28.06.2014 Views

Effect of salinity on growth and chemical composition of the ... - SciELO

Effect of salinity on growth and chemical composition of the ... - SciELO

Effect of salinity on growth and chemical composition of the ... - SciELO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lat. Am. J. Aquat. Res., 40(2): 435-440, 2012<br />

DOI: 10.3856/vol40-issue2-fulltext-18<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>on</strong> Thalassiosira weissflogii 435<br />

Research Article<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>on</strong> <strong>growth</strong> <strong>and</strong> <strong>chemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diatom<br />

Thalassiosira weissflogii at three culture phases<br />

Norma García 1 , José Ant<strong>on</strong>io López-Elías 1 , Anselmo Mir<strong>and</strong>a 2 ,<br />

Marcel Martínez-Porchas 3 Nolberta Huerta 1 & Ant<strong>on</strong>io García 3<br />

1 Departamento de Investigaci<strong>on</strong>es Científicas y Tecnológicas, Universidad de S<strong>on</strong>ora<br />

Blvd. Luis D<strong>on</strong>aldo Colosio, Hermosillo, S<strong>on</strong>ora, 83000, México<br />

2 Centro de Estudios Superiores del Estado de S<strong>on</strong>ora, Carretera a Huatabampo<br />

y Periférico Sur Navojoa, S<strong>on</strong>ora, 85800, México<br />

3 Centro de Investigación en Alimentación y Desarrollo, La Victoria, Hermosillo<br />

S<strong>on</strong>ora, 83304, México<br />

ABSTRACT. The estuarine diatom Thalassiosira weissflogii (Fryxell & Hasle, 1977) has been widely used as<br />

live feed in aquaculture. The <strong>growth</strong> rate <strong>and</strong> bio<strong>chemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae are highly influenced by<br />

envir<strong>on</strong>mental factors such as, light, <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>and</strong> nutrient availability. Salinity is difficult to c<strong>on</strong>trol in some<br />

shrimp laboratories specialized in larvae producti<strong>on</strong>, because <strong>the</strong>se laboratories depend up<strong>on</strong> <strong>the</strong> levels<br />

measured in estuaries or coastal lago<strong>on</strong>s, which are <strong>the</strong> water sources for larvae culture. The present study<br />

evaluated <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different salinities (25, 30, 35, 40, 45 <strong>and</strong> 50 psu), <strong>on</strong> <strong>the</strong> <strong>growth</strong> <strong>and</strong> <strong>chemical</strong><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T. weisflogii at three culture phases, under laboratory c<strong>on</strong>diti<strong>on</strong>s. The highest <strong>growth</strong> rate <strong>and</strong><br />

maximum cell density were found at 25 psu. Decrease in size <strong>and</strong> striking changes in morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cells<br />

were observed at <strong>the</strong> higher salinities <strong>and</strong> drastic changes occurred at 50 psu. Protein <strong>and</strong> carbohydrate c<strong>on</strong>tent<br />

were higher at low salinities (25 <strong>and</strong> 30 psu) during <strong>the</strong> stati<strong>on</strong>ary phase. The lipid producti<strong>on</strong> was higher at<br />

low salinities, but diminished as <strong>the</strong> phase changes occurred; in c<strong>on</strong>trast, <strong>the</strong> lipid c<strong>on</strong>tent was unaffected by<br />

<strong>the</strong> <strong>growth</strong> phase at higher salinities (≥35 psu). The higher <strong>growth</strong> rate <strong>and</strong> better bio<strong>chemical</strong> compositi<strong>on</strong><br />

were obtained at 25 <strong>and</strong> 30 psu.<br />

Keywords: estuarine diatom, microalgae culture, proximate compositi<strong>on</strong>.<br />

Efecto de la salinidad en el crecimiento y composición química de la diatomea<br />

