26.06.2014 Views

Recent Developments in the Application of ... - ResearchGate

Recent Developments in the Application of ... - ResearchGate

Recent Developments in the Application of ... - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

www.advmat.de<br />

PROGRESS REPORT<br />

<strong>Recent</strong> <strong>Developments</strong> <strong>in</strong> <strong>the</strong> <strong>Application</strong> <strong>of</strong><br />

Phosphorescent Iridium(III) Complex Systems<br />

By Christoph Ulbricht, Beatrice Beyer, Christian Friebe, Andreas W<strong>in</strong>ter, and<br />

Ulrich S. Schubert*<br />

The recent developments <strong>in</strong> us<strong>in</strong>g iridium(III) complexes as phosphorescent<br />

emitters <strong>in</strong> electrolum<strong>in</strong>escent devices, such as (white) organic light-emitt<strong>in</strong>g<br />

diodes and light-emitt<strong>in</strong>g electrochemical cells, are discussed. Additionally,<br />

applications <strong>in</strong> <strong>the</strong> emerg<strong>in</strong>g fields <strong>of</strong> molecular sensors, biolabel<strong>in</strong>g, and<br />

photocatalysis are briefly evaluated. The basic strategies towards charged and<br />

non-charged iridium(III) complexes are summarized, and a wide range <strong>of</strong><br />

assemblies is discussed. Small-molecule- and polymer-based materials are<br />

under <strong>in</strong>tense <strong>in</strong>vestigation as emissive systems <strong>in</strong> electrolum<strong>in</strong>escent<br />

devices, and special emphasis is placed on <strong>the</strong> latter with respect to syn<strong>the</strong>sis,<br />

characterization, electro-optical properties, process<strong>in</strong>g technologies, and<br />

performance.<br />

1. Introduction<br />

Phosphorescent transition-metal complexes are attract<strong>in</strong>g significant<br />

attention with respect to potential applications, <strong>in</strong><br />

particular <strong>in</strong> organic light emitt<strong>in</strong>g devices (OLEDs). [1,2] While<br />

exciton-based electrolum<strong>in</strong>escence from small fluorophors<br />

cannot exceed a maximum quantum yield <strong>of</strong> 25% (accord<strong>in</strong>g<br />

to sp<strong>in</strong> statistics), phosphorescent complexes can <strong>the</strong>oretically<br />

achieve quantum yields up to 100%; due to heavy atom <strong>in</strong>duced<br />

sp<strong>in</strong>–orbit coupl<strong>in</strong>g, s<strong>in</strong>glet as well as triplet excitons are<br />

harvested for <strong>the</strong> emission. [3,4] Comb<strong>in</strong><strong>in</strong>g phosphorescent<br />

emitters with proper host materials and optimized device set<br />

ups can result <strong>in</strong> highly efficient light-emitt<strong>in</strong>g devices.<br />

In particular, <strong>the</strong> <strong>in</strong>terest <strong>in</strong> phosphorescent Ir III complexes is<br />

grow<strong>in</strong>g rapidly. [5] Very high lum<strong>in</strong>escence efficiencies and ra<strong>the</strong>r<br />

short phosphorescence lifetimes can be realized. However, <strong>the</strong><br />

most outstand<strong>in</strong>g characteristic <strong>of</strong> this class <strong>of</strong> complexes might<br />

[*] Pr<strong>of</strong>. U. S. Schubert, C. Ulbricht, Dr. A. W<strong>in</strong>ter<br />

Laboratory <strong>of</strong> Macromolecular Chemistry and Nanoscience<br />

E<strong>in</strong>dhoven University <strong>of</strong> Technology<br />

P.O. Box 513, 5600 MB E<strong>in</strong>dhoven (The Ne<strong>the</strong>rlands)<br />

E-mail: u.s.schubert@tue.nl; www.schuber-group.com<br />

Pr<strong>of</strong>. U. S. Schubert, C. Ulbricht, B. Beyer, C. Friebe, Dr. A. W<strong>in</strong>ter<br />

