28.06.2014 Views

Predicting downhole natural separation efficiency by a ... - SciELO

Predicting downhole natural separation efficiency by a ... - SciELO

Predicting downhole natural separation efficiency by a ... - SciELO

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 336 - 343, 2007<br />

<strong>Predicting</strong> <strong>downhole</strong> <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong><br />

<strong>by</strong> a correlation<br />

Richard Márquez and Mauricio Prado<br />

The University of Tulsa. Arizona, USA. rmarquez@luz.edu.ve; Mauricio-prado@utulsa.edu<br />

Phone: 0414-6137946 (Vzla); 001-918-6315163 (USA).<br />

Abstract<br />

Quantifying the <strong>downhole</strong> <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> will help to minimize the presence of free gas<br />

at pump intake and to avoid certain operational problems, such as: gas lock, surging, cavitation, over<br />

heat, among others, in systems of artificial lift <strong>by</strong> pumps. In the last few years, the University of Tulsa Artificial<br />

Lift Projects (TUALP) experimental facilities were used to obtain important experimental data on <strong>natural</strong><br />

<strong>separation</strong>. This data has allowed the development of simplified models such as Alhanati [1] and<br />

Serrano [9]. Even though previous models have been able to estimate the <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong>,<br />

both models never considered the effect of important variables as the slip velocity in the radial direction<br />

and the geometric characteristic of the bottomhole completion. This paper presents a new correlation obtained<br />

from TUALP experimental data. This work is different than previous simplified models since it considers<br />

the drag effect in the radial direction. This new model represents a simple and reliable tool, which<br />

allows a robust estimate of the <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> with a higher accuracy.<br />

Key words: Natural <strong>separation</strong>, free gas, slip velocity, artificial lift.<br />

Predicción de la eficiencia de separación <strong>natural</strong><br />

en fondo de pozo mediante una correlación<br />

Resumen<br />

Cuantificar la eficiencia de separación <strong>natural</strong> en el fondo del pozo permitiría minimizar la presencia<br />

de gas libre a la entrada de la bomba y evitar ciertos problemas operacionales, tales como: fluctuaciones<br />

de producción, cavitación, sobre calentamiento, entre otros, en sistemas de levantamiento artificial mediante<br />

bombas. En los últimos años, las facilidades experimentales del proyecto de levantamiento artificial<br />

de la Universidad de Tulsa (TUALP) han sido utilizadas para obtener importante data experimental sobre<br />

separación <strong>natural</strong>. Esta data ha permitido el desarrollo de modelos simplificados como de Alhanati<br />

[1] y Serrano [9]. Aun cuando estos modelos han permitido estimar la eficiencia de separación <strong>natural</strong>,<br />

ambos modelos nunca han considerado el efecto de importantes variables como la velocidad de deslizamiento<br />

en la dirección radial y las características geométricas de la completación del pozo. Este artículo<br />

presenta una nueva correlación obtenida de data del TUALP. Este trabajo es diferente de anteriores modelos<br />

simplificados ya que considera el efecto de arrastre en la dirección radial. Este nuevo modelo representa<br />

una simple y confiable herramienta, la cual permite estimar la eficiencia de separación <strong>natural</strong> con un<br />

alto grado de exactitud.<br />

Palabras clave: Separación <strong>natural</strong>, gas libre, velocidad de deslizamiento, levantamiento artificial.<br />

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 2007


<strong>Predicting</strong> <strong>downhole</strong> <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> <strong>by</strong> a correlation 337<br />

I. Introduction<br />

Since 1993, Tulsa University Artificial Lift<br />

Projects (TUALP) has been conducting important<br />

research in the area of <strong>natural</strong> <strong>separation</strong>. It has<br />

permitted gathering experimental data, using air<br />

and water, to develop, test, validate, and improve<br />

different correlations and models for estimating<br />

<strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong>. Based on the<br />

drift-flux model and assuming no slip velocity in<br />

the radial direction, in front of the pump intake,<br />

some simplified models have been developed at<br />

TUALP, such as: Alhanati’s [1] and Serrano’s [9]<br />

models. Although these models have captured<br />

the physics involved in the problem, results have<br />

shown that they do not work very well for all operational<br />

conditions. On the other hand, simplified<br />

models do not consider the effect of important<br />

variables, such as: gas flow rate, pressure, geometric<br />

characteristics of the bottomhole and drag<br />

force in the radial direction, which have shown to<br />

have a strong effect on the <strong>natural</strong> <strong>separation</strong><br />