Thalassiosira weissflogii en tres fases de cultivo<br />

RESUMEN. La diatomea estuarina Thalassiosira weissflogii (Fryxell & Hasle, 1977) ha sido utilizada como<br />

alimento vivo en acuacultura. La composición bioquímica del alimento vivo afecta la nutrición de los<br />

organismos durante su cultivo. La tasa de crecimiento y composición bioquímica de las microalgas están<br />

altamente influenciadas por factores ambientales como luz, salinidad y disp<strong>on</strong>ibilidad de nutrientes. En<br />

algunos laboratorios productores de larvas de camarón, es difícil c<strong>on</strong>trolar la salinidad, debido a que éstos<br />

dependen de los niveles presentes en estuarios o lagunas costeras, los cuales s<strong>on</strong> la fuente de agua para el<br />

cultivo larvario. El presente estudio evaluó el efecto de diferentes salinidades (25, 30, 35, 40, 45 y 50 psu),<br />

sobre el crecimiento y la composición proximal de T. weissflogii en tres fases de cultivo, bajo c<strong>on</strong>dici<strong>on</strong>es de<br />

laboratorio. Las mayores tasas de crecimiento y la máxima densidad celular se obtuvier<strong>on</strong> a 25 psu. Se<br />

observó una reducción en tamaño y cambios en la morfología de las células a altas salinidades y los cambios<br />

drásticos ocurrier<strong>on</strong> a 50 psu. El c<strong>on</strong>tenido de proteínas y de carbohidratos fue más elevado a salinidades bajas<br />

(25 y 30 psu), durante la fase estaci<strong>on</strong>aria de crecimiento. La producción de lípidos fue elevada a bajas<br />

salinidades y disminuyó a medida que cambiaba de fase; no se observó un efecto de las fases del cultivo sobre<br />

el c<strong>on</strong>tenido de lípidos en altas salinidades (≥35 psu). La mayor tasa de crecimiento y la mejor composición<br />

bioquímica se obtuvier<strong>on</strong> 25 y 30 psu.<br />

Palabras clave: diatomea marina, cultivo de microalgas, composición proximal.<br />

___________________<br />

Corresp<strong>on</strong>ding author: José Ant<strong>on</strong>io López-Elías (jalopez@guayacan.us<strong>on</strong>.mx)


436<br />

Latin American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Research<br />

INTRODUCTION<br />

day), late exp<strong>on</strong>ential (5 th day) <strong>and</strong> stati<strong>on</strong>ary (7 th<br />

were made at three <strong>growth</strong> phases: exp<strong>on</strong>ential (3 rd bio<strong>chemical</strong> compositi<strong>on</strong>.<br />

day).<br />

Microalgae are <strong>the</strong> major food source for many The culture media used was f/2 (Guillard, 1975).<br />

aquatic organisms <strong>and</strong> <strong>the</strong> main live feed used in The <str<strong>on</strong>g>salinity</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s used were 25, 30, 35, 40,<br />

marine hatchery operati<strong>on</strong>s. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae 45 <strong>and</strong> 50 psu). Each treatment was performed by<br />

as food source depends <strong>on</strong> some characteristics such triplicate. Room temperature was maintained at 20 ±<br />

as cell size <strong>and</strong> bio<strong>chemical</strong> compositi<strong>on</strong> (Becker, 1°C with c<strong>on</strong>tinuous light at an irradiance <str<strong>on</strong>g>of</str<strong>on</strong>g> 500<br />

2004). In particular, <strong>the</strong> diatom Thalassiosira mmol m -2 s -1 (Extech instrument). The pH was<br />

weissflogii (Fryxell & Hasle, 1977) has been widely measured daily with a pHmeter (pHep, Hanna<br />

used as live feed in aquaculture; however informati<strong>on</strong> Instruments).<br />

related to its <strong>chemical</strong> compositi<strong>on</strong> is still scarce (Li,<br />

1979; Emmers<strong>on</strong>, 1980; Fistarol et al., 2005).<br />

Cell counts were performed daily, by triplicate,<br />

with a Neubauer chamber (0.1 mm depth) to<br />

Envir<strong>on</strong>mental factors have been reported to<br />

determine <strong>the</strong> maximum cell density <strong>and</strong> specific<br />

influence <strong>the</strong> <strong>chemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae. For<br />