Dutch Polymer Institute (DPI)<br />

P.O. Box 902, 5600 AX E<strong>in</strong>dhoven (The Ne<strong>the</strong>rlands)<br />

Pr<strong>of</strong>. U. S. Schubert, B. Beyer, C. Friebe<br />

Laboratory <strong>of</strong> Organic and Macromolecular Chemistry<br />

Friedrich-Schiller-University Jena<br />

Humboldtstr. 10, 07743 Jena (Germany)<br />

DOI: 10.1002/adma.200803537<br />

be <strong>the</strong> variability <strong>of</strong> <strong>the</strong> electro-optical<br />

properties. Their metal–ligand-based lum<strong>in</strong>escence<br />

provides <strong>the</strong> opportunity to tune<br />

<strong>the</strong> emission color over <strong>the</strong> whole visible<br />

spectrum by vary<strong>in</strong>g <strong>the</strong> attached<br />

ligands. [6,7] All <strong>the</strong>se criteria make iridium(III)<br />

complexes highly appeal<strong>in</strong>g as<br />

phosphors <strong>in</strong> multicolor organic lightemitt<strong>in</strong>g<br />

diodes (OLEDs), but <strong>the</strong>y also<br />

show promis<strong>in</strong>g potential <strong>in</strong> o<strong>the</strong>r applications.<br />

The research <strong>in</strong> sens<strong>in</strong>g, biolabel<strong>in</strong>g,<br />

and photocatalysis also utilizes <strong>the</strong> attractive<br />

features <strong>of</strong> Ir III complexes.<br />

These developments are supported by<br />

<strong>the</strong> broad diversity <strong>of</strong> possible structures.<br />

The most prom<strong>in</strong>ent coord<strong>in</strong>ation motifs<br />

are cyclometalat<strong>in</strong>g ligands, available <strong>in</strong> a wide range. Triscyclometallated<br />

homo- and heteroleptic complexes, as well as<br />

bis-cyclometallated ones, are <strong>the</strong> most common phosphorescent<br />

Ir III<br />

species. A variety <strong>of</strong> so-called ancillary ligands gives<br />

additional possibilities to def<strong>in</strong>e structure and to tune <strong>the</strong><br />

properties. Neutral and charged complexes are accessible, and <strong>the</strong><br />

ligand design spans from small modifications and functionalizations<br />

over dendritic layouts to polymeric assemblies. In particular,<br />

polymers conta<strong>in</strong><strong>in</strong>g iridium(III) complexes are ga<strong>in</strong><strong>in</strong>g grow<strong>in</strong>g<br />

<strong>in</strong>terest, comb<strong>in</strong><strong>in</strong>g <strong>the</strong> appeal<strong>in</strong>g features <strong>of</strong> both phosphor and<br />

polymer matrix with<strong>in</strong> one material. Besides selected examples<br />

for <strong>the</strong> design <strong>of</strong> new small and dendritic Ir III complexes, a<br />

detailed overview <strong>of</strong> polymer-embedded phosphors with a focus<br />

on <strong>the</strong> syn<strong>the</strong>tic strategies towards <strong>the</strong> different polymeric<br />

assemblies is given.<br />

2. Iridium(III) Complex Systems: Syn<strong>the</strong>sis and<br />

Properties<br />

In general, iridium(III) complexes are characterized by <strong>the</strong> great<br />

<strong>in</strong>ertness <strong>of</strong> <strong>the</strong>ir saturated coord<strong>in</strong>ation sphere requir<strong>in</strong>g harsh<br />

reaction conditions to substitute <strong>the</strong> ligands <strong>of</strong> <strong>the</strong> commonly<br />

used start<strong>in</strong>g iridium(III) chloride hydrate. None<strong>the</strong>less, <strong>the</strong> rich<br />

coord<strong>in</strong>ation chemistry <strong>of</strong> Ir III covers a wide range <strong>of</strong> complexes,<br />

