28.06.2014 Views

Swimming in a sea of light: the adventure of photon hydrodynamics

Swimming in a sea of light: the adventure of photon hydrodynamics

Swimming in a sea of light: the adventure of photon hydrodynamics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Swimm<strong>in</strong>g</strong> <strong>in</strong> a <strong>sea</strong> <strong>of</strong> <strong>light</strong>:<br />

<strong>the</strong> <strong>adventure</strong> <strong>of</strong> <strong>photon</strong> <strong>hydrodynamics</strong><br />

Iacopo Carusotto<br />

INO-CNR BEC Center and Università di Trento, Italy<br />

In collaboration with:<br />

● Cristiano Ciuti ( MPQ, Univ. Paris 7 and CNRS )<br />

● Michiel Wouters ( EPFL, Lausanne)<br />

● Atac Imamoglu ( ETH Zürich)<br />

● Elisabeth Giacob<strong>in</strong>o, Alberto Bramati, Alberto Amo ( LKB, Univ. Paris 6 and CNRS )


Newton's corpuscular <strong>the</strong>ory <strong>of</strong> <strong>light</strong> (“Opticks”(<br />

“Opticks”,, 1704)<br />

Light is composed <strong>of</strong> material corpuscles<br />

●<br />

●<br />

●<br />

different colors correspond to corpuscles <strong>of</strong> different k<strong>in</strong>d<br />

corpuscles travel <strong>in</strong> free space along straight l<strong>in</strong>es<br />

refraction orig<strong>in</strong>ates from attraction by material bodies<br />

Implicit assumption: corpuscles do not <strong>in</strong>teract with each o<strong>the</strong>r<br />

●<br />

●<br />

if <strong>the</strong>y <strong>in</strong>teracted via collisions, <strong>the</strong>y could form a fluid like water or air<br />

to my knowledge, no historical trace <strong>of</strong> Newton hav<strong>in</strong>g ever thought <strong>in</strong> <strong>the</strong>se terms.


Huygens wave <strong>the</strong>ory <strong>of</strong> <strong>light</strong> (“traité(<br />

de la lumière”, , 1690)<br />

Newton's corpuscular <strong>the</strong>ory soon defeated by rival wave thory <strong>of</strong> <strong>light</strong><br />

●<br />

●<br />

●<br />

Young two slit <strong>in</strong>terference experiment<br />

diffraction from aperture:<br />

Huygens-Fresnel pr<strong>in</strong>ciple <strong>of</strong> secondary waves<br />

polarization effects<br />

Arago-Poisson white spot<br />

●<br />

●<br />

●<br />

Poisson ridiculed wave <strong>the</strong>ory predict<strong>in</strong>g bright spot <strong>in</strong> center <strong>of</strong> shade <strong>of</strong> circular object<br />

us<strong>in</strong>g Fresnel-Huygens <strong>the</strong>ory <strong>of</strong> diffraction....<br />

… but Arago actually observed spot <strong>in</strong> early '800!!<br />

(actually appear to have been first observed by Maraldi <strong>in</strong> 1723)<br />

impossible to expla<strong>in</strong> via corpuscular <strong>the</strong>ory:<br />

strong support to wave <strong>the</strong>ory


Photo-electric effect:<br />

●<br />

●<br />

●<br />

There are more th<strong>in</strong>gs <strong>in</strong> heaven and earth, Horatio,<br />

Than are dreamt <strong>of</strong> <strong>in</strong> your philosophy<br />

energy <strong>of</strong> emitted electrons depends<br />

on <strong>light</strong> frequency and not <strong>in</strong>tensity<br />

E<strong>in</strong>ste<strong>in</strong> expla<strong>in</strong>s photoelectric effect<br />

<strong>in</strong> terms <strong>of</strong> <strong>light</strong> quanta (1905)<br />

concept <strong>of</strong> quantum already postulated<br />

by Planck to correct black-body catastrophe<br />

But wavy nature <strong>of</strong> <strong>light</strong> persists:<br />

●<br />

●<br />

dual wave-particle properties <strong>of</strong> <strong>photon</strong>s<br />

(and electrons → de Broglie wavelength):<br />

Young two slit experiment:<br />

➢ every <strong>photon</strong> hits screen at random position<br />

➢ probability distribution determ<strong>in</strong>ed<br />

by classical diffraction <strong>the</strong>ory


In vacuo:<br />

●<br />

●<br />

Light-<strong>light</strong> scatter<strong>in</strong>g<br />

optical <strong>photon</strong>-<strong>photon</strong> scatter<strong>in</strong>g mediated<br />

by (virtual) electron-positron pairs<br />

far <strong>of</strong>f-resonance process ( e+ -e - energy ≈ MeV)<br />

● for ћω « mc<br />

2<br />

: ≃ 4 ħ 2<br />

ħ <br />

6<br />

with ћ / mc =0.4 pm<br />

m 2 c 2<br />

mc 2<br />

γ<br />

γ<br />

γ<br />

γ<br />

In nonl<strong>in</strong>ear optical medium:<br />

●<br />

●<br />

electronic excitations available at optical energies ( ≈ eV)<br />

<strong>photon</strong>-<strong>photon</strong> scatter<strong>in</strong>g due to nonl<strong>in</strong>ear polarization<br />

P = χ (1) E + χ (3) E E E<br />

Four-wave mix<strong>in</strong>g:<br />

●<br />

●<br />

●<br />

stimulated <strong>photon</strong>-<strong>photon</strong> collision<br />

still requires strong <strong>light</strong> <strong>in</strong>tensity and coherence<br />

first observed <strong>in</strong> <strong>the</strong> '60s us<strong>in</strong>g laser sources


Fluids and gases: a mostly corpuscular history<br />

Demokritus' atomistic model <strong>of</strong> matter:<br />

●<br />

●<br />

●<br />

<strong>in</strong>divisible atoms as solid objects mov<strong>in</strong>g <strong>in</strong> vacuo<br />

different material consist <strong>of</strong> different k<strong>in</strong>ds <strong>of</strong> atoms<br />

mostly a philosophical idea, scientifically demonstrated only <strong>in</strong> modern<br />

times<br />

Expla<strong>in</strong>s <strong>in</strong> microscopic terms <strong>the</strong>rmodynamics and chemistry:<br />

●<br />

●<br />

●<br />

●<br />

ideal gas laws, k<strong>in</strong>etic <strong>the</strong>ory <strong>of</strong> gases<br />

fundamental laws <strong>of</strong> chemical reactions<br />

molecular dynamics understand<strong>in</strong>g <strong>of</strong> condensed matter phenomena<br />

statistical fluctuations and Brownian motion<br />

Demokritus


Quantum mechanics: wave nature <strong>of</strong> matter<br />

de Broglie wave (postulated <strong>in</strong> 1924):<br />

●<br />

●<br />

●<br />

<strong>in</strong>troduced to expla<strong>in</strong> Bohr's model <strong>of</strong> atomic structure<br />

wavelength λ=h/p<br />

soon measured as <strong>in</strong>terference pattern <strong>of</strong> electrons<br />

(Davisson and Germer, 1927)<br />

Apparent at ultralow temperatures:<br />

● <strong>the</strong>rmal de Broglie wavelength λ th<br />

=(2πћ/mk B<br />

T) 1/2<br />

●<br />

●<br />

comparable to <strong>in</strong>terparticle distance<br />

wave nature <strong>of</strong> particles starts to matter<br />

completely different behaviour <strong>of</strong> macroscopic<br />

systems<br />

depend<strong>in</strong>g on <strong>in</strong>teger vs. half-<strong>in</strong>teger sp<strong>in</strong> <strong>of</strong><br />

constituent particles<br />

sketch from Ketterle group website


Fermions<br />

Many-body wavefunction antisymmetric under exchange <strong>of</strong> two particles<br />

At most one particle at a time can occupy a given quantum state<br />

Ground state: all levels filled upto to Fermi energy E F<br />

Fermi pressure prevents collapse and stabilizes matter:<br />

➢<br />

➢<br />

electrons <strong>in</strong> atoms and metals<br />

neutrons <strong>in</strong> neutron stars formed by gravitational collapse<br />

(when gravity overcomes Fermi pressure <strong>of</strong> electrons,<br />

i.e. for star mass above 1.44 solar masses )


Bosons<br />

Arbitrary number <strong>of</strong> particles occupy same quantum state:<br />

● ground state: all boson <strong>in</strong>to lowest-energy state,<br />

<strong>the</strong> Bose-E<strong>in</strong>ste<strong>in</strong> condensate<br />

● momentum-space condensation <strong>in</strong>to k=0 state<br />

● real-space condensation only <strong>in</strong> trapped geometries<br />

Even <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>in</strong>teractions:<br />

➢ macroscopic fraction <strong>of</strong> atoms <strong>in</strong>to same state<br />

➢ same macroscopic wavefunction<br />

➢ matter waves <strong>of</strong> all atoms “oscillate at <strong>the</strong> unison”<br />

Picture from Ketterle group website<br />

Macroscopic wavefunction dynamics: Gross-Pitaevskii<br />

equation:<br />

i ħ∂ t =− ħ2<br />

2m ∇ 2 V g∣∣ 2 <br />

●<br />

●<br />

<strong>in</strong>dependent-particle evolution: Schroed<strong>in</strong>ger eq.<br />

atom-atom <strong>in</strong>teractions responsible for nonl<strong>in</strong>ear term


BEC: a coherent wave <strong>of</strong> matter<br />

Coherent laser (or radio) e. m. field<br />

E, B fields<br />

Coherent field E = < Ê ><br />

Maxwell equations<br />

Nonl<strong>in</strong>ear polarization <strong>of</strong> medium<br />

Light polarization<br />

↔<br />

↔<br />

↔<br />

↔<br />

↔<br />

↔<br />

Coherent matter field <strong>of</strong> BEC<br />

Matter field Ψ<br />

Coherent field Ψ = < Ψ ><br />

Gross-Pitaevskii eq.<br />

Atom-atom <strong>in</strong>teractions<br />

Atomic sp<strong>in</strong><br />

∇ 2 E− 1 ∂ 2 E<br />

c 2 ∂ t = 4<br />

2 c 2<br />

∂ 2 P<br />

∂ t 2<br />

↔<br />

i ħ ∂ ħ2<br />

=−<br />

∂ t 2m ∇ 2 V g∣∣ 2 <br />

Atoms <strong>of</strong> Bose-E<strong>in</strong>ste<strong>in</strong> condensate effectively forget <strong>the</strong>ir corpuscular nature<br />

and behave as a macroscopic coherent matter wave !!


Superfluidity<br />

● onset <strong>of</strong> friction for v > v cr<br />

Strik<strong>in</strong>g consequence <strong>of</strong> coherent wave nature <strong>of</strong> matter<br />

●<br />

●<br />

collective behavior with all particles <strong>in</strong>volved <strong>in</strong> system dynamics<br />

<strong>in</strong>teract<strong>in</strong>g Bose gas: low-energy excitations are sound modes, not s<strong>in</strong>gle-particle<br />

ones<br />

Impurity mov<strong>in</strong>g through BEC:<br />

●<br />

no energy dissipation for v < v cr<br />

, superfluid behaviour<br />

v < v cr<br />

v > v cr<br />

Founta<strong>in</strong> effect <strong>in</strong> liquid He<br />

R. On<strong>of</strong>rio, et al. PRL 85, 2228 (2000)


Landau <strong>in</strong>terpretation<br />

Impurity mov<strong>in</strong>g through BEC:<br />

→ Landau critical speed v cr<br />

= m<strong>in</strong> k<br />

[ω(k)/k]<br />

→ localized disturbance for v < v cr<br />

, superfluid behaviour, no energy dissipation<br />

→ complex density modulation pattern for v > v cr<br />

phonons radiated <strong>in</strong>to modes satisfy<strong>in</strong>g Cerenkov condition ω(k) = k · v<br />

v < v cr<br />

v > v cr


In a nutshell...<br />

So far we have seen that:<br />

Bose-condensed bosonic atoms below T BEC<br />

forget <strong>the</strong>ir corpuscular nature<br />

and behave as a macroscopic coherent matter wave<br />

Conversely:<br />

could one make <strong>light</strong> to forget its wave nature and behave<br />

as a hydrodynamic gas <strong>of</strong> <strong>in</strong>teract<strong>in</strong>g <strong>photon</strong>s?<br />

A first step:<br />

observe superfluid behaviour <strong>in</strong> coherent <strong>light</strong> wave


The optical system under <strong>in</strong>vestigation


Superfluid <strong>hydrodynamics</strong> <strong>of</strong> <strong>photon</strong>s<br />

Non-<strong>in</strong>teract<strong>in</strong>g<br />

polaritons<br />

v > v cr<br />

non-superfluid behaviour<br />

v < v cr<br />

superfluid behaviour<br />

IC and C.Ciuti, PRL 93, 166401 (2004)


Experimental data: superfluid behaviour<br />

superfluid<br />

flow<br />

scatter<strong>in</strong>g<br />

on defect<br />

<strong>in</strong>crease polariton density<br />

Figure from LKB-P6 group:<br />

J.Lefrère, A.Amo, S.Pigeon, C.Adrados, C.Ciuti, IC, R. Houdré, E.Giacob<strong>in</strong>o, A.Bramati, Observation <strong>of</strong><br />

Superfluidity <strong>of</strong> Polaritons <strong>in</strong> Semiconductor Microcavities, Nature Phys. 5, 805 (2009)<br />

Theory: IC and C. Ciuti, PRL 93, 166401 (2004).


Cerenkov wake <strong>in</strong> supersonic flow<br />

Experiment<br />

Theory<br />

Expt with atomic BEC<br />

Expt. image from JILA<br />

(P. Engels, E. Cornell).<br />

Theory IC, Hu, Coll<strong>in</strong>s, Smerzi,<br />

PRL 97, 260403 (2006)<br />

Super-sonic flow hitt<strong>in</strong>g a defect:<br />

●<br />

Cerenkov conical wave, aperture s<strong>in</strong>(φ) = c s<br />

/ v<br />

●<br />

s<strong>in</strong>gle-particle parabolic precursors<br />

Expt with duck<br />

J.Lefrère, A.Amo, S.Pigeon, C.Adrados, C.Ciuti, IC, R. Houdré, E.Giacob<strong>in</strong>o, A.Bramati,Nature Phys. 5, 805 (2009); IC and C. Ciuti, PRL 93, 166401 (2004).


Superfluid <strong>hydrodynamics</strong> observed <strong>in</strong> fluid <strong>of</strong> <strong>light</strong>!!<br />

But still a number <strong>of</strong> open challenges...<br />

Interactions are more effective <strong>in</strong> coherent wave state than <strong>in</strong> normal state<br />

New frontier: hydrodynamic behaviour <strong>of</strong> <strong>light</strong> <strong>in</strong> normal gas<br />

<strong>of</strong> corpuscular <strong>photon</strong>s<br />

So far:<br />

●<br />

ballistic propagation <strong>of</strong> <strong>photon</strong>s <strong>of</strong> a <strong>the</strong>rmal lamp source<br />

Hydrodynamic behaviour:<br />

●<br />

●<br />

collisional mean-free path for <strong>photon</strong>-<strong>photon</strong> collisions shorter<br />

than wavelength <strong>of</strong> spatial modulation<br />

requires <strong>photon</strong>-<strong>photon</strong> <strong>in</strong>teractions much stronger than <strong>in</strong> standard media


Strongly <strong>in</strong>teract<strong>in</strong>g atomic gases:<br />

●<br />

A strategy to enhance <strong>photon</strong>-<strong>photon</strong> <strong>in</strong>teractions<br />

exploit Feshbach resonance effect<br />

on molecular <strong>in</strong>termediate state<br />

●<br />

scatter<strong>in</strong>g length<br />

[<br />

a=a 1− bg<br />

<br />

] B−B 0<br />

● scatter<strong>in</strong>g cross section σ = 8 π a<br />

2<br />

figure from Ketterle group website<br />

Optical molecule:<br />

●<br />

●<br />

biexciton <strong>in</strong> solid-state material: 2e's+2h's complex<br />

can be excited via two-<strong>photon</strong> absorption<br />

Photon-<strong>photon</strong> collisions resonant on biexciton <strong>in</strong>termediate state<br />

In nonl<strong>in</strong>ear optical terms: resonant two-<strong>photon</strong> absorption<br />

M. Wouters, Phys. Rev. B 76, 045319 (2007); I. Carusotto, T. Volz, A. Imamoglu, arXiv:1002.2613


Simplest signature <strong>of</strong> <strong>photon</strong>-<strong>photon</strong> <strong>in</strong>teractions at s<strong>in</strong>gle <strong>photon</strong> level<br />

●<br />

●<br />

●<br />

Photon blockade<br />

entrance <strong>of</strong> first <strong>photon</strong> blocks entrance entrance <strong>of</strong> a second<br />

after one <strong>photon</strong> has exited, system has to reload.<br />

dead time between emitted <strong>photon</strong>s, anti-bunched stream, sub-Poissonian<br />

statistics<br />

●<br />

●<br />

observed <strong>in</strong> high-f<strong>in</strong>esse optical cavities with 2-level atoms, but hardly scalable<br />

analog <strong>of</strong> Coulomb blockade <strong>of</strong> mesoscopic conductors<br />

Coulomb blockade<br />

figure D. J. Paul, Cambridge, 2006<br />

from: Birnbaum et al., Nature 436, 87 (2005)


Strong <strong>in</strong>teractions prevent particles from overlapp<strong>in</strong>g<br />

One-dimensional geometry:<br />

●<br />

●<br />

●<br />

Tonks-Girardeau gas <strong>of</strong> impenetrable bosons<br />

strong lateral conf<strong>in</strong><strong>in</strong>g potential, only axial motion<br />

bosons can not cross, zeros <strong>in</strong> wavefunction when overlapp<strong>in</strong>g<br />

Girardeau Bose-Fermi mapp<strong>in</strong>g: Bose gas <strong>in</strong>herits some fermionic<br />

properties<br />

e.g Fermi pressure<br />

●<br />

dynamics: quantum Newton's craddle with ultracold atoms<br />

K<strong>in</strong>oshita, Wenger, Weiss, Nature 440, 900 (2006)


Necklace <strong>of</strong> cavities: non-equilibrium Bose-Hubbard model<br />

Optical realization:<br />

●<br />

necklace <strong>of</strong> cavities coupled by optical tunnel<strong>in</strong>g processes<br />

●<br />

blockade regime: on-site nonl<strong>in</strong>earity U » tunnel<strong>in</strong>g J<br />

●<br />

cavities driven by coherent pump, <strong>photon</strong>s radiatively decay<br />

●<br />

non-equilibrium state: driven-dissipative system,<br />

stationary state from dynamical balance <strong>of</strong> pump<strong>in</strong>g and losses<br />

●<br />

spectroscopic signature <strong>of</strong> strongly correlated many-body<br />

states<br />

●<br />

nature <strong>of</strong> states can be <strong>in</strong>ferred from <strong>photon</strong> statistics<br />

<strong>of</strong> emitted <strong>light</strong><br />

I. Carusotto, D. Gerace, H. Tureci, S. De Liberato, C. Ciuti, A. Imamoglu, Phys. Rev. Lett. 103, 033601 (2009).


Conclusions and perspectives<br />

Experimental study <strong>of</strong> superfluid <strong>light</strong>:<br />

●<br />

●<br />

suppression <strong>of</strong> scatter<strong>in</strong>g for sub-sonic flow<br />

Cerenkov wake for super-sonic flow<br />

Theoretical study <strong>of</strong> strongly <strong>in</strong>teract<strong>in</strong>g <strong>photon</strong> gases:<br />

●<br />

●<br />

biexcitonic Feshbach resonances<br />

Tonks-Girardeau gas <strong>of</strong> fermionized <strong>photon</strong>s <strong>in</strong> 1D<br />

A new frontier:<br />

●<br />

●<br />

hydrodynamic behaviour <strong>in</strong> normal gas <strong>of</strong> corpuscular<br />

<strong>photon</strong>s<br />

second sound <strong>in</strong> superfluid <strong>photon</strong> fluid at f<strong>in</strong>ite T<br />

● ultimate pro<strong>of</strong> <strong>of</strong> corpuscular nature <strong>of</strong> <strong>light</strong> !<br />

<strong>photon</strong>s! x<br />

more details <strong>in</strong> a forthcom<strong>in</strong>g paper on Europhysics News !!


Thanks<br />

for your<br />

attention !!!


If you are a brave young re<strong>sea</strong>rcher <strong>in</strong>terested <strong>in</strong> a comb<strong>in</strong>ation <strong>of</strong> ...<br />

image: JILA group<br />

quantum optics<br />

polariton condensates<br />

<strong>the</strong>ory and experiments<br />

<strong>in</strong> ultracold atoms<br />

acoustic black holes<br />

… don't hesitate, but go for<br />

PhD and PostDoc positions available at BEC-Trento<br />

contact us at: bec<strong>in</strong>fm@science.unitn.it


The new frontier: strongly <strong>in</strong>teract<strong>in</strong>g <strong>photon</strong>s<br />

analogy between coherent <strong>light</strong> and atomic condensates based<br />

on a weak-<strong>in</strong>teraction condition<br />

large particle <strong>in</strong>volved <strong>in</strong> <strong>the</strong> dynamics, <strong>in</strong> particular mean-field <strong>in</strong>teraction energy<br />

what if small number <strong>of</strong> particles enough to give <strong>the</strong> same <strong>in</strong>teraction?<br />

Helium vs atomic condensates


Non-equilibrium condition:<br />

<strong>photon</strong>s lost and re<strong>in</strong>jected cont<strong>in</strong>uously<br />

stationary state: dynamical equilibrium <strong>of</strong> pump<strong>in</strong>g and losses,<br />

not <strong>the</strong>rmal equilibrium<br />

driven-dissipative system<br />

Modified GPE<br />

i ħ ∂ t<br />

=− ħ2<br />

2m ∇ 2 V g∣∣ 2 <br />

Chemical potential mu not determ<strong>in</strong>ed by equation <strong>of</strong> state, but freely<br />

tuned by <strong>in</strong>cident laser frequency<br />

New features: zebra Cerenkov when <strong>photon</strong> fluid is close to an <strong>in</strong>stability

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!