<strong>growth</strong> rate (µ) day -1 , which was calculated by linear<br />

instance, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> light, nutrients, temperature, pH<br />

regressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> log2 <str<strong>on</strong>g>of</str<strong>on</strong>g> cell c<strong>on</strong>centrati<strong>on</strong> (B) <strong>on</strong><br />

<strong>and</strong> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> has been well documented (Richm<strong>on</strong>d<br />

time (t) at <strong>the</strong> exp<strong>on</strong>ential <strong>growth</strong> phase: µ = (Log<br />

1986; Henley et al., 2002). In additi<strong>on</strong>, <strong>the</strong> <strong>growth</strong><br />

2 B n -<br />

Log<br />

phase has been reported as an intrinsic factor<br />

2 B o )/(t n -t o ). The cell volume was calculated like<br />

cylinder volume using <strong>the</strong> cell diameters (width) <strong>and</strong><br />

influencing <strong>the</strong> <strong>growth</strong> rate <strong>and</strong> bio<strong>chemical</strong><br />

lengths cell as reported by Roubeix & Lancelot<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae (Renaud et al., 2002).<br />

(2008).<br />

Additi<strong>on</strong>ally, <str<strong>on</strong>g>salinity</str<strong>on</strong>g> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> most important<br />

factors affecting <strong>the</strong> <strong>growth</strong> <strong>and</strong> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> plants For biomass determinati<strong>on</strong> (dry weight), 100 mL<br />

<strong>and</strong> algae (Parida & Das, 2005). Salinity affects <str<strong>on</strong>g>of</str<strong>on</strong>g> culture samples (n = 6) were filtered through preweighted<br />

47 mm membrane filters (Whatman).<br />

<strong>growth</strong> <strong>and</strong> <strong>chemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T. weissflogii<br />

(Vrieling et al., 2007); <strong>the</strong>refore, c<strong>on</strong>sidering that Filtered cells were washed with 25 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium<br />

mass cultures are performed outdoor at different ages formiate (3%), to remove salt precipitates, <strong>and</strong> dried at<br />

<strong>and</strong> salinities (Becerra-Dorame et al., 2010), it is 60°C for 8 h to achieve a c<strong>on</strong>stant weight in a<br />

important to evaluate <strong>the</strong> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both c<strong>on</strong>vecti<strong>on</strong> stove. Afterwards, samples were burned in<br />

variables. Informati<strong>on</strong> related to <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> a muffle furnace at 480°C for 12 h <strong>and</strong> weighted in an<br />

<strong>on</strong> <strong>the</strong> <strong>growth</strong> <strong>and</strong> <strong>chemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T. analytical balance to obtain <strong>the</strong> mineral fracti<strong>on</strong><br />

weissflogii is not yet available. Thus, it is important to (ashes).<br />

know <strong>the</strong> optimal <str<strong>on</strong>g>salinity</str<strong>on</strong>g> at which T. weissflogii has During <strong>the</strong> exp<strong>on</strong>ential, late exp<strong>on</strong>ential <strong>and</strong><br />

to be cultured for aquacultural purposes.<br />

stati<strong>on</strong>ary <strong>growth</strong> phases, 70 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> culture samples (n<br />

In additi<strong>on</strong>, some shrimp <strong>and</strong> mollusks nurseries<br />

use estuaries <strong>and</strong> coastal lago<strong>on</strong>s as water sources, but<br />

<strong>the</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> or precipitati<strong>on</strong> modify<br />

= 6) were filtered through pre-weighed 47 mm<br />

membrane filters (Whatman) for lipid analysis <strong>and</strong> 15<br />

mL were filtered through 25 mm membrane filters<br />

<strong>the</strong> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se water-bodies; as (Whatman) for protein <strong>and</strong> carbohydrate analyses.<br />

c<strong>on</strong>sequence, this phenomen<strong>on</strong> could affect <strong>the</strong> quality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae used as source <str<strong>on</strong>g>of</str<strong>on</strong>g> food in aquaculture.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to determine <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different salinities <strong>on</strong> <strong>the</strong> <strong>growth</strong> <strong>and</strong> <strong>chemical</strong><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> marine diatom T. weissflogii at<br />

three different phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>growth</strong> in batch cultures.<br />

