊆<br />

N A ⊗C for any z ∈ D. As seen before, N(p) is a polynomial with <strong>real</strong> coecients<br />

and degree 2m. Let J ∈ S A . Then the set V (N(p) J ) = {z ∈ C J | N(p)(z) =<br />

0} = C J ∩ ⋃ y∈V (p) S y is n<strong>on</strong>empty and c<strong>on</strong>tains at most 2m elements. Corollary<br />

19 tells that V (p) ∩ S y ≠ ∅ for every y such that V (N(p) J ) ∩ S y ≠ ∅.<br />

Therefore, V (p) is n<strong>on</strong>empty.<br />

Let y ∈ V (p). If there exists g ∈ SR(Q A ) such that N(p) = ∆ s y g and<br />

∆ y ∤ g, the slice functi<strong>on</strong> g must necessarily be <strong>real</strong>, since N(p) and ∆ y are<br />

<strong>real</strong>. Then N(N(p)) = N(p) 2 = ∆ 2s<br />

y g 2 . Therefore m N(p) (y) ≥ 2m p (y). We<br />

claim that m N(p) (y) = 2m p (y). If g 2 = ∆ y h, with h ∈ SR(Q A ) <strong>real</strong>, then<br />

G(z) 2 = ∆ y (z) H(z) <strong>on</strong> D, with I(G) = g and I(H) = h. Let y = α + βJ,<br />

ζ = α+iβ. Then G(ζ) 2 = ∆ y (ζ) H(ζ) = 0 and therefore G(ζ) = 0. This implies<br />

that g vanishes <strong>on</strong> S y . From the Remainder Theorem, we get that ∆ y | g, a<br />

c<strong>on</strong>tradicti<strong>on</strong>. Then ∆ y ∤ g 2 and m N(p) (y) = 2m p (y).<br />

Every <strong>real</strong> zero of N(p) J corresp<strong>on</strong>ds to a <strong>real</strong> zero of N(p) with the same<br />

multiplicity (cf. the remark made after Deniti<strong>on</strong> 14). The other zeros of N(p) J<br />

appears in c<strong>on</strong>jugate pairs and corresp<strong>on</strong>d to spherical zeros of N(p). Let y =<br />

26


α + βJ, y c = α − βJ. If N(p) J (y) = N(p) J (y c ) = 0, then N(p) ≡ 0 <strong>on</strong><br />

S y . Moreover, since ∆ y (x) = (x − y) · (x − y c ), the multiplicity m N(p) (y) is<br />

the sum of the (equal) multiplicities of y and y c as zeros of N(p) J . Therefore<br />

2m = ∑ t<br />

k=1 m N(p)(y k ) = 2 ∑ t<br />

k=1 m p(y k ).<br />

Remark 16. Since the multiplicity of a spherical zero is at least 2, if r denotes<br />

the number of <strong>real</strong> zeros of an admissible polynomial p, i the number of S A <br />

isolated n<strong>on</strong><strong>real</strong> zeros of p and s the number of spheres S y (y /∈ R) c<strong>on</strong>taining<br />

spherical zeros of p, we have that r + i + 2s ≤ deg(p).<br />

Examples 9. (1) Every polynomial ∑ m<br />

j=0 xj a j , with paravector coecients a j<br />

in the Cliord algebra R n , has m roots counted with their multiplicities in the<br />

quadratic c<strong>on</strong>e Q A . If the coecients are <strong>real</strong>, then the polynomial has at least<br />

<strong>on</strong>e root in the paravector space R n+1 , since every sphere S y intersect R n+1<br />

(cf. [40, Theorem 3.1]).<br />

(2) In R 3 , the polynomial p(x) = xe 23 + e 1 vanishes <strong>on</strong>ly at y = e 123 /∈ Q A .<br />