process. A new assumption (the existence of the<br />

slip velocity in the radial direction) has allowed<br />

obtaining a new mathematical formulation for<br />

the problem. Available experimental data was<br />

used to develop a new correlation. Results obtained<br />

for the new simplified model show the<br />

strong effect that the drag force has on the <strong>separation</strong><br />

process. The new simplified model, with<br />

along the new correlation, represent an important<br />

change in the methodology used to predict<br />

<strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong>.<br />

II. General Formulation<br />

of the New Simplified Model<br />

A single control volume situated in front of<br />

the pump intake is showed in Figure 1. Three assumptions<br />

will be considered valid. The first<br />

states that: the gas void fraction g is considered<br />

uniform across to the annulus domain and holds<br />

constant up to the pump intake port. The second<br />

considers that the liquid column in the annulus<br />

in front and above the pump intake is not flowing<br />

in the vertical direction; it flows only in a radial<br />

direction towards the pump intake. The third<br />

considers the existence of slip velocity between<br />

gas and liquid phases at the vertical and radial<br />

direction.<br />

Casing Wall<br />

Assuming constant density, mass balance<br />

equation would allow establishing the following<br />

volumetric balance around the single control volume<br />

(as shown in Figure 2):<br />

Q<br />

i<br />

l<br />

i<br />

p<br />

l<br />

Q , (1)<br />

p<br />

Qg<br />

Qg<br />

Qgp, (2)<br />

i<br />

where Q l<br />

and Q p<br />

l<br />

represent the liquid flow rate<br />

coming from the annulus and liquid flow rate going<br />

inside the pump, respectively. Similarly, Q i g ,<br />

Q p<br />

gp<br />

and Q g are the gas flow rate coming from the<br />

annulus, gas flow rate going into the pump and<br />

the gas flow rate vented, respectively. On the<br />

other hand, <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> is defined<br />

as the ratio of the gas flow rate vented to the<br />

gas flow rate coming from the annulus, i.e.,<br />

Q g<br />

E i<br />

. (3)<br />

Q<br />

g<br />

Gas flow rate can also be expressed as a<br />

function of superficial velocity and flow area, i.e.,<br />

p<br />

p<br />

Qgp<br />

VrsgA<br />

i i<br />

Q V A<br />

g<br />

zsg<br />

where V p<br />

rsg<br />

p<br />

Ann<br />

Annulus Outlet<br />

g<br />

A Ann<br />

Annulus Inlet<br />

, (4)<br />

i<br />

and V zsg<br />

A p<br />

Pump Wall<br />

Shaft<br />

Pump Intake<br />

represent the superficial gas<br />

velocity going into the pump and the superficial<br />

gas velocity coming from the annulus, respectively.<br />

A p and A Ann<br />

are the area of the port and the<br />

r<br />

Figure 1. Single Cell Domain.<br />

Z<br />

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 2007


338 Márquez and Prado<br />

annulus, respectively. Combining Eqs. 1 to 4,<br />

<strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> would be given <strong>by</strong>:<br />