<strong>in</strong>clud<strong>in</strong>g mono-, bis-, and tris-cyclometallated species. [8] For<br />

basic syn<strong>the</strong>tic concepts and highlights <strong>of</strong> earlier examples <strong>of</strong> Ir III<br />

complex systems, several review articles are available. [8–13] With a<br />

grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> phosphorescent iridium(III) complexes as<br />

emissive species <strong>in</strong> various applications, e.g., OLEDs or lightemitt<strong>in</strong>g<br />

electrochemical cells (LECs), <strong>the</strong> development and<br />

4418 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

optimization <strong>of</strong> new syn<strong>the</strong>tic approaches towards new types <strong>of</strong><br />

ligands and cyclometallated Ir III complex systems represent<br />

highly active fields <strong>of</strong> current research. Today such iridium(III)<br />

complexes are <strong>the</strong> most efficient and versatile class <strong>of</strong><br />

phosphorescent emitters produced, [14,15] e.g., <strong>the</strong>y feature shorter<br />

triplet lifetimes and lesser triplet–triplet annihilation at high<br />

currents compared to Pt II species; as a consequence higher<br />

quantum efficiencies can be achieved. [1] Strong sp<strong>in</strong>–orbit<br />

coupl<strong>in</strong>g leads to mixed s<strong>in</strong>glet and triplet metal-to-ligand<br />

charge-transfer (MLCT) states as well as to mixed ligand-based<br />

emitt<strong>in</strong>g states. The metal–ligand-based emission enables an<br />

efficient tun<strong>in</strong>g <strong>of</strong> <strong>the</strong> emission color by vary<strong>in</strong>g <strong>the</strong> ligands, and<br />

thus, full-color applications based on phosphorescent Ir III<br />

complexes can be realized.<br />

In <strong>the</strong> follow<strong>in</strong>g, <strong>the</strong> recent developments for <strong>the</strong> preparation<br />

<strong>of</strong> iridium(III) complexes utilized <strong>in</strong> phosphorescent devices<br />

will be highlighted. Tris-cyclometallated complexes or neutral<br />

bis-cyclometallated derivatives with ancillary ligands, such as<br />

acetylacetonates or picol<strong>in</strong>ates, exhibit high potentials for modern<br />

OLED applications. [1,16] Fur<strong>the</strong>rmore, charged bis-cylometallated<br />

complexes, ma<strong>in</strong>ly with oligopyrid<strong>in</strong>es as ancillary ligand, are<br />

particularly <strong>in</strong>terest<strong>in</strong>g as emitters <strong>in</strong> LECs, [1,17] biolabel<strong>in</strong>g [18–20]<br />

or photocatalytic applications. [9]<br />

A general overview <strong>of</strong> <strong>the</strong> most common syn<strong>the</strong>tic strategies<br />

towards <strong>the</strong> various types <strong>of</strong> phosphorescent Ir III complexes is<br />

depicted <strong>in</strong> Scheme 1. [16] The m-dichloro bridged dimer<br />

[Ir(C^N) 2 -m-Cl] 2 , conveniently prepared from a reaction <strong>of</strong> <strong>the</strong><br />

respective ligand and IrCl 3 xH 2 O, [21] plays a central role <strong>in</strong> <strong>the</strong><br />

coord<strong>in</strong>ation chemistry <strong>of</strong> <strong>the</strong>se complexes. The chloro-bridge<br />

can be split by chelat<strong>in</strong>g ligands lead<strong>in</strong>g to neutral (L^X ¼<br />

b-diketonates, picol<strong>in</strong>ates, etc.) or charged bis-cyclometallated<br />

complexes (N^N ¼ 2,2 0 -bipyrid<strong>in</strong>es, 1,10-phenanthrol<strong>in</strong>es, etc.)<br />

with preferred trans-N,N configuration <strong>of</strong> <strong>the</strong> C^N ligands (path<br />

a). The addition <strong>of</strong> a third cyclometallat<strong>in</strong>g ligand results <strong>in</strong><br />