Filtered cells were washed with 25 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium<br />

formiate (3%), to remove salt precipitates. The filters<br />

with algae samples were stored at -20ºC for posterior<br />

<strong>chemical</strong> analysis. Total lipid c<strong>on</strong>tent was extracted<br />

according to Bligh & Dyer (1959), <strong>and</strong> quantificati<strong>on</strong>s<br />

were made following <strong>the</strong> methodology described by<br />

Nieves et al. (2009). Total protein c<strong>on</strong>tent was<br />

MATERIALS AND METHODS<br />

determined by method described by Lopez-Elías et al.,<br />

(2005), <strong>and</strong> carbohydrates were determined according<br />

Strains <str<strong>on</strong>g>of</str<strong>on</strong>g> Thalassiosira weissflogii used in this study<br />

were obtained from <strong>the</strong> algal stock collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific <strong>and</strong> Technological Research<br />

(DICTUS), México, <strong>and</strong> maintained under laboratory<br />

c<strong>on</strong>diti<strong>on</strong>s. The microalgae were cultured under<br />

laboratory c<strong>on</strong>diti<strong>on</strong>s using 500 mL flasks. The<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>growth</strong> <strong>and</strong> proximate compositi<strong>on</strong><br />

to Sánchez-Saavedra & Voltolina (2006).<br />

Statistical analysis included <strong>on</strong>e-way analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variance (ANOVA) with significance level <str<strong>on</strong>g>of</str<strong>on</strong>g> α = 0.05<br />

(Zar, 1996), for maximum cell density, specific<br />

<strong>growth</strong> rate <strong>and</strong> cell volume, <strong>and</strong> two-way analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variance, with significance level α = 0.05, <strong>and</strong> Duncan<br />

multiple comparis<strong>on</strong> tests for biomass <strong>and</strong> cell


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>on</strong> Thalassiosira weissflogii 437<br />

RESULTS<br />

The maximum cell densities were observed between<br />

25-35 psu (Fig. 1). The maximum cell density (44 10 4<br />

cells mL -1 ) was obtained at 35 psu, followed by 25 <strong>and</strong><br />

30 psu with 43 <strong>and</strong> 42 x 10 4 cells mL -1 respectively. In<br />

cultures exposed to higher salinities (40, 45 <strong>and</strong> 50<br />

psu) <strong>the</strong> cell density decreased significantly (P <<br />

0.001; 35 psu, are used as feed for shrimp larvae,<br />

due to <strong>the</strong> lower c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter <strong>and</strong><br />

inadequate pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> macr<strong>on</strong>utrients.<br />

The protein c<strong>on</strong>centrati<strong>on</strong>s obtained in this<br />

experiment at 25 psu were equal to Kiatmetha et al.<br />

(2010), who reported a maximum protein value <str<strong>on</strong>g>of</str<strong>on</strong>g> 326<br />

mg g -1 DW at 25 psu in mass cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diatom T.<br />

weissflogii. The carbohydrate c<strong>on</strong>centrati<strong>on</strong> was<br />

significantly affected by <str<strong>on</strong>g>salinity</str<strong>on</strong>g>, <strong>the</strong> maximum<br />

c<strong>on</strong>centrati<strong>on</strong>s were detected in late exp<strong>on</strong>ential <strong>and</strong><br />

stati<strong>on</strong>ary phases with 25 <strong>and</strong> 30 psu; <strong>the</strong>se results are<br />

c<strong>on</strong>sistent with Raghavan et al. (2008). Regarding to<br />

<strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g>, it was observed that <strong>the</strong> lipid<br />

c<strong>on</strong>tents decreased as <str<strong>on</strong>g>salinity</str<strong>on</strong>g> increased.