p<br />

V A <br />

rsg p<br />

E 1 <br />

i . (5)<br />

V A <br />

zsg<br />

Ann<br />

Q gv<br />

r<br />

Z<br />

Based on a single control volume, as shown<br />

in Figure 3, the following velocities field for gas<br />

and liquid phases, respectively, would be assumed<br />

valid in this work.<br />

g<br />

p<br />

Q l<br />

p<br />

Q gp<br />

V V ; V V<br />

, (6)<br />

zg<br />

i<br />

zg<br />

rg<br />

p<br />

rg<br />

p<br />

zl rl rl<br />

V 0 ; V V<br />

. (7)<br />

i<br />

Q g<br />

i<br />

Q l<br />

The slip velocity V s is defined as:<br />

Figure 2. Flow Rates Distribution around<br />

the Control Volume.<br />

Vs Vg Vl<br />

, (8)<br />

Z<br />

where V g and V l<br />

represent the average actual gas<br />

r<br />

and liquid velocity, respectively. In the radial direction,<br />

the slip velocity definition given <strong>by</strong> Eq. 8,<br />

allows to obtain the following equation:<br />

V __<br />

rl<br />

V __<br />

zg<br />

V __<br />

g<br />

rg<br />

p<br />

V<br />

p p rsg Vrsl<br />

Vrs Vrg Vrl Vrg<br />

Vrl<br />

, (9)<br />

( 1 )<br />

p<br />

g<br />

g<br />

V __<br />

rg<br />

where V p rg and V p rl<br />

represent the actual gas and<br />

liquid velocity, respectively, going into the pump.<br />

Combining Eqs. 1 and 9, the following equation<br />

for V p<br />

rsg can be written as:<br />

Liquid Phase Flow<br />

Gas Phase Flow<br />

Figure 3. Velocities Field into the Control<br />

Volume. Gas and Liquid Phase Flow.<br />

<br />

A <br />

V<br />

p<br />

g<br />

i Ann<br />

Vrsg<br />

Vrs g V<br />

rs and V zs , respectively. Using the drift-flux<br />

( 1 ) <br />

zsl<br />

g<br />

A <br />

. (10)<br />

1 <br />

model approach proposed <strong>by</strong> Ishii [5], the slip velocity<br />

V s at any direction can be related to the ter-<br />

<br />

p <br />

<br />

minal velocity of a particleV . This relationship is<br />

At the vertical direction, the slip velocity given <strong>by</strong>:<br />

definition given <strong>by</strong> Eq. 9 and the assumptions<br />

considered previously can be used to obtain the<br />

n1<br />

Vs<br />

V( 1 g)<br />

. (12)<br />

following equation:<br />

i<br />

n represents the effect due to the presence<br />

V<br />

i zsg<br />

Vzs<br />

Vzg<br />

. (11) of others bubbles and may be negligible under<br />

g<br />

churn flow regime. Since most of the available experimental<br />

data is mainly under this flow regime,<br />

The solution of Eqs. 10 and 11 depends on then n will be assumed equal to zero. Therefore,<br />

two additional unknown variables, i.e. the slip Eq. 12 allows rewrite Eqs. 10 and 11 as a function<br />

of the terminal velocity (V z and V r<br />

velocity in the radial and vertical direction, V rs ).<br />

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 2007


<strong>Predicting</strong> <strong>downhole</strong> <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> <strong>by</strong> a correlation 339<br />

<br />

p<br />

g<br />

i<br />

Vrsg<br />

Vr<br />

V<br />

<br />

<br />

1 g<br />

<br />

i<br />

zsl<br />

<br />

A<br />

<br />

A<br />

Ann<br />

p<br />

<br />

<br />

, (13)<br />

<br />

<br />

g<br />

Vzsg<br />

1 <br />

. (14)<br />

g V <br />

z<br />

Combining Eqs. 13 and 14 and replacing<br />

into Eq. 5, <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> would be<br />

finally given <strong>by</strong>:<br />

Velocity at vertical direction V z can be determined<br />

<strong>by</strong> using the Ishii’s model. According to<br />

Ishii [6], V z for bubbly and slug/churn flow regime<br />

is given <strong>by</strong>:<br />

V<br />

z <br />

(<br />

l<br />

g<br />

) g <br />

<br />

<br />

<br />

2<br />

2<br />

l<br />

1/<br />

4<br />

. (16)<br />

Therefore, the only unknown variable is the<br />

parameter called X, defined from Eq. 15 as:<br />

V A<br />

i<br />

r p Vzsl<br />

E <br />

<br />

<br />

<br />

1 <br />

<br />

. (15)<br />

<br />

V <br />

A V <br />

z<br />

Ann<br />

z<br />

X<br />

V<br />

<br />

V<br />

r<br />

z<br />

A<br />

<br />

<br />

<br />

<br />

A<br />

p<br />

Ann<br />

<br />

E<br />

V i<br />

<br />

<br />

zsl<br />

1 <br />

. (17)<br />

V <br />

z<br />

Eq. 15 depends on superficial liquid velocity<br />

V zsl<br />

i<br />

, geometric configuration of the bottomhole<br />

Ap<br />

/ AAnn, and the terminal velocity ratio<br />

Vr<br />

/ Vz. Terminal velocity at vertical direction<br />

V z can be estimated from models such as<br />

Harmathy [3], Wallis [10], Ishii and Zuber [6],<br />

among others. The geometric characteristics of<br />

the bottomhole can also be easily determined.<br />

The problem is how to estimate the terminal velocity<br />

in the radial direction V r . In this paper, a<br />

correlation will be showed as a solution for V r .<br />

III. New Correlation<br />

According to Eq. 15, <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong><br />