tris-cyclometallated Ir III complexes (path b). With cautious<br />

control <strong>of</strong> <strong>the</strong> reaction conditions, <strong>the</strong> k<strong>in</strong>etically preferred<br />

meridional (mer) or <strong>the</strong> <strong>the</strong>rmodynamically favored facial (fac)<br />

isomers are accessible; homoleptic, [22–24] as well as heteroleptic<br />

ones, [25–28] have been obta<strong>in</strong>ed with high selectivity. It has been<br />

shown that <strong>in</strong> solution, apply<strong>in</strong>g <strong>the</strong>rmal or photochemical<br />

energy, mer-isomers can be converted <strong>in</strong>to <strong>the</strong> fac-form (path<br />

c). [23,29] The lower <strong>the</strong>rmodynamic stability <strong>of</strong> <strong>the</strong> k<strong>in</strong>etically<br />

favored meridional formation is primarily due to <strong>the</strong> strongly<br />

trans-<strong>in</strong>fluenc<strong>in</strong>g aryl groups opposite to each o<strong>the</strong>r (<strong>in</strong> <strong>the</strong><br />

fac-isomer all three aryl groups are opposite to pyridyl or o<strong>the</strong>r<br />

neutral donor groups). [16] The direct route towards fac-Ir(C^N) 3<br />

start<strong>in</strong>g from <strong>the</strong> Ir(acac) 3 precursor, where acac is acetoacetonate<br />

(path d), or IrCl 3 xH 2 O is a common approach for phenylpyrid<strong>in</strong>e<br />

(Hppy) and its derivatives. [30]<br />

2.1. Neutral Iridium(III) Complexes<br />

As already po<strong>in</strong>ted out, neutral iridium(III) complexes are widely<br />

used as triplet emitters <strong>in</strong> OLEDs featur<strong>in</strong>g external quantum<br />

efficiencies up to nearly 20%. In general, <strong>the</strong> emission color can<br />

be tuned via <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> cyclometallat<strong>in</strong>g and ancillary<br />

ligands coord<strong>in</strong>ated to <strong>the</strong> Ir III core. [1,16] A variety <strong>of</strong> emissive<br />

complexes cover<strong>in</strong>g <strong>the</strong> whole visible spectra—from blue, over<br />

Christoph Ulbricht was born <strong>in</strong><br />

Saalfeld (Germany) and studied<br />

chemistry at <strong>the</strong> Friedrich-Schiller-<br />

University Jena (Germany). He<br />

graduated <strong>in</strong> chemistry <strong>in</strong> 2005.<br />

S<strong>in</strong>ce 2005 he is Ph.D. student <strong>in</strong><br />

<strong>the</strong> group <strong>of</strong> Pr<strong>of</strong>. U. S. Schubert<br />

at <strong>the</strong> E<strong>in</strong>dhoven University <strong>of</strong><br />

Technology (The Ne<strong>the</strong>rlands),<br />

where he is work<strong>in</strong>g on <strong>the</strong> design<br />

<strong>of</strong> polymeric phosphorescent<br />

materials.<br />

Dr. Andreas W<strong>in</strong>ter was born <strong>in</strong><br />

Herne (Germany) and studied<br />

chemistry at <strong>the</strong> University <strong>of</strong><br />

Dortmund (Germany), where<br />

he graduated <strong>in</strong> organic<br />

chemistry <strong>in</strong> 1999. In 2003, he<br />

received his Ph.D. <strong>in</strong> chemistry<br />

(University <strong>of</strong> Paderborn,<br />

Germany) for work on applications<br />

<strong>of</strong> <strong>the</strong> Mannich reaction <strong>in</strong><br />

<strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> pyrid<strong>in</strong>e derivatives<br />

under supervision <strong>of</strong><br />

Pr<strong>of</strong>. N. Risch, and stayed on as a postdoc. Subsequently, <strong>in</strong><br />

2005 he jo<strong>in</strong>ed <strong>the</strong> group <strong>of</strong> Pr<strong>of</strong>. U. S. Schubert (E<strong>in</strong>dhoven<br />