438<br />

Latin American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Research<br />

Table 1. Means <strong>and</strong> st<strong>and</strong>ard deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum cellular density, specific <strong>growth</strong> rate <strong>and</strong> cell volume at different<br />

salinities. Different letters show indicate significant differences (α = 0.05).<br />

Tabla 1. Medias y desviaci<strong>on</strong>es estándar de la máxima densidad celular, tasa de crecimiento específico y volumen celular<br />

a diferentes salinidades. Letras diferentes indican diferencias significativas (α = 0,05).<br />

Salinity (psu)<br />

Maximum cellular<br />

density (x10 4 mL -1 )<br />

Specific <strong>growth</strong><br />

rate (µ) day -1<br />

Cell volume<br />

(mµ 3 )<br />

25 43 ± 0.5 ab 1.24 ± 0.025 a 1594.3 ± 145.1 a<br />

30 42 ± 1.2 b 1.12 ± 0.023 b 1489.0 ± 151.6 a<br />

35 44 ± 1.2 a 1.16 ± 0.039 b 1401.4 ± 57.2 a<br />

40 40 ± 0.9 c 0.99 ± 0.030 c 1013.9 ± 145.0 b<br />

45 37 ± 0.6 d 0.82 ± 0.038 d 700.0 ± 14.8 c<br />

50 35 ± 1.0 e 0.81 ± 0.007 d 563.7 ± 29.9 c<br />

Table 2. Mean <strong>and</strong> st<strong>and</strong>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass producti<strong>on</strong> in dry basis, organic matter <strong>and</strong> ash in cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> T.<br />

weissflogii at six different salinities during three <strong>growth</strong> phases (exp<strong>on</strong>ential, late exp<strong>on</strong>ential <strong>and</strong> stati<strong>on</strong>ary).<br />

Tabla 2. Promedio y desviación estándar de la producción de biomasa en base a peso seco, materia orgánica y cenizas en<br />

cultivos de T. weissflogii, en seis diferentes salinidades durante tres fases de crecimiento (exp<strong>on</strong>encial = exp., lento<br />