E and superficial liquid velocity coming<br />

i<br />

from the annulus V zsl<br />

are two known variables,<br />

because experimental data, gathered at TUALP<br />

since 1993, is available for this work. Terminal<br />

The available experimental data for <strong>natural</strong><br />

<strong>separation</strong> <strong>efficiency</strong> allowed plotting a graph of<br />

i<br />

X vs. Vzsl<br />

/ Vz , as shown in Figure 4. According<br />

to Figure 4, for low liquid flow rates the slip effect<br />

in the radial direction can be negligible. Therefore,<br />

the assumption of no slip velocity in the radial<br />

direction, considered <strong>by</strong> Alhanati, would result<br />

valid. However, for higher liquid flow rates<br />

this assumption cannot be considered anymore.<br />

Serrano corroborated this fact later when extended<br />

Alhanati’s model <strong>by</strong> gathering extra experimental<br />

data for higher liquid and gas flow<br />

rates. Alhanati’s model failed to match the data<br />

taken <strong>by</strong> Serrano. Consequently, Serrano tried<br />

to obtain a better model <strong>by</strong> developing an empirical<br />

correlation to predicting the local gas void<br />

fraction for the region in front of the pump inlet<br />

ports, assuming no slip velocity in the radial direction.<br />

2<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10<br />

-2<br />

X Parameter<br />

-4<br />

-6<br />

-8<br />

-10<br />

V zsl/V zoo<br />

EXP. DATA - ALHANATI EXP. DATA - SAMBANGI EXP. DATA - SERRANO<br />

Figure 4. X Parameter.<br />

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 2007


340 Márquez and Prado<br />

The new model proposed assumes the existence<br />

of the slip velocity in the radial direction<br />

and its effect could be considered <strong>by</strong> developing a<br />

correlation from Figure 4. Using a nonlinear regression<br />

model, the following correlation for X parameter<br />

was found.<br />

<br />

<br />

ab c <br />

<br />

V V<br />

X 11<br />

<br />

i<br />

V<br />

b <br />

<br />

<br />

Vz<br />

i<br />

zsl<br />

z<br />

d<br />

zsl<br />

<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

272<br />

V<br />

<br />

V<br />

i<br />

zsl<br />

z<br />

<br />

<br />

272<br />

1/ 272<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

,<br />

(18)<br />

where the coefficients a,b,c and d are given <strong>by</strong>:<br />

Finally, <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> may<br />

be calculated <strong>by</strong>:<br />

<br />

ab c V i<br />

d<br />

<br />

zsl<br />

<br />

<br />

<br />

<br />

Vz<br />

<br />

E <br />

<br />

<br />

<br />

1<br />

<br />

i<br />

d<br />

Vzsl<br />

b <br />

<br />

<br />

<br />

<br />

<br />

<br />

V<br />

<br />

<br />

z<br />

<br />

.<br />

272<br />

V<br />

<br />

V<br />

i<br />

zsl<br />

z<br />

<br />

<br />

272<br />

1/<br />

272<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

V<br />

<br />

V<br />

i<br />

zsl<br />

z<br />

(19)<br />

A graph of New Model Predicted Efficiency<br />

vs. Measured Efficiency from TUALP data bank is<br />

shown in Figure 5.<br />

IV. Results and Discussions<br />

Model Comparisons<br />

<br />

<br />

<br />

The evaluation of this study was based on<br />

statistical parameters given <strong>by</strong> average percentage<br />

error E1, absolute average percentage error<br />

E2 and the standard deviation E3.<br />

N<br />

1<br />

E1<br />

<br />

e N ri 100, (20)<br />

<br />

i1<br />

N<br />

1<br />

E2<br />

<br />

e N ri 100, (21)<br />

<br />

E3<br />

<br />

i1<br />

N<br />

2<br />

1 E1<br />

<br />

eri<br />

<br />

100<br />

N 1i<br />

1<br />

100<br />

, (22)<br />

<br />

<br />

where N represents the number of data points.<br />

On the other hand, the error e ri is given <strong>by</strong>:<br />

e<br />

ri<br />

E<br />

<br />

E<br />

E<br />

cal , i meas,<br />

i<br />

meas,<br />

i<br />

. (23)<br />

The performance of the new simplified<br />

model proposed in this paper was compared with<br />

others simplified models, such as: Alhanati and<br />

Serrano. Results have been divided in two categories,<br />

as follow: For low gas void fraction, it was<br />

found a 14.41% of average error in the prediction<br />

of <strong>natural</strong> <strong>separation</strong> <strong>by</strong> using the new correlation.<br />