Note that p is not admissible: e 1 , e 23 ∈ N A , but e 1 + e 23 /∈ N A .<br />

(3) An admissible polynomial of degree m, even in the case of n<strong>on</strong> spherical<br />

zeros, can have more than m roots in the whole algebra. For example, p(x) =<br />

x 2 − 1 has four roots in R 3 , two in the quadratic c<strong>on</strong>e (x = ±1) and two outside<br />

it (x = ±e 123 ).<br />

(4) In R 3 , the admissible polynomial p(x) = x 2 + xe 3 + e 2 has two isolated<br />

zeros<br />

y 1 = 1 2 (1 − e 2 − e 3 + e 23 ), y 2 = 1 2 (−1 + e 2 − e 3 + e 23 )<br />

in Q A \ R 4 . They can be computed by solving the complex equati<strong>on</strong> CN(P ) =<br />

z 4 + z 2 + 1 = 0 (I(P ) = p) to nd the two spheres S y1 , S y2 and then using the<br />

Remainder Theorem (Theorem 22) with ∆ y1 = x 2 − x + 1 and ∆ y2 = x 2 + x + 1<br />

(cf. [40, Example 3]).<br />

(5) The <strong>real</strong>ity of N(p) is not sucient to get the admissibility of p (cf.<br />

Propositi<strong>on</strong> 13). For example, in R 3 , the polynomial p(x) = x 2 e 123 + x(e 1 +<br />

e 23 ) + 1 has <strong>real</strong> normal functi<strong>on</strong> N(p) = (x 2 + 1) 2 , but the spherical derivative<br />

∂ s p = t(x)e 123 + e 1 + e 23 has N(∂ s p) not <strong>real</strong>. In particular, ∂ s p(J) = e 1 + e 23 /∈<br />

N A for every J ∈ S A . The n<strong>on</strong>admissibility of p is reected by the existence of<br />

two distinct zeros <strong>on</strong> S A , where p does not vanish identically: p(e 1 ) = p(e 23 ) = 0.<br />

8 Cauchy integral formula for C 1 slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

Let S 1 (Ω D ) := {f = I(F ) ∈ S(Ω D ) | F ∈ C 1 (D)}, where D denotes the<br />

topological closure of D. For a xed element y = α ′ + β ′ J ∈ Q A , let ζ =<br />

α ′ + iβ ′ ∈ C. The characteristic polynomial ∆ y is a <strong>real</strong> slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> functi<strong>on</strong><br />

<strong>on</strong> Q A , with zero set S y . For every x = α + βI ∈ Q A \ S y , z = α + iβ, dene<br />

C A (x, y) := I ( −∆ y (z) −1 (z − y c ) ) .<br />

C A (x, y) is slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <strong>on</strong> Q A \ S y and has the following property:<br />

C A (x, y) · (y − x) = I ( −∆ y (z) −1 (z − y c )(y − z) ) = I(1) = 1.<br />

27


This means that C A (x, y) is a slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> inverse of y − x w.r.t. the product<br />

introduced in Secti<strong>on</strong> 5. Moreover, when x ∈ C J the product coincides with the<br />

pointwise <strong>on</strong>e, and therefore<br />

C A (x, y) = (y − x) −1 for x, y ∈ C J , x ≠ y, y c .<br />

For this reas<strong>on</strong>, we will call C A (x, y) the Cauchy kernel for slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

<strong>on</strong> A. This kernel was introduced in [3] for the quaterni<strong>on</strong>ic case and in [5] for<br />

slice m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> a Cliord algebra. In [8], the kernel was applied<br />

to get Cauchy formulas for C 1 <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> (also called Pompeiu formulas) <strong>on</strong> a<br />

class of domains intersecting the <strong>real</strong> axis. Here we generalize these results to<br />

Avalued slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of class S 1 (Ω D ).<br />

Theorem 27 (Cauchy integral formula). Let f ∈ S 1 (Ω D ). Let J ∈ S A be<br />

any square root of −1. Assume that D J = Ω D ∩ C J is a relatively compact open<br />

subset of C J , with boundary ∂D J piecewise of class C 1 . Then, for every x ∈ Ω D<br />