crecimiento = lento crec. y estaci<strong>on</strong>aria = estac.).<br />

Salinity<br />

(psu)<br />

Growth<br />

phase<br />

25 Exp<strong>on</strong>ential<br />

30 Exp<strong>on</strong>ential<br />

35 Exp<strong>on</strong>ential<br />

40 Exp<strong>on</strong>ential<br />

45 Exp<strong>on</strong>ential<br />

50 Exp<strong>on</strong>ential<br />

25 Late exp.<br />

30 Late exp.<br />

35<br />

40<br />

45<br />

Late exp.<br />

Late exp.<br />

Late exp.<br />

50 Late exp.<br />

25 Stati<strong>on</strong>ary<br />

30 Stati<strong>on</strong>ary<br />

35 Stati<strong>on</strong>ary<br />

40 Stati<strong>on</strong>ary<br />

45 Stati<strong>on</strong>ary<br />

50 Stati<strong>on</strong>ary<br />

Dry biomass<br />

(g L -1 )<br />

0.071 a<br />

(0.003)<br />

0.076 a<br />

(0.005)<br />

0.092 b<br />

(0.005)<br />

0.108 c<br />

(0.007)<br />

0.105 c<br />

(0.004)<br />

0.107 c<br />

(0.002)<br />

0.096 b<br />

(0.007)<br />

0.090 b<br />

(0.006)<br />

0.132 e<br />

(0.002)<br />

0.123 d<br />

(0.004)<br />

0.120 d<br />

(0.006)<br />

0.126 de<br />

(0.001)<br />

0.108 c<br />

(0.002)<br />

0.112 c<br />

(0.005)<br />

0.122 d<br />

(0.007)<br />

0.124 de<br />

(0.003)<br />

0.124 de<br />

(0.004)<br />

0.124 de<br />

(0.006)<br />

Protein<br />

(mg g -1 )<br />

199 e<br />

(07)<br />

177 d<br />

(17)<br />

138 c<br />

(02)<br />

102 bc<br />

(04)<br />

99 ab<br />

(09)<br />

85 a<br />

(10)<br />

238 g<br />

(21)<br />

226 fg<br />

(10)<br />

144 c<br />

(06)<br />

140 c<br />

(10)<br />

131 c<br />

(01)<br />

109 b<br />

(07)<br />

352 k<br />

(14)<br />

325 i<br />

(11)<br />

289 i<br />

(17)<br />

269 h<br />

(12)<br />

235 g<br />

(02)<br />

212 ef<br />

(18)<br />

Carbohydrates<br />

(mg g -1 )<br />

144 d<br />

(10)<br />

152 de<br />

(10)<br />

123 c<br />

(15)<br />

87 a<br />

(04)<br />

77 a<br />

(03)<br />

71 a<br />

(02)<br />

235 g<br />

(07)<br />

240 gh<br />

(17)<br />

167 e<br />

(05)<br />

166 e<br />

(03)<br />

158 de<br />

(13)<br />

107 b<br />

(05)<br />

256 h<br />

(08)<br />

248 gh<br />

(11)<br />

207 f<br />

(12)<br />

200 f<br />

(10)<br />

206 f<br />

(07)<br />

209 f<br />

(12)<br />

Lipids<br />

(mg g -1 )<br />

249 h<br />

(10)<br />

247 h<br />

(16)<br />

199 cd<br />

(08)<br />

169 ab<br />

(09)<br />

167 ab<br />

(05)<br />

159 a<br />

(03)<br />

225 fg<br />

(18)<br />

237 gh<br />

(15)<br />

185 bc<br />

(06)<br />

169 ab<br />

(04)<br />

168 ef<br />

(08)<br />

159 a<br />

(02)<br />

219 ef<br />

(08)<br />

214 def<br />

(14)<br />

204 de<br />

(10)<br />

176 ab<br />

(04)<br />

169 ab<br />

(04)<br />

162 a<br />

(09)


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>on</strong> Thalassiosira weissflogii 439<br />

Although many species <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae are tolerant<br />

to great variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g>, <strong>the</strong>ir <strong>chemical</strong><br />

compositi<strong>on</strong> can be affected by such factor (Brown et<br />

al., 1996) as has been dem<strong>on</strong>strated in this<br />

experiment. Protein, lipid <strong>and</strong> carbohydrate c<strong>on</strong>tents<br />

are comm<strong>on</strong>ly affected by low or high <str<strong>on</strong>g>salinity</str<strong>on</strong>g> levels<br />

for most microalgae species (Richm<strong>on</strong>d, 1986).<br />

Despite this euryhaline species can thrive at<br />

extreme salinities, its nutriti<strong>on</strong>al quality can be<br />

affected <strong>and</strong> traduced in poor <strong>growth</strong> performance for<br />

shrimp larvae, c<strong>on</strong>sidering that much energy <strong>and</strong><br />

protein are required for metamorphosis.<br />

Microalgae biomass <strong>and</strong> <strong>chemical</strong> compositi<strong>on</strong> can<br />

vary according to <strong>the</strong> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <strong>and</strong><br />

<strong>the</strong> age <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> culture (Becker, 2004). In this study, it<br />

was observed that <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>and</strong> <strong>growth</strong> phase were <strong>the</strong><br />

main factors influencing <strong>the</strong> proximal compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

T. weissflogii. This informati<strong>on</strong> can be useful to<br />

produce cells with pre-determinate compositi<strong>on</strong>,<br />

depending up<strong>on</strong> <strong>the</strong> nutriti<strong>on</strong>al requirements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particular aquacultural species. It is c<strong>on</strong>cluded that<br />

<str<strong>on</strong>g>salinity</str<strong>on</strong>g> fluctuati<strong>on</strong>s induce significant changes in <strong>the</strong><br />