University <strong>of</strong> Technology, <strong>the</strong> Ne<strong>the</strong>rlands). His research is<br />

focused on <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> emissive and lum<strong>in</strong>escent<br />

metallo-supramolecular assemblies.<br />

Ulrich S. Schubert studied<br />

chemistry and biochemistry and<br />

received his Ph.D. for research<br />

under <strong>the</strong> supervision <strong>of</strong> Pr<strong>of</strong>.<br />

C. D. Eisenbach (Bayreuth,<br />

Germany) and Pr<strong>of</strong>. G. R.<br />

Newkome (Florida, USA). After<br />

a postdoc with Pr<strong>of</strong>. J.-M. Lehn<br />

(Université Strasbourg, France)<br />

and a habilitation with Pr<strong>of</strong>. O.<br />

Nuyken (Technische Universität<br />

München, Germany), he held a<br />

temporary position as a pr<strong>of</strong>essor at <strong>the</strong> Center for<br />

NanoScience (TU München) <strong>in</strong> 1999–2000. From June 2000<br />

to March 2007 he was Full Pr<strong>of</strong>essor at <strong>the</strong> E<strong>in</strong>dhoven<br />

University <strong>of</strong> Technology (Chair for Macromolecular Chemistry<br />

and Nanoscience), <strong>the</strong> Ne<strong>the</strong>rlands. S<strong>in</strong>ce April 2007 he<br />

is Full Pr<strong>of</strong>essor at <strong>the</strong> Friedrich-Schiller-University Jena (Chair<br />

<strong>of</strong> Organic and Macromolecular Chemistry), Germany, and<br />

Part-time Pr<strong>of</strong>essor <strong>in</strong> E<strong>in</strong>dhoven. In addition, he is scientific<br />

chairman <strong>of</strong> <strong>the</strong> cluster HTE <strong>of</strong> <strong>the</strong> Dutch Polymer Institute.<br />

PROGRESS REPORT<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4419


www.advmat.de<br />

PROGRESS REPORT<br />

Scheme 1. Schematic representation <strong>of</strong> <strong>the</strong> syn<strong>the</strong>tic strategies utilized for <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> cyclometallated iridium(III) complexes and selected examples<br />

<strong>of</strong> bis- and tris-cyclometallated neutral iridium(III) complexes (see text for details). Reproduced with permission from [2]. Copyright 2008, Wiley-VCH.<br />

green, yellow, and orange to red—has been <strong>in</strong>troduced. The<br />

majority <strong>of</strong> <strong>the</strong>se phosphorescent Ir III complexes can be assigned<br />

to two ma<strong>in</strong> categories—bis- and tris-cyclometallated.<br />

2.1.1. Bis-Cyclometallated Iridium(III) Complexes<br />

Bis-cyclometallated Ir III complexes can be easily obta<strong>in</strong>ed from<br />

<strong>the</strong> correspond<strong>in</strong>g chloro-bridged dimer complexes. Splitt<strong>in</strong>g <strong>the</strong><br />

chloro-bridge and <strong>in</strong>troduc<strong>in</strong>g monodendate or bidentate ligands<br />

provide access to a wide range <strong>of</strong> neutral and charged complexes.<br />

Here, <strong>the</strong> most widely used ligands are acetoacetonate (acac),<br />

picol<strong>in</strong>ate (pic), bipyrid<strong>in</strong>e (bpy), and <strong>the</strong>ir structural analogues.<br />

These ancillary ligands provide additional possibilities for <strong>the</strong><br />

tun<strong>in</strong>g <strong>of</strong> <strong>the</strong> electro-optical properties, as well as for <strong>the</strong><br />

<strong>in</strong>troduction <strong>of</strong> lateral functionalities.<br />

4420 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

For <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> neutral bis-cyclometallated acetoacetonate<br />

and picol<strong>in</strong>ate complexes, <strong>the</strong> most commonly used conditions are<br />