(in the case where A is associative) or every x ∈ D J (in the case where A is not<br />

associative), the following formula holds:<br />

f(x) = 1<br />

2π<br />

∫<br />

∂D J<br />

C A (x, y)J −1 dy f(y) − 1<br />

2π<br />

∫<br />

D J<br />

C A (x, y)J −1 dy c ∧ dy ∂f<br />

∂y c (y).<br />

Proof. Let x = α + βJ bel<strong>on</strong>g to D J . Let z = α + iβ and f = I(F ). Let<br />

F = F 1 + iF 2 = ∑ d<br />

k=1 F k u k , with F k ∈ C 1 (D, C), be the representati<strong>on</strong> of the<br />

stem functi<strong>on</strong> F w.r.t. a basis B = {u k } k=1,...,d of A. Denote by φ J : C → C J<br />

the isomorphism sending i to J. Dene FJ k := φ J ◦ F k ◦ φ −1<br />

J<br />

∈ C 1 (D J , C J ). If<br />

F1 k , F2 k are the <strong>real</strong> comp<strong>on</strong>ents of F k , then F 1 = ∑ k F 1 k u k , F 2 = ∑ k F 2 k u k .<br />

Moreover, FJ k(x) = (φ J ◦ F k )(z) = F1 k (z) + JF2 k (z), from which it follows that<br />

f(x) = F 1 (z) + JF 2 (z) = ∑ k F J k(x)u k.<br />

The (classical) Cauchy formula applied to the C 1 <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> FJ k (k = 1, . . . , d)<br />

<strong>on</strong> the domain D J in C J , gives:<br />

FJ k (x) = 1 ∫<br />

(y − x) −1 FJ k (y) dy − 1 ∫<br />

(y − x) −1 ∂F J k(y)<br />

dȳ ∧ dy.<br />

2πJ ∂D J<br />

2πJ D J<br />

∂ȳ<br />

On C J the c<strong>on</strong>jugate ȳ = α − βJ coincides with y c and the slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> Cauchy<br />

kernel C A (x, y) is equal to the classical Cauchy kernel (y − x) −1 . Then we can<br />

rewrite the preceding formula as<br />

F k J (x) = 1<br />

2π<br />

∫<br />

∂D J<br />

C A (x, y) J −1 dy F k J (y)− 1<br />

2π<br />

∫<br />

D J<br />

C A (x, y) J −1 dy c ∧dy ∂F k J (y)<br />

∂y c .<br />

We use Artin's Theorem for <strong>alternative</strong> <strong>algebras</strong>. For any k, the coecients<br />

of the forms in the integrals above and the element u k bel<strong>on</strong>g to the subalgebra<br />

generated by J and u k . Using this fact and the equality<br />

∑<br />

k<br />

∂F k J<br />

∂y c u k = ∑ k<br />

∂F k J<br />

∂ȳ u k = I<br />

28<br />

( ∂F<br />

∂ ¯ζ<br />

)<br />

= ∂f<br />

∂y c ,


after summati<strong>on</strong> over k we can write<br />

f(x) = ∑ FJ k (x)u k = (3)<br />

k<br />

= 1 ∫<br />

C A (x, y)J −1 dy f(y) − 1 ∫<br />

C A (x, y)J −1 dy c ∧ dy ∂f<br />

2π ∂D J<br />

2π D J<br />

∂y c (y).<br />

Now assume that A is associative and that x = α + βI ∈ Ω D \ C J . Let<br />

x ′ = α + βJ, x ′′ = α − βJ ∈ D J . Since f and C A ( · , y) are slice <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong><br />