<strong>growth</strong> rate, biomass producti<strong>on</strong> <strong>and</strong> bio<strong>chemical</strong><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T. weissflogii. Cell volume, carbohydrate,<br />

lipid <strong>and</strong> protein c<strong>on</strong>tents were higher at low<br />

salinities, whereas high salinities negatively affected<br />

<strong>the</strong> <strong>growth</strong> rate, cell volume <strong>and</strong> organic compositi<strong>on</strong>.<br />

REFERENCES<br />

Becerra-Dorame, M., J.A. López-Elías & L.R. Martínez-<br />

Córdova. 2010. An alternative outdoor producti<strong>on</strong><br />

system for <strong>the</strong> microalgae Chaetoceros muelleri <strong>and</strong><br />

Dunaliella sp. during winter <strong>and</strong> spring in Northwest<br />

Mexico. Aquacult. Eng., 43: 24-28.<br />

Becker, W. 2004. Microalgae for aquaculture: <strong>the</strong><br />

nutriti<strong>on</strong>al value <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae for aquaculture. In: A.<br />

Richm<strong>on</strong>d (ed.). H<strong>and</strong>book <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgal culture:<br />

biotechnology <strong>and</strong> applied phycology. Blackwell<br />

Publishing, Iowa, pp. 380-391.<br />

Bligh, E.G. & W.J. Dyer. 1959. A rapid method <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

lipid extracti<strong>on</strong><strong>and</strong> purificati<strong>on</strong>. Can. J. Biochem.<br />

Physiol., 37: 911-917.<br />

Brown, R.M., A.G. Dunstan, S.A. Norwood & A.K.<br />

Miller. 1996. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> harvest stage <strong>and</strong> light <strong>on</strong> <strong>the</strong><br />

bio<strong>chemical</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diatom Thalassiosira<br />

pseud<strong>on</strong>ana. J. Phycol., 32: 64-73.<br />

Emmers<strong>on</strong>, W.D. 1980. Ingesti<strong>on</strong>, <strong>growth</strong> <strong>and</strong><br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> Penaeus indicus larvae as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Thalassiosira weissflogii cell c<strong>on</strong>centrati<strong>on</strong>. Mar.<br />

Biol., 58: 65-73.<br />

Fistarol, G.O., C. Legr<strong>and</strong> & E. Granéli. 2005.<br />

Allelopathic effect <strong>on</strong> a nutrient-limited phytoplankt<strong>on</strong><br />

species. Aquat. Microb. Ecol., 41: 153-161.<br />

Guillard, R.R.L. 1975. Cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> phytoplankt<strong>on</strong> for<br />

feeding marine invertebrates. In: W.L. Smith & M.M.<br />

Chalg (eds.). Culture <str<strong>on</strong>g>of</str<strong>on</strong>g> marine invertebrate animals.<br />

Plenum Press, New York, pp. 29-60.<br />

Henley, J.W., M.K. Major & L.J. Hir<strong>on</strong>aka. 2002.<br />

Resp<strong>on</strong>se to <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>and</strong> heat stress in two<br />

halotolerant Chlorophyte algae. J. Phycol., 38: 757-<br />

766.<br />

Kiatmetha, P., W. Siangdang, B. Bunnag, S. Senapin &<br />

B. Withyachumnarnkul. 2010. Enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

survival <strong>and</strong> metamorphosis rates <str<strong>on</strong>g>of</str<strong>on</strong>g> Penaeus<br />

m<strong>on</strong>od<strong>on</strong> larvae by feeding with <strong>the</strong> diatom Thalassiosira<br />

weissflogii. Aquacult. Int. DOI 10.1007/s<br />

10499-010-9375-y.<br />

Li, W.K.W. 1979. Cellular compositi<strong>on</strong> <strong>and</strong> physiological<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> diatom Thala-ssiosira<br />

weissflogii adapted to cadmium stress. Mar. Biol., 55:<br />

171-180.<br />

López Elías, J.A., D. Voltolina, I.S. Avila Mercado, M.<br />

Nieves, M. & B., Cordero Esquivel. 2005. Growth,<br />

compositi<strong>on</strong> <strong>and</strong> biomasa yields <str<strong>on</strong>g>of</str<strong>on</strong>g> Chaetoceros<br />

muelleri mass cultures with different routines <strong>and</strong><br />

tank depths. Rev. Invest. Mar., 26(1): 67-72.<br />

Mansour, M.M.F. & K.H.A. Salama. 2004. Cellular basis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> tolerance in plants. Envir<strong>on</strong>. Exp. Bot., 52:<br />