<strong>of</strong>ten ra<strong>the</strong>r harsh. Mixtures <strong>of</strong> precursor complex, <strong>the</strong> designated<br />

ligand, base (e.g., Na 2 CO 3 ), and high boil<strong>in</strong>g alcohols (e.g.,<br />

2-ethoxyethanol) are stirred under reflux for several hours usually<br />

generat<strong>in</strong>g <strong>the</strong> desired complex <strong>in</strong> good yields and purity. [6,7,31]<br />

However, much milder reaction conditions have proved to work out<br />

as well, reduc<strong>in</strong>g <strong>the</strong> formation <strong>of</strong> side products, simplify<strong>in</strong>g<br />

<strong>the</strong> purification procedure, and provid<strong>in</strong>g <strong>the</strong> opportunity to <strong>in</strong>clude<br />

more sensitive functionalities. Tsuzuki et al. successfully syn<strong>the</strong>sized<br />

a number <strong>of</strong> bis-cyclometallated iridium(III) acetoacetonate<br />

complexes by react<strong>in</strong>g <strong>the</strong> respective precursor and acetoacetone <strong>in</strong><br />

a mixture with ethanol and Na 2 CO 3 at 50 8C for 2–6 h. [32] By<br />

replac<strong>in</strong>g 2-ethoxyethanol with a non-alcoholic solvent <strong>in</strong> <strong>the</strong><br />

coord<strong>in</strong>ation reactions <strong>of</strong> 2,7-dibromo-fluorene-functionalized<br />

acetoactone derivatives, Evans et al. were able to avoid undesired<br />

hydrodebrom<strong>in</strong>ation side reactions. Perform<strong>in</strong>g <strong>the</strong> reactions <strong>in</strong><br />

acetonitrile at 80 8C <strong>in</strong> <strong>the</strong> presence <strong>of</strong> Na 2 CO 3 , <strong>the</strong> desired<br />

functionalized bis-cyclometallated acetoacetonate complexes were<br />

obta<strong>in</strong>ed <strong>in</strong> 74–81% yield after purification. [33] A syn<strong>the</strong>tic approach<br />

for iridium(III) bis-cyclometallated acetoacetate complexes <strong>in</strong>troduced<br />

by DeRosa et al. [34] was adapted for <strong>the</strong> formation<br />

<strong>of</strong> acetoacetonate complexes by Graf et al. [35] Us<strong>in</strong>g silver<br />

trifluoroacetate to split <strong>the</strong> chloro-bridged dimer, triethylam<strong>in</strong>e as<br />

base, and acetone as solvent, an acetoacetone derivative,<br />

11-(2,5-dibromo-4-hexyloxy-phenoxy)-undecane-2,4-dione, was<br />

coord<strong>in</strong>ated with<strong>in</strong> 3 h <strong>of</strong> reflux. Also, bis-cyclometallated iridium(III)<br />

picol<strong>in</strong>ate complexes can be obta<strong>in</strong>ed under ra<strong>the</strong>r mild<br />

conditions. By reflux<strong>in</strong>g <strong>the</strong> precursor and designated ligand for<br />

24 h <strong>in</strong> dichloromethane, Zhen et al. formed <strong>the</strong> desired picol<strong>in</strong>ate<br />

complex. [36]<br />

While <strong>the</strong> structure <strong>of</strong> bis-cyclometallated complexes syn<strong>the</strong>sized<br />

via chloro-bridged precursors is usually predeterm<strong>in</strong>ed,<br />

Baran<strong>of</strong>f et al. observed partial <strong>the</strong>rmal isomerization <strong>of</strong> a<br />

picol<strong>in</strong>ate complex dur<strong>in</strong>g vacuum sublimation. [37] The isomerization<br />

could be reproduced <strong>in</strong> solution upon <strong>the</strong>rmal treatment,<br />