Ω D , their values at x can be expressed by means of the values at x ′ and x ′′ (cf.<br />

the representati<strong>on</strong> formula (2)):<br />

f(x) = 1 2 (f(x′ ) + f(x ′′ )) − I 2 (J (f(x′ ) − f(x ′′ )))<br />

and similarly for C A (x, y). By applying the Cauchy formula (3) for f(x ′ ) and<br />

f(x ′′ ) and the representati<strong>on</strong> formulas, we get that formula (3) is valid also at<br />

x. The associativity of A allows to pass from the representati<strong>on</strong> formula for<br />

f(x) to the same formula for C A (x, y) inside the integrals.<br />

Corollary 28 (Cauchy representati<strong>on</strong> formula). If f ∈ S 1 (Ω D ) is slice <str<strong>on</strong>g>regular</str<strong>on</strong>g><br />

<strong>on</strong> Ω D , then, for every x ∈ Ω D (in the case where A is associative) or every<br />

x ∈ D J (in the case where A is not associative),<br />

f(x) = 1<br />

2π<br />

∫<br />

∂D J<br />

C A (x, y)J −1 dy f(y).<br />

If f is <strong>real</strong>, the formula is valid for every x ∈ Ω D also when A is not associative.<br />

Proof. The rst statement is immediate from the Cauchy integral formula. If f<br />

is <strong>real</strong> and A is not associative, for every x ∈ C I ∩ Ω D we have, using the same<br />

notati<strong>on</strong> of the proof of the theorem,<br />

f(x) = 1 2 (f(x′ ) + f(x ′′ )) − I 2 (J (f(x′ ) − f(x ′′ ))) =<br />

= 1 ∫<br />

C A (x ′ , y) + C A (x ′′ , y)<br />

J −1 dy f(y)−<br />

2π ∂D J<br />

2<br />

( ∫ J C A (x ′ , y) − C A (x ′′ , y)<br />

− I<br />

2π ∂D J<br />

2<br />

= 1 ∫ (<br />

CA (x ′ , y) + C A (x ′′ , y)<br />

− I<br />

2π ∂D J<br />

2<br />

)<br />

J −1 dy f(y) =<br />

(<br />

J C A(x ′ , y) − C A (x ′′ ))<br />

, y)<br />

J −1 dy f(y).<br />

2<br />

The last equality is a c<strong>on</strong>sequence of the <strong>real</strong>ity of f. If y ∈ C J , then f(y) ∈ C J<br />

and I(Jf(y)) = (IJ)f(y) from Artin's Theorem. The representati<strong>on</strong> formula<br />

applied to C A (x, y) gives the result.<br />

A versi<strong>on</strong> of the Cauchy representati<strong>on</strong> formula for quaterni<strong>on</strong>ic power series<br />

was proved in [20] and extended in [3]. For slice m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> a<br />

Cliord algebra, it was given in [5].<br />

29


References<br />

[1] B. Beck. Sur les équati<strong>on</strong>s polynomiales dans les quaterni<strong>on</strong>s. Enseign.<br />

Math. (2), 25(3-4):193201 (1980), 1979.<br />

[2] U. Bray and G. Whaples. Polynomials with coecients from a divisi<strong>on</strong><br />

ring. Canad. J. Math., 35(3):509515, 1983.<br />

[3] F. Colombo, G. Gentili, and I. Sabadini. A Cauchy kernel for slice <str<strong>on</strong>g>regular</str<strong>on</strong>g><br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>. To appear in Ann. Glob. Anal. Geom.<br />

[4] F. Colombo, G. Gentili, I. Sabadini, and D. C. Struppa. Extensi<strong>on</strong> results<br />

for slice <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of a quaterni<strong>on</strong>ic variable. Adv. Math.,<br />

222(5):17931808, 2009.<br />

[5] F. Colombo and I. Sabadini. The Cauchy formula with sm<strong>on</strong>ogenic kernel<br />

and a functi<strong>on</strong>al calculus for n<strong>on</strong>commuting operators. Submitted.<br />

[6] F. Colombo and I. Sabadini. A structure formula for slice m<strong>on</strong>ogenic<br />

<str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> and some of its c<strong>on</strong>sequences. In Hypercomplex analysis, Trends<br />

Math., pages 101114. Birkhäuser, Basel, 2009.<br />

[7] F. Colombo, I. Sabadini, and D. C. Struppa. An extensi<strong>on</strong> theorem for slice<br />

m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> and some of its c<strong>on</strong>sequences. To appear in Israel J.<br />

Math.<br />

[8] F. Colombo, I. Sabadini, and D. C. Struppa. The Pompeiu formula for<br />

slice hyperholomorphic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>. To appear in Michigan Math. J.<br />

[9] F. Colombo, I. Sabadini, and D. C. Struppa. <str<strong>on</strong>g>Slice</str<strong>on</strong>g> m<strong>on</strong>ogenic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>.<br />

Israel J. Math., 171:385403, 2009.<br />

[10] H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer,<br />

J. Neukirch, A. Prestel, and R. Remmert. Numbers, volume 123 of Graduate<br />

Texts in Mathematics. Springer-Verlag, New York, 1990.<br />

[11] S. Eilenberg and I. Niven. The fundamental theorem of algebra for quaterni<strong>on</strong>s.<br />

Bull. Amer. Math. Soc., 50:246248, 1944.<br />

[12] S. Eilenberg and N. Steenrod. Foundati<strong>on</strong>s of algebraic topology. Princet<strong>on</strong><br />

University Press, Princet<strong>on</strong>, New Jersey, 1952.<br />

[13] R. Fueter. Die Funkti<strong>on</strong>entheorie der Dierentialgleichungen ∆u = 0 und<br />

∆∆u = 0 mit vier reellen Variablen. Comment. Math. Helv., 7(1):307330,<br />

1934.<br />

[14] I. Gelfand, S. Gelfand, V. Retakh, and R. L. Wils<strong>on</strong>. Factorizati<strong>on</strong>s of<br />

polynomials over n<strong>on</strong>commutative <strong>algebras</strong> and sucient sets of edges in<br />

directed graphs. Lett. Math. Phys., 74(2):153167, 2005.<br />

30


[15] I. Gelfand, V. Retakh, and R. L. Wils<strong>on</strong>. Quadratic linear <strong>algebras</strong> associated<br />

with factorizati<strong>on</strong>s of n<strong>on</strong>commutative polynomials and n<strong>on</strong>commutative<br />

dierential polynomials. Selecta Math. (N.S.), 7(4):493523, 2001.<br />

[16] G. Gentili and C. Stoppato. Zeros of <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> and polynomials of<br />

a quaterni<strong>on</strong>ic variable. Michigan Math. J., 56(3):655667, 2008.<br />

[17] G. Gentili, C. Stoppato, D. C. Struppa, and F. Vlacci. Recent developments<br />

for <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of a hypercomplex variable. In Hypercomplex analysis,<br />

Trends Math., pages 165186. Birkhäuser, Basel, 2009.<br />

[18] G. Gentili and D. C. Struppa. Regular <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> the space of Cayley<br />

numbers. To appear in Rocky Mountain J. Math.<br />

[19] G. Gentili and D. C. Struppa. A new approach to Cullen-<str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g><br />

of a quaterni<strong>on</strong>ic variable. C. R. Math. Acad. Sci. Paris, 342(10):741744,<br />

2006.<br />

[20] G. Gentili and D. C. Struppa. A new theory of <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of a<br />

quaterni<strong>on</strong>ic variable. Adv. Math., 216(1):279301, 2007.<br />

[21] G. Gentili and D. C. Struppa. On the multiplicity of zeroes of polynomials<br />

with quaterni<strong>on</strong>ic coecients. Milan J. Math., 76:1525, 2008.<br />

[22] G. Gentili and D. C. Struppa. Regular <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> a Cliord algebra.<br />