For high gas void fraction, the error is much<br />

lower compared with the others simplified models.<br />

The overall performance of Alhanati’s model<br />

represents a 25.64% against of 17.43% of the<br />

new simplified model proposed.<br />

Drag Effect<br />

1.00<br />

0.90<br />

0.80<br />

Predicted Efficiency<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00<br />

Measured Efficiency<br />

EXP. DATA - ALHANATI EXP. DATA - SAMBANGI EXP. DATA - SERRANO<br />

Figure 5. Predicted vs. Measured Natural Separation Efficiency. New Correlation.<br />

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 2007


<strong>Predicting</strong> <strong>downhole</strong> <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> <strong>by</strong> a correlation 341<br />

According to Figure 4, the slip in the radial<br />

direction can be negligible for low liquid flow<br />

rates. However, this assumption cannot be considered<br />

anymore for high liquid flow rates. The<br />

new correlation takes in account that effect, so<br />

predictions on <strong>natural</strong> <strong>separation</strong> will able to be<br />

estimated with higher accuracy, as a shown in<br />

Figure 5.<br />

Effect of Viscosity<br />

Unfortunately, the model proposed for V z<br />

does not allow considering the bubble size and<br />

viscosity effect. However, other formulations for<br />

C d<br />

would be able to be used instead of recommended<br />

<strong>by</strong> Harmathy [3]. For example, if the following<br />

correlation is considered forC d<br />

(Stoke flow<br />

condition),<br />

C d<br />

24<br />

Re , (24)<br />

p<br />

where, the particle Reynolds number Re p is defined<br />

as:<br />

2r V<br />

<br />

. (25)<br />

d s l<br />

Re p <br />

l<br />

The terminal velocity in the vertical direction<br />

V z would be given <strong>by</strong>:<br />

V<br />

z <br />

2<br />

de<br />

l<br />

2 r<br />

9 <br />

( ) g. (26)<br />

l<br />

g<br />

As a consequence, the Eq. 26 would be able<br />

to be used in order to consider the viscosity and<br />

the bubble size effect in the prediction of <strong>natural</strong><br />

<strong>separation</strong> <strong>efficiency</strong>. However, one additional<br />

closure relationship for the drag radius r d<br />

would<br />

be required in this case.<br />

Effect of Geometry<br />

The model was used to predict <strong>natural</strong> <strong>separation</strong><br />

<strong>efficiency</strong> for a 4 in. pump diameter inside<br />

5, 7 and 10 in. casings. According to<br />

Figure 6, <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> increases<br />

as the annulus area increases.<br />

Effect of Gas<br />

Lea and Bearden [7] conducted tests with<br />

500 series equipment inside a 7” casing, with air<br />

and water as experimental fluids at low pressures<br />

(25 to 30 Psig). According to their results,<br />

<strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> increases as the<br />

in-situ-free gas increases. Alhanati and<br />

Sambangi also reported the same observation.<br />

Unfortunately, the new correlation is not sensible<br />

to the gas flow rate. It does not appear to have any<br />

effect in the prediction of <strong>natural</strong> <strong>separation</strong>.<br />

Effect of Pressure<br />

Experiments have captured the effect of<br />

that variable in the <strong>separation</strong> process. However,<br />

the new simplified model, with along the new correlation,<br />

does not incorporate the effect of that<br />

variable in the prediction of <strong>natural</strong> <strong>separation</strong>.<br />

The only possible effect is through the fluid physical<br />

property calculation given <strong>by</strong> Eq. 16. The new<br />

Efficiency<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0 500 1000 1500 2000 2500 3000 3500 4000 4500<br />

Liquid Flow Rate (BPD)<br />

Dc=5in Dc=7in Dc=10in<br />

Dp = 4 in<br />

Figure 6. Effect of Geometry on Natural Separation Efficiency.<br />

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 2007


342 Márquez and Prado<br />

simplified model developed should be improved<br />

to better incorporate the pressure effects observed<br />

in the experimental data.<br />

V. Conclusions and<br />

Recommendations<br />

This new model considers the effect of slip<br />

velocity in the radial direction, a variable neglected<br />

in previous simplified models. In addition,<br />

this variable is considered through a new<br />

and reliable correlation obtained from available<br />

experimental data at TUALP.<br />

Results obtained in this work show the<br />

strong effect that slip velocity has in the prediction<br />

of <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong>, not only in<br />

the vertical direction, but also in the radial direction,<br />

especially for high liquid flow rates.<br />

The new model presented in this work need<br />

to be improved. Variables such as gas void fraction<br />

and gas flow rate must be considered in the<br />

prediction of <strong>natural</strong> <strong>separation</strong>, because experimental<br />

results have shown have theirs effect on<br />

the <strong>separation</strong> process.<br />

Additional real experimental data is required<br />

to further verify the results obtained <strong>by</strong><br />

using this new correlation. In addition, the viscosity<br />

effect could be considered and analyzed.<br />

A =<br />

D =<br />

E =<br />

Q =<br />

V =<br />

Area, in.<br />

Subscripts<br />

VI. Nomenclature<br />

Diameter, in.<br />

Natural Separation Efficiency<br />

Flow Rate, BD<br />

Velocity, ft/sec<br />

Ann= Annulus<br />

c = Casing<br />

g = Gas<br />

i = Inlet<br />

l = Liquid<br />

p = Port, Pump<br />

t = Tubing<br />

s = Slip, Superficial<br />

r, z = Direction<br />

VII. Acknowledgements<br />

Authors wish to thank Eni-Agip, Centrilift,<br />

Pemex, Pdvsa-Intevep, Ongc, Schlumberger,<br />

Shell and Totalfinalelf for supporting this study.<br />

References<br />

1. Alhanati, F.J.S.: “Bottomhole Gas Separation<br />

Efficiency in Electrical Submersible<br />

Pump Installation”, Dissertation. The University<br />

of Tulsa, 1993.<br />

2. Ghauri, W.K.: “Production Technology Experience<br />

in a Large Carbonate Water-Flood,<br />

Denver Unit, Wasson San Andres Field, West<br />

Texas”, paper SPE 8406 presented at the<br />

1979 SPE Annual Technical Conference and<br />

Exhibition, Las Vegas, NV, Sep. 23-26.<br />

3. Harmathy, T.Z.: Velocity of Large Drops and<br />

Bubbles in Media of Infinite or Restricted Extent,<br />

AIChE, 6, 281(1960).<br />

4. Harun, A.F., Prado, M.G., Serrano, J.C. and<br />

Doty, D.R.: “A Simple Model to Predict Natural<br />

Gas Separation Efficiency in Pumped<br />

Wells”, paper SPE 63045 presented at the<br />

2000 SPE Annual Technical Conference and<br />

Exhibition held in Dallas, Texas, 1-4 October<br />

2000.<br />

5. Ishii, M.: “Thermo Fluid Dynamic Theory of<br />

Two Phase Flow”, Eyrolles, Paris, 1975.<br />

6. Ishii, M. and Zuber, N.: “Drag Coefficient and<br />

Relative Velocity in Bubbly, Droplet or Particulate<br />

Fluids”, AIChE Journal (September<br />

1979) 25, No. 5, 843-855.<br />

7. Lea, J.F. “Effect of Gaseous Fluids on Submersible<br />

Pump Performance”, paper SPE<br />

9218 presented at the 1980 SPE Annual<br />

Technique Conference and Exhibition, Dallas,<br />

TX. (Sep. 21-24).<br />

8. Marquez, R., “Classification of the experimental<br />

<strong>natural</strong> <strong>separation</strong> data according to<br />

flow pattern regime”. Technical Report. The<br />

University of Tulsa, Tulsa, Ok. (2002).<br />

9. Serrano, J.C.: “Natural Separa Ishii, M.:<br />

“Thermo Fluid Dynamic Theory of Two Phase<br />

Flow”, Eyrolles, Paris, 1975.tion Efficiency in<br />

Electric Submersible Pump Systems”, Dissertation.<br />

The University of Tulsa, 1999.<br />

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 2007


<strong>Predicting</strong> <strong>downhole</strong> <strong>natural</strong> <strong>separation</strong> <strong>efficiency</strong> <strong>by</strong> a correlation 343<br />

10. Wallis, G.B.: “The Terminal Speed of Single<br />

Drops or Bubbles in an Infinite Medium”, International<br />

Journal of Multiphase Flow<br />

(1974) 1, 491-511.<br />

11. Zuber, N.: “On the Dispersed Two-Phase<br />

Flow in the Laminar Flow Regime”, Chem.<br />

Eng. Sci., 19, 897 (1964).<br />

Recibido el 30 de Junio de 2006<br />

En forma revisada el 30 de Julio de 2007<br />

Rev. Téc. Ing. Univ. Zulia. Vol. 30, Edición Especial, 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!