<strong>in</strong> a process analogous to <strong>the</strong> reported mer–fac isomerization <strong>of</strong><br />

tris-cyclometallated Ir III complexes. While reflux<strong>in</strong>g <strong>in</strong> glycerol<br />

for 20 h resulted <strong>in</strong> 40% <strong>of</strong> <strong>the</strong> new isomer, <strong>the</strong> attempt to <strong>in</strong>duce<br />

<strong>the</strong> isomerization by irradiation (i.e., UV and visible light) was not<br />

successful.<br />

Besides acetoacetone, picol<strong>in</strong>ic acid, and <strong>the</strong> multitude <strong>of</strong> <strong>the</strong>ir<br />

derivatives, o<strong>the</strong>r structures have recently found application as<br />

ancillary ligands (Scheme 1). [38] Acetoacetone-resembl<strong>in</strong>g acetoacetates<br />

with a large variety <strong>of</strong> residues are accessible from<br />

diketenes or by transesterification and can be coord<strong>in</strong>ated under<br />

mild conditions. Complexes with v<strong>in</strong>yl-, oxetane-, or methacrylate-functionalized<br />

acetoacetate ligands have found use <strong>in</strong> <strong>the</strong><br />

formation <strong>of</strong> more complex systems. The use <strong>of</strong> various<br />

2-pyridylazoles as ancillary ligands have demonstrated <strong>the</strong>ir<br />

potential for <strong>the</strong> tun<strong>in</strong>g <strong>of</strong> optoelectrical properties<br />

(Scheme 1). [10,39–42] In particular, <strong>the</strong>y proved to be a promis<strong>in</strong>g<br />

option <strong>in</strong> <strong>the</strong> construction <strong>of</strong> efficient blue-emitt<strong>in</strong>g complexes.<br />

2.1.2. Tris-Cyclometallated Iridium(III) Complexes<br />

In 1985, Watts and co-workers isolated tris(phenylpyrid<strong>in</strong>ato)-<br />

iridium(III), Ir(ppy) 3 , as an unexpected by-product <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis<br />

<strong>of</strong> <strong>the</strong> chloro-bridged phenylpyrid<strong>in</strong>ato Ir III dimer complex,<br />

[Ir(ppy) 2 -m-Cl] 2 . [43] A general protocol for <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> Ir(ppy) 3<br />

<strong>in</strong> high yields, start<strong>in</strong>g from Ir(acac) 3 and Hppy, was described by<br />

<strong>the</strong> same group <strong>in</strong> 1991. [30] S<strong>in</strong>ce <strong>the</strong>n, numerous variations <strong>of</strong> <strong>the</strong><br />

basic Ir(ppy) 3 structure (e.g., <strong>in</strong>troduction <strong>of</strong> electronwithdraw<strong>in</strong>g<br />

or electron-donat<strong>in</strong>g substituents; [44–49] extension <strong>of</strong><br />

<strong>the</strong> p-conjugated system; [50–56] replacement <strong>of</strong> <strong>the</strong> pyrid<strong>in</strong>e r<strong>in</strong>g by<br />

o<strong>the</strong>r N-heteroaromatic r<strong>in</strong>gs; [26,57] or lateral functional groups for<br />

post-complexation modifications [58,59] ) have been reported<br />

(Scheme 1). The outstand<strong>in</strong>g role <strong>of</strong> tris-cyclometallated Ir III<br />

complexes (both homoleptic and heteroleptic) based on phenylpyrid<strong>in</strong>e-type<br />

derivatives as ligands is underl<strong>in</strong>ed by <strong>the</strong> tremendous<br />

number <strong>of</strong> scientific publications and patents deal<strong>in</strong>g with <strong>the</strong><br />

syn<strong>the</strong>sis and/or application <strong>of</strong> <strong>the</strong> respective complexes (June<br />