Complex Var. Elliptic Equ., 53(5):475483, 2008.<br />

[23] G. Gentili, D. C. Struppa, and F. Vlacci. The fundamental theorem of<br />

algebra for Hamilt<strong>on</strong> and Cayley numbers. Math. Z., 259(4):895902, 2008.<br />

[24] R. Ghil<strong>on</strong>i and A. Perotti. Zeros of <str<strong>on</strong>g>regular</str<strong>on</strong>g> <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> of quaterni<strong>on</strong>ic and<br />

oct<strong>on</strong>i<strong>on</strong>ic variable: a divisi<strong>on</strong> lemma and the camshaft eect. Preprint,<br />

arxiv.org/abs/0904.2667v2, 2009.<br />

[25] B. Gord<strong>on</strong> and T. S. Motzkin. On the zeros of polynomials over divisi<strong>on</strong><br />

rings. Trans. Amer. Math. Soc., 116:218226, 1965.<br />

[26] K. Gürlebeck, K. Habetha, and W. Spröÿig. Holomorphic <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g> in the<br />

plane and n-dimensi<strong>on</strong>al space. Birkhäuser Verlag, Basel, 2008.<br />

[27] Y.-L. Jou. The fundamental theorem of algebra for Cayley numbers.<br />

Acad. Sinica Science Record, 3:2933, 1950.<br />

[28] T. Y. Lam. A rst course in n<strong>on</strong>commutative rings, volume 131 of Graduate<br />

Texts in Mathematics. Springer-Verlag, New York, 1991.<br />

[29] I. Niven. Equati<strong>on</strong>s in quaterni<strong>on</strong>s. Amer. Math. M<strong>on</strong>thly, 48:654661,<br />

1941.<br />

[30] A. Pogorui and M. Shapiro. On the structure of the set of zeros of quaterni<strong>on</strong>ic<br />

polynomials. Complex Var. Theory Appl., 49(6):379389, 2004.<br />

31


[31] T. Qian. Generalizati<strong>on</strong> of Fueter's result to R n+1 . Atti Accad. Naz. Lincei<br />

Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8(2):111117, 1997.<br />

[32] H. Rodríguez-Ordóñez. A note <strong>on</strong> the fundamental theorem of algebra for<br />

the oct<strong>on</strong>i<strong>on</strong>s. Expo. Math., 25(4):355361, 2007.<br />

[33] M. Sce. Osservazi<strong>on</strong>i sulle serie di potenze nei moduli quadratici. Atti<br />

Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8), 23:220225, 1957.<br />

[34] R. D. Schafer. An introducti<strong>on</strong> to n<strong>on</strong>associative <strong>algebras</strong>. Pure and Applied<br />

Mathematics, Vol. 22. Academic Press, New York, 1966.<br />

[35] R. Serôdio. On oct<strong>on</strong>i<strong>on</strong>ic polynomials. Adv. Appl. Cliord Algebr.,<br />

17(2):245258, 2007.<br />

[36] F. Sommen. On a generalizati<strong>on</strong> of Fueter's theorem. Z. Anal. Anwendungen,<br />

19(4):899902, 2000.<br />

[37] A. Sudbery. Quaterni<strong>on</strong>ic analysis. Math. Proc. Cambridge Philos. Soc.,<br />

85(2):199224, 1979.<br />

[38] N. Topuridze. On the roots of polynomials over divisi<strong>on</strong> <strong>algebras</strong>. Georgian<br />

Math. J., 10(4):745762, 2003.<br />

[39] H. Whitney. Dierentiable even <str<strong>on</strong>g>functi<strong>on</strong>s</str<strong>on</strong>g>. Duke Math. J., 10:159160,<br />

1943.<br />

[40] Y. Yang and T. Qian. On sets of zeroes of Cliord algebravalued polynomials.<br />

To appear in Acta Math. Sin., 2009.<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!