113-22.<br />

Nieves, M., D.J. López, M.A. Medina, P. Piña, S. Leal &<br />

J.A. López-Elías. 2009. Producción y calidad de<br />

Chaetoceros muelleri a diferentes c<strong>on</strong>centraci<strong>on</strong>es de<br />

nutrientes y densidades de inóculo. Rev. Invest. Mar.,<br />

30(2): 123-133<br />

Parida, A.K. & A. Das. 2005. Salt tolerance <strong>and</strong> <str<strong>on</strong>g>salinity</str<strong>on</strong>g><br />

effects <strong>on</strong> plants: a review. Ecotox. Envir<strong>on</strong>. Safe.,<br />

60: 324-349.<br />

Radchenko, I.G. & L.V. Il’yash. 2006. Growth <strong>and</strong><br />

photosyn<strong>the</strong>tic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> diatom Thalassiosira<br />

weissflogii at decreasing <str<strong>on</strong>g>salinity</str<strong>on</strong>g>. Plant Physiol.,<br />

33(3): 242-247.<br />

Raghavan, G., C.K. Haridev & C.P. Gopinathan. 2008.<br />

Growth <strong>and</strong> proximate compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

Chaetoceros calcitrans f. pumilus under different<br />

temperature, <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>and</strong> carb<strong>on</strong> dioxide levels.<br />

Aquacul. Res., 39: 1053-1058.<br />

Renaud, S.M., L.V. Thinh, G. Lambridis & D.L. Parry.<br />

2002. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> <strong>growth</strong>, <strong>chemical</strong><br />

compositi<strong>on</strong> <strong>and</strong> fatty acid compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tropical<br />

Australian microalgae grown in batch cultures.<br />

Aquaculture, 211: 195-214.


440<br />

Latin American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Research<br />

Richm<strong>on</strong>d, A. 1986. Cell resp<strong>on</strong>se to envir<strong>on</strong>mental<br />

factors. In: A. Richm<strong>on</strong>d (ed.). H<strong>and</strong>book <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microalgal mass culture. CRC Press, Boca Rat<strong>on</strong>, pp.<br />

69-99.<br />

Roubeix, V. & C. Lancelot. 2008. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>salinity</str<strong>on</strong>g> <strong>on</strong><br />

<strong>growth</strong>, cell size <strong>and</strong> silificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an euryhaline<br />

freshwater diatom: Cyclotella meneghiniana Kütz.<br />

Trans. Waters Bull., 1: 31-38.<br />

Sánchez-Saavedra, M.P. & D. Voltolina. 2006. The<br />

<strong>growth</strong> rate, biomass producti<strong>on</strong> <strong>and</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chaetoceros sp. grown with different light sources.<br />

Aquacult. Eng., 35: 161-165.<br />

Vrieling, E.G., Q. Sun, M. Tian, P.J. Kooyman, W.W.C.<br />

Gieske, R.A. van Santen & N.A.J.M. Sommerdijk. 2007.<br />

Salinity-dependent diatom biosilicificati<strong>on</strong> implies an<br />

important role <str<strong>on</strong>g>of</str<strong>on</strong>g> external i<strong>on</strong>ic strength. PNAS, 104(25):<br />

10441-10446.<br />

Zar, J.H. 1996. Biostatistical analysis. Prentice Hall, New<br />

Jersey, 920 pp.<br />

Received: 27 October 2011; Accepted: 13 June 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!