2009: nearly 2000 hits <strong>in</strong> SciF<strong>in</strong>der). Therefore, <strong>the</strong> advances <strong>in</strong> this<br />

field cannot be discussed to a full extent here. Only a few selected<br />

examples will be described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g, and <strong>the</strong> reader is<br />

referred to recent literature published elsewhere. [1,8–13,16,60]<br />

The two configurational isomers <strong>of</strong> tris-cyclometallated Ir III<br />

complexes notably show differences <strong>in</strong> <strong>the</strong>ir photophysical<br />

properties, i.e., <strong>the</strong> fac-isomers feature over an order <strong>of</strong><br />

magnitude longer lifetimes and higher quantum efficiencies<br />

than <strong>the</strong>ir meridional counterparts. [23] On <strong>the</strong> o<strong>the</strong>r hand, Sun<br />

and co-workers described mer-Ir(mppy) 3 (mppy ¼ 2-phenyl-4-<br />

methyl-pyrid<strong>in</strong>e) as an exception to this general concept <strong>of</strong> only<br />

low quantum efficiencies for mer-isomers. [61] The syn<strong>the</strong>sis <strong>of</strong><br />

tris-cyclometallated Ir III complexes <strong>in</strong> <strong>the</strong> <strong>the</strong>rmodynamically<br />

favored fac-configuration usually requires harsh reaction conditions,<br />

e.g., reflux<strong>in</strong>g glycerol or excess <strong>of</strong> ligand. [23,44,62] Utiliz<strong>in</strong>g<br />

microwave irradiation, <strong>the</strong> reaction times could be shortened<br />

remarkably. However, fur<strong>the</strong>r optimization would be desirable to<br />

overcome <strong>the</strong> requirement <strong>of</strong> large excess <strong>of</strong> ligand material or<br />

<strong>the</strong> still ra<strong>the</strong>r low yields, <strong>in</strong> particular for large systems. [63,64] The<br />

k<strong>in</strong>etically favored mer-isomers can be obta<strong>in</strong>ed by perform<strong>in</strong>g<br />

<strong>the</strong> reactions at lower temperatures (e.g., <strong>in</strong> glycerol at<br />

120–150 8C) <strong>in</strong>hibit<strong>in</strong>g <strong>the</strong> formation <strong>of</strong> <strong>the</strong> fac-isomers. By<br />

utiliz<strong>in</strong>g silver salts such as silver triflate to b<strong>in</strong>d <strong>the</strong> chloride<br />

ligands <strong>of</strong> <strong>the</strong> start<strong>in</strong>g species, much milder conditions can be<br />

applied to obta<strong>in</strong> <strong>the</strong> desired tris-cyclometallated complexes. [26,34]<br />

A promis<strong>in</strong>g approach towards <strong>the</strong> selective syn<strong>the</strong>sis <strong>of</strong><br />

mer-isomers was recently <strong>in</strong>troduced by McGee and Mann. [65]<br />

In this work, a reactive m-hydroxy bridged dimer complex<br />

[(C^N) 2 Ir-m-OH] 2 was used to enable <strong>the</strong> reaction under mild<br />

conditions. The group <strong>of</strong> Williams showed that by substitut<strong>in</strong>g<br />

three bidentate HC^N ligands with a tridentate biscyclometallat<strong>in</strong>g<br />

ligand and a tridendate mono-cyclometallat<strong>in</strong>g<br />

ligand <strong>in</strong> <strong>the</strong> coord<strong>in</strong>ation sphere <strong>of</strong> Ir III , <strong>the</strong> formation <strong>of</strong> <strong>the</strong><br />

mer-isomers was excluded (Scheme 1). [66]<br />

Besides <strong>the</strong>se recent contributions with respect to <strong>the</strong> syn<strong>the</strong>sis<br />

<strong>of</strong> tris-cyclometallated Ir III complexes <strong>in</strong> general, major advances<br />

with respect to color tun<strong>in</strong>g should be mentioned. In particular,<br />

<strong>the</strong> development <strong>of</strong> stable and efficient blue emitters still<br />

represents a major goal. A blue shift <strong>of</strong> <strong>the</strong> emission can be<br />

realized by a widen<strong>in</strong>g <strong>of</strong> <strong>the</strong> HOMO LUMO energy bandgap<br />

(HOMO ¼ highest occupied molecular orbital; LUMO ