28.06.2014 Views

BIOMETRY AND LIFE CYCLE OF Chironomus ... - SciELO

BIOMETRY AND LIFE CYCLE OF Chironomus ... - SciELO

BIOMETRY AND LIFE CYCLE OF Chironomus ... - SciELO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>BIOMETRY</strong> <strong>AND</strong> <strong>LIFE</strong> <strong>CYCLE</strong> <strong>OF</strong> <strong>Chironomus</strong> calligraphus Goeldi 1905<br />

(DIPTERA, CHIRONOMIDAE) IN LABORATORY CONDITIONS<br />

Florencia L. Zilli, Luciana Montalto, Analía C. Paggi and Mercedes R. Marchese<br />

SUMMARY<br />

Chironomid larvae are important components of aquatic biota,<br />

due to their abundance and participation in food webs, and<br />

because they are considered environmental bioindicators. Many<br />

laboratory studies have analyzed the effects of pollutants on chironomids,<br />

especially on <strong>Chironomus</strong> calligraphus Goeldi, 1905.<br />

However, little is known about the life cycle attributes of Chironomidae<br />

(Diptera). The main pourpose of this study was to<br />

analyze C. calligraphus life cycle under laboratory conditions.<br />

The growth rate was almost constant between larval instars (r=<br />

1.60 ±0.02), the immature development time (D) was 15 days<br />

and the minimum generation time (G) was 18 days. According<br />

to these results and field observations C. calligraphus has a<br />

temperature-dependent life cycle, with several overlapped short<br />

duration cohorts in spring-summer followed by one or two generations<br />

of longer duration in winter.<br />

BIOMETRÍA Y CICLO DE VIDA DE <strong>Chironomus</strong> calligraphus Goeldi, 1905 (DIPTERA, CHIRONOMIDAE) EN<br />

CONDICIONES DE LABORATORIO<br />

Florencia L. Zilli, Luciana Montalto, Analía C. Paggi y Mercedes R. Marchese<br />

RESUMEN<br />

Las larvas de quironómidos son componentes importantes<br />

de la biota acuática por su participación en las tramas tróficas<br />

y por ser bioindicadores de condiciones ambientales. Muchos<br />

estudios de laboratorio han analizado los efectos de diferentes<br />

contaminantes sobre quironómidos, especialmente sobre<br />

<strong>Chironomus</strong> calligraphus Goeldi, 1905. Sin embargo, poco se<br />

conoce sobre los atributos de su ciclo de vida. El objetivo de<br />

este estudio fue analizar el ciclo de vida de C. calligraphus en<br />

condiciones de laboratorio. La razón de crecimiento entre estadios<br />

larvales fue aproximadamente constante (r= 1,60 ±0,02),<br />

el tiempo de desarrollo (D) fue 15 días y el tiempo mínimo de<br />

generación (G) fue 18 días. De acuerdo a estos resultados y a<br />

observaciones realizadas en campo, C. calligraphus es una especie<br />

con ciclo de vida temperatura-dependiente con generaciones<br />

superpuestas de corta duración en primavera-verano y con una<br />

o dos generaciones de mayor duración en invierno.<br />

Introduction<br />

Diptera Chironomidae is<br />

the most abundant group of<br />

insects in freshwater aquatic<br />

systems (Pinder, 1983) with<br />

larval stages associated principally<br />

with benthic communities<br />

and macrophytes (Trivinho-Strixino<br />

and Strixino, 1991,<br />

1999; Trivinho-Strixino et al.,<br />

1998; Poi de Neiff and Neiff,<br />

2006). The immature stages<br />

of midges have an important<br />

role acting as a link between<br />

primary producers (phytoplankton<br />

and benthic algae)<br />

and consumers, mainly fishes,<br />

but also birds and amphibians.<br />

The larvae participate in<br />

the first steps of the organic<br />

matter cycle which is used<br />

by detritivorous organisms<br />

(Paggi, 1998). Due to their<br />

high abundances throughout<br />

the year, they contribute to a<br />

large extent to the productivity<br />

of aquatic systems. On the<br />

other hand, they are widely<br />

used as bioindicator species<br />

of environmental conditions<br />

(Paggi, 1999).<br />

Although the importance<br />

of Chironomidae in aquatic<br />

systems of Neotropical regions<br />

like the Paraná River<br />

floodplains has been widely<br />

pointed out, there is little information<br />

on their population<br />

dynamics and bionomic attributes<br />

(Strixino, 1973; Trivinho-Strixino<br />

and Strixino,<br />

1989; Masaferro et al., 1991;<br />

Corbi and Trivinho-Strixino,<br />

2006). Nevertheless, it is difficult<br />

to analyze these characteristics<br />

on the field and laboratory<br />

autoecological studies<br />

are performed instead (Corbi<br />

and Trivinho-Strixino, 2006).<br />

Thus, an analysis of Chirono-<br />

midae life cycle attributes is<br />

necessary in order to increase<br />

knowledge about aquatic biota<br />

dynamics as well as environmental<br />

health.<br />

Two species of the <strong>Chironomus</strong><br />

genus: <strong>Chironomus</strong> (<strong>Chironomus</strong>)<br />

xanthus Rempel,<br />

1939 (=C. domizzi Paggi, 1979;<br />

C. sancticaroli Trivinho-Strixino<br />

and Strixino, 1982) and<br />

<strong>Chironomus</strong> (<strong>Chironomus</strong>) calligraphus<br />

Goeldi, 1905 (Paggi,<br />

1979, 1998; Marchese and<br />

Paggi, 2004) were recorded in<br />

Argentina. C. calligraphus is a<br />

pan-American chironomid with<br />

KEYWORDS / Argentina / Chironomidae / <strong>Chironomus</strong> calligraphus / Life Cycle /<br />

Received: 12/04/2007. Modified: 08/27/2008. Accepted: 08/29/2008.<br />

Florencia L. Zilli. Licenciada<br />

en Biodiversidad, Universidad<br />

Nacional del Litoral (UNL),<br />

Argentina. Becaria de Doctorado,<br />

Instituto Nacional de<br />

Limnología (INALI), Consejo<br />

Nacional de Investigaciones<br />

Científicas y Técnicas y Universidad<br />

Nacional del Litoral,<br />

(CONICET-UNL), Argentina.<br />

Dirección: Laboratorio Bentos,<br />

Instituto Nacional de Limnología,<br />

Ciudad Universitaria,<br />

Santa Fe (3000), Santa Fe, Argentina.<br />

e-mail: florzeta1979@<br />

yahoo.com.ar<br />

Luciana Montalto. Doctora en<br />

Ciencias Biológicas, Universidad<br />

de Buenos Aires (UBA),<br />

Becaria Postdoctoral, INALI<br />

(CONICET-UNL), Argentina.<br />

Analía C. Paggi. Doctora en<br />

Ciencias Naturales, Universidad<br />

Nacional de La Plata<br />

(UNLP). Investigadora del Instituto<br />

de Limnología Raúl A.<br />

Ringuelet (CONICET-UNLP),<br />

Argentina.<br />

Mercedes R. Marchese. Profesora<br />

de Biología (UNL). Investigadora<br />

INALI (CONICET-<br />

UNL), Argentina.<br />

OCT 2008, VOL. 33 Nº 10<br />

0378-1844/08/10/767-04 $ 3.00/0<br />

767


BIOMETRÍA E CICLO DE VIDA DE <strong>Chironomus</strong> calligraphus Goeldi, 1905 (DIPTERA, CHIRONOMIDAE) EM<br />

CONDIÇÕES DE LABORATÓRIO<br />

Florencia L. Zilli, Luciana Montalto, Analía C. Paggi e Mercedes R. Marchese<br />

RESUMO<br />

As larvas de quironomídeos são componentes importantes da<br />

biota aquática por sua participação nas tramas tróficas e por<br />

serem bioindicadores de condições ambientais. Muitos estudos<br />

de laboratório têm analisado os efeitos de diferentes contaminantes<br />

sobre quironomídeos, especialmente sobre <strong>Chironomus</strong><br />

calligraphus Goeldi, 1905. No entanto, pouco se conhece sobre<br />

os atributos de seu ciclo de vida. O objetivo deste estudo foi<br />

analisar o ciclo de vida de C. calligraphus em condições de<br />

laboratório. A razão de crescimento entre estágios larvais foi<br />

aproximadamente constante (r= 1,60 ±0,02), o tempo de desenvolvimento<br />

(D) foi de 15 dias e o tempo mínimo de geração (G)<br />

foi de 18 dias. De acordo a estes resultados e a observações realizadas<br />

em campo, C. calligraphus é uma espécie com ciclo de<br />

vida temperatura-dependente com gerações superpostas de curta<br />

duração em primavera-verão e com uma ou duas gerações de<br />

maior duração no inverno.<br />

a predominantly Neotropical<br />

distribution. This<br />

species was reported to<br />

have a high potential as<br />

a nuisance to humans in<br />

the USA, mainly because<br />

it has the ability to thrive<br />

in a wide range of conditions<br />

and habitats, including<br />

small and temporary<br />

waters (Spies, 2000;<br />

Spies et al., 2002). There<br />

are reports about its morphology<br />

(Goeldi, 1905; Roback,<br />

1962; Fittkau, 1965; Paggi,<br />

1979; Spies et al., 2002), karyology<br />

and DNA sequencing<br />

(Spies et al., 2002) as well as<br />

many ecotoxicology test studies<br />

(Iannacone and Alvariño,<br />

1998; Iannacone and Dale,<br />

1999; Iannacone et al., 1999),<br />

but there is no available information<br />

about the life cycle of<br />

this species. The present study<br />

provides information about the<br />

life cycle of C. calligraphus<br />

under laboratory conditions.<br />

Methods and Material<br />

Sampling<br />

Egg masses of <strong>Chironomus</strong><br />

calligraphus Goeldi, 1905<br />

were collected in field waters<br />

of Santo Tomé city (Santa<br />

Fe, Argentina, 31°40’2.54”S<br />

and 60°45’13.09”W) in January<br />

2007 and transported to<br />

the laboratory, conditioned in<br />

recipients with environmental<br />

water at 21.8 ±3.2ºC.<br />

Laboratory rearing<br />

The egg masses were placed<br />

in Petri dishes and left up to<br />

Figure 1. <strong>Chironomus</strong> calligraphus at larval instar IV. a: head capsule, ventral view, b: larva, lateral view.<br />

the moment when the first<br />

instar left the mucilaginous<br />

mass that served for its nutrition.<br />

The number of eggs per<br />

mass, and the width (µm) and<br />

length (µm) of each egg were<br />

measured under an optic microscope.<br />

After that period, the<br />

larvae were separated and<br />

cultured individually in 10<br />

plastic aquaria (12×21×6cm)<br />

with permanently oxygenated<br />

water (1 lit) at room<br />

temperature. The larvae were<br />

fed with a finely ground suspension<br />

of flaked fish food<br />

(TetraMin ® , Germany) every<br />

two days. Larvae were<br />

collected daily from each<br />

aquarium and the aquaria<br />

were kept covered to retain<br />

the adults at emergence. The<br />

air temperature of 22.5-31ºC<br />

held throughout the duration<br />

of the study.<br />

Life cycle and larval instars<br />

The collected larvae (Figure<br />

1) were fixed and conserved in<br />

70% alcohol. The larvae head<br />

capsule width (maximum ventral<br />

width of the cephalic capsule<br />

measured transversely to<br />

the major body axis) and the<br />

total body length (from the<br />

anterior margin of the cephalic<br />

capsule to the final portion<br />

of the last abdominal segment)<br />

were measured (µm) using an<br />

optic microscope with a micrometric<br />

scale. A population<br />

growth curve showing the relationship<br />

between total body<br />

length (µm) and time (days)<br />

was obtained. The larvae were<br />

separated into instars according<br />

to the relationship between<br />

head capsule width and total<br />

body length. In order to determine<br />

the growth rate between<br />

instars, the Dyar proportion<br />

(r; Dyar, 1890) was calculated<br />

considering its widespread application<br />

in arthropods (Strixino,<br />

1973).<br />

The time up to eclosion, the<br />

mean duration of each instar,<br />

the immature development<br />

time D (average time from<br />

egg deposition to adult emergence,<br />

when females were<br />

available; Danks, 2006), the<br />

minimum generation time G<br />

(mean interval from oviposition<br />

to the first progeny of the<br />

next generation; Danks, 2006)<br />

and the mean generation time<br />

(G) of the population by determining<br />

the lasting time of<br />

emergence, were recorded.<br />

The studied material was deposited<br />

at the Instituto de Limnología<br />

Dr. Raúl A. Ringuelet,<br />

La Plata, Argentina.<br />

Results and Discussion<br />

The eggs measured 317.7<br />

±20.0µm in length and 119.1<br />

±10.3µm in width. The range<br />

of variation in the number<br />

of eggs per mass (369-374)<br />

was lower than that registered<br />

for tropical C. xanthus (500-<br />

1045) by Trivinho-Strixino<br />

and Strixino (1982). In this<br />

sense, subtropical C. calligraphus<br />

could have improved its<br />

fitness by increasing the size<br />

of each egg rather than the<br />

number. The hatching period<br />

was of approximately 3 days.<br />

The larval instars were<br />

clearly separated when measuring<br />

the head capsule width<br />

to total body length relation<br />

(Figure 2). The data collected<br />

about mean head capsule<br />

width, total body length,<br />

growth rate and duration of<br />

the different larval instars of<br />

C. calligraphus is summarized<br />

in Table I. In the second<br />

instar the larvae showed a<br />

bottom exploratory behavior<br />

and constructed the tubes.<br />

They also started to develop<br />

the tubules of the eight segments.<br />

768 OCT 2008, VOL. 33 Nº 10


Figure 2. Relationship between head capsule width (µm) and total body<br />

length (µm) of <strong>Chironomus</strong> calligraphus larval instars I to IV.<br />

The r (Dyar) values obtained<br />

were almost constant<br />

(1.60 ±0.02) showing the accuracy<br />

of this method in the<br />

determination of C. calligraphus<br />

larval growth rate. This<br />

value was lower than that reported<br />

for C. xanthus (1.70<br />

±0.032) by Trivinho-Strixino<br />

and Strixino (1982). The possibility<br />

of using Dyar r values<br />

is important for benthos,<br />

as for those insects developing<br />

some immature stages<br />

on macrophytes, being less<br />

probable to find the first instar<br />

in the field, measures can be<br />

estimated trough the r value<br />

instead (Strixino, 1973).<br />

The regression model<br />

that best fitted for the relationship<br />

between total<br />

body length and time was<br />

y= 9536.6+(1177.8-9536.6)/<br />

(1+(x/6.8) 5.1 ) (R² = 0.987),<br />

showing that size increased<br />

continuously until reaching<br />

an asymptote near the 15 th<br />

day, remaining almost constant<br />

thereafter (Figure 3).<br />

C. calligraphus larvae incremented<br />

their size mostly in<br />

the earlier instars (I and II:<br />

120.8%; II and III: 109.0%)<br />

while a smaller increment<br />

(74.6%) took place between<br />

instars III and IV. The total<br />

growth (instars I-IV) represented<br />

an increment of<br />

706.2%.<br />

Instar I lasted 5 ±1.2 days,<br />

with 1-2 days developing inside<br />

the mucilaginous hatching<br />

mass. Instar II lasted 3<br />

±0.7 days and instar III, 6<br />

±2.6 days. Instar IV lasted 10<br />

±1.7 days, with approximately<br />

8 days corresponding to the<br />

transitional stage between larva<br />

and pupa (commonly called<br />

pre-pupa), probably due to the<br />

fact that the changes occurring<br />

in this metamorphosis step require<br />

a large amount of extra<br />

energy supply. The pupa stage<br />

lasted 10 ±2.4 days and each<br />

TABLE I<br />

MEAN (±SD) HEAD CAPSULE WIDTH, GROWTH RATE, TOTAL BODY LENGTH <strong>AND</strong><br />

DURATION <strong>OF</strong> LARVAL INSTARS <strong>OF</strong> <strong>Chironomus</strong> calligraphus<br />

Instars<br />

Head capsule<br />

width (µm)<br />

Growth rate<br />

(r)<br />

Total body<br />

length (µm)<br />

Duration<br />

(days)<br />

I 115.2 ±6.9 1.58 1109.3 ±193.4 5 ±1.2<br />

II 182.2 ±10.8 1.62 2449.1 ±701.4 3 ±0.7<br />

III 295.3 ±19.1 1.60 5121.1 ±750.7 6 ±2.6<br />

IV 472.8 ±30.9 1.60 8943.6 ±1672.7 10 ±1.7<br />

Figure 3. Relationship between total body length<br />

(µm) and time (days) of <strong>Chironomus</strong> calligraphus<br />

larval instars I to IV. The approximate average<br />

duration of instars is indicated.<br />

Figure 4. Overlap between <strong>Chironomus</strong> calligraphus instars. The additional<br />

life time of emerged adults is shown as a pointed line. E: egg;<br />

Ll-LIV: larval instars I to IV; P: pupa, A: adult. The pre-pupa stage<br />

is also indicated.<br />

pupa remained in the tube of<br />

the last larval instar (IV) for<br />

1 or 2 days after it swam to<br />

the surface, where the imago<br />

emerged in only a few minutes<br />

and lived without feeding<br />

for 2 or 3 days. The minimum<br />

immature development time<br />

(D) was of 15 days and the<br />

minimum time to complete<br />

a generation (G) was of 18<br />

days. Thus, as emergence took<br />

an average time of 10 days<br />

(with the highest emergences<br />

between the 18 th and 22 nd day),<br />

the average generation time<br />

(G) was of 23 (18-28) days.<br />

In the earlier stages overlapping<br />

was low, with a synchronization<br />

of larval instars<br />

(Figure 4). In the last days of<br />

the cycle an overlap was registered,<br />

when instar IV larvae<br />

(mostly as pre-pupa), pupae<br />

and adults coexisted. For C.<br />

xanthus, Trivinho-Strixino and<br />

Strixino (1982) pointed out<br />

that at high temperature (25°C<br />

constant temperature) the fast<br />

development of larvae tends to<br />

become synchronized, favoring<br />

a short emergence (3 days). In<br />

the present case, although the<br />

air temperature was in general<br />

>25°C, the overlap in the last<br />

immature stages favored long<br />

emergence duration.<br />

Many factors, such as phylogeny,<br />

resource availability,<br />

competence and interference<br />

phenomenon, temperature,<br />

habitat stability, etc. may determine<br />

and affect the development<br />

of insects (Jackson and<br />

Sweeney, 1995; Danks, 2006).<br />

The short duration of the life<br />

cycle insures a conspicuous<br />

population growth and increases<br />

insect fitness. The cycle<br />

is considered as short when<br />

it lasts


life cycle of C. calligraphus,<br />

its development is principally<br />

conditioned by temperature<br />

and life-cycle delays serve to<br />

adjust development so as to<br />

ensure seasonal coincidence<br />

(Danks, 2006).<br />

Therefore, subtropical C.<br />

calligraphus could be described<br />

as multivoltine, with<br />

several overlapped cohorts<br />

(at least four) of short duration<br />

at high temperatures<br />

(spring-summer) with high<br />

rates of development and an<br />

exponential population growth,<br />

followed by one or two generations<br />

of longer duration<br />

in winter, when it probably<br />

remains in a dormant stage.<br />

ACKNOWLEDGEMENTS<br />

This study was supported<br />

by a grant from Universidad<br />

Nacional del Litoral (UNL)<br />

and Consejo Nacional de Investigaciones<br />

Científicas y<br />

Técnicas (CONICET). The<br />

present paper is the Scientific<br />

Contribution N° 828 of the<br />

Instituto de Limnología “R.A.<br />

Ringuelet” (ILPLA) La Plata,<br />

Argentina.<br />

References<br />

Biever KD (1965) A rearing technique<br />

for the colonization of<br />

chironomid midges. Ann. Entomol.<br />

Soc. Am. 58: 135-136.<br />

Butler MG (1982) A 7-year life cycle<br />

of two <strong>Chironomus</strong> species<br />

in arctic Alaskan tundra ponds<br />

(Diptera: Chironomidae). Can.<br />

J. Zool. 60: 58-70.<br />

Corbi JJ, Trivinho-Strixino S<br />

(2006) Ciclo de vida de duas<br />

espécies de Goeldichironomus<br />

(Diptera, Chironomidae). Rev.<br />

Bras. Entomol. 50: 72-75.<br />

Danks HV (2006) Short life cycles<br />

in insects and mites. Can. Entomol.<br />

138: 407-463.<br />

Dyar HG (1890) The number of<br />

molts of Lepidopterus larvae.<br />

Psyche 5: 420-422.<br />

Fittkau EJ (1965) Revision der von<br />

E. Goeldi aus dem Amazonasgebiet<br />

beschriebenen Chironomiden<br />

(Diptera). Chironomidenstudien<br />

X. Beitr. Neotrop.<br />

Fauna 4: 209-226.<br />

Goeldi EA (1905) Os mosquitos no<br />

Pará. Mem. Mus. Para. Hist.<br />

Nat. Etnol. 4: 134-139.<br />

Iannacone JA, Alvariño L (1998)<br />

Acute ecotoxicity of the organophosphate<br />

insecticide temephos<br />

to <strong>Chironomus</strong> calligraphus<br />

Goeldi (Diptera: Chironomidae).<br />

Acta Entomol. Chil.<br />

22: 53-55.<br />

Iannacone JA, Dale WE (1999)<br />

Protocolo de bioensayo ecotoxicológico<br />

para evaluar metales<br />

pesados contaminantes de<br />

agua dulce con <strong>Chironomus</strong><br />

calligraphus (Diptera: Chironomidae)<br />

y Moina macrocopa<br />

(Crustacea: Cladocera), en el<br />

Río Rímac. Lima, Perú. Rev.<br />

Per. Entomol. 41: 111-120.<br />

Iannacone JA, Alvariño L, Gutiérrez<br />

A (1999) Cinco ensayos<br />

ecotoxicológicos para evaluar<br />

metales pesados en el agua<br />

dulce. Bol. Soc. Quím. Perú<br />

65: 30-45.<br />

Jackson JK, Sweeney BW (1995)<br />

Egg and larval development<br />

times for 35 species of tropical<br />

stream insects from Costa<br />

Rica. J. North. Am. Benthol.<br />

Soc. 14: 115-130.<br />

Marchese M, Paggi AC (2004) Diversidad<br />

de Oligochaeta (Annelida)<br />

y Chironomidae (Diptera)<br />

del Litoral fluvial argentino. In<br />

Aceñolaza FC (Ed.) Temas de<br />

la Biodiversidad del Litoral<br />

Fluvial Argentino. INSUGEO.<br />

Tucumán, Argentina. pp. 217-<br />

223.<br />

Masaferro J, Paggi AC, Rodrígues<br />

Capítulo A (1991) Estudio poblacional<br />

de los quironómidos<br />

(Insecta Diptera) de la laguna<br />

de Lobos, Provincia de Buenos<br />

Aires, Argentina. Graellsia 47:<br />

129-137.<br />

Paggi AC (1979) Dos nuevas especies<br />

del género Parachironomus<br />

Lenz (Diptera:<br />

Chironomidae) y nuevas citas<br />

de Quironómidos para la<br />

República Argentina. Physis<br />

38: 47-54.<br />

Paggi AC (1998) Chironomidae. In<br />

Morrone JJ, Coscarón S (Eds.)<br />

Biodiversidad de Artrópodos<br />

Argentinos. Una Perspectiva<br />

Biotaxonómica. Ediciones Sur.<br />

La Plata, Argentina. pp 327-<br />

337.<br />

Paggi AC (1999) Los Chironomidae<br />

como indicadores de calidad<br />

de ambientes dulceacuícolas.<br />

Rev. Soc. Entomol. Argent. 58:<br />

202-207.<br />

Pinder LCV (1983) The larvae of<br />

Chironomidae (Diptera) of the<br />

holartic region Introduction. In<br />

Wiederholm T (Ed.) Chironomidae<br />

of the Holartic Region:<br />

Keys and Diagnoses. Entomol.<br />

Scan. Supl. pp 7-10.<br />

Poi de Neiff A, Neiff JJ (2006)<br />

Riqueza de especies y similaridad<br />

de los invertebrados que<br />

viven en plantas flotantes de la<br />

planicie de inundación del río<br />

Paraná (Argentina). Interciencia<br />

31: 220-225.<br />

Roback SS (1962) Some new<br />

Tendypedidae from the Canal<br />

Zone. Not. Nat. 355: 1-10.<br />

Spies M (2000) Non-biting `nuisance´<br />

midges (Diptera, Chironomidae)<br />

in urban southern<br />

California, with notes on taxonomy,<br />

ecology and zoogeography.<br />

In Hoffrichter O (Ed.)<br />

Late 20 th Century Research<br />

on Chironomidae: an Anthology<br />

from 13 th International<br />

Symposium on Chironomidae.<br />

Aachen, Germany. pp.<br />

621-628.<br />

Spies M, Sublette JE, Sublette MF,<br />

Wülker WF, Martin J, Hille<br />

A, Miller MA, Witt K (2002)<br />

Pan-American <strong>Chironomus</strong> calligraphus<br />

Goeldi, 1905 (Diptera,<br />

Chironomidae): Species<br />

or complex? Evidence from<br />

external morphology, kariology<br />

and DNA sequencing. Aquat.<br />

Insects 24: 91-113.<br />

Strixino S (1973) A Largura da<br />

Cabeça na Determinação das<br />

Fases Larvais de Chironomidae<br />

na Represa do Lobo. Thesis.<br />

Universidade Federal de<br />

São Carlos. Brazil. 167 pp.<br />

Strixino G, Trivinho-Strixino S<br />

(1985) A temperatura e o desenvolvimento<br />

larval de <strong>Chironomus</strong><br />

sancticaroli (Diptera:<br />

Chironomidae). Rev. Bras.<br />

Zool. 3: 177-180.<br />

Trivinho-Strixino S, Strixino G<br />

(1982) Ciclo de vida de <strong>Chironomus</strong><br />

sancticaroli Strixino<br />

and Strixino, (Diptera, Chironomidae).<br />

Rev. Bras. Entomol.<br />

26: 183-189.<br />

Trivinho-Strixino S, Strixino G<br />

(1989) Observations on the<br />

reproductive biology of a Neotropical<br />

chironomid (Diptera,<br />

Chironomidae). Rev. Bras.<br />

Biol. 33: 207-216.<br />

Trivinho-Strixino S, Strixino G<br />

(1991) Estrutura da comunidade<br />

de insetos aquáticos associados<br />

à Pontederia lanceolata<br />

Nuttal. Rev. Bras. Biol.<br />

53: 103-111.<br />

Trivinho-Strixino S, Strixino G<br />

(1999) Insectos dípteros quironomídeos.<br />

In Ismael D, Valenti<br />

WC, Matsumura-Tundisi T,<br />

Rocha O (Eds.) Biodiversidade<br />

do Estado de São Paulo, Brasil.<br />

pp 141-148.<br />

Trivinho-Strixino S, Gessner FA,<br />

Correia L (1998) Macroinvertebrados<br />

associados a macrófitas<br />

aquáticas das lagõas marginais<br />

da Estação Ecológica de Jataí<br />

(Luiz Antônio. SP). Anais do<br />

VIII Seminário Regional de<br />

Ecologia 3: 1189-1198.<br />

770 OCT 2008, VOL. 33 Nº 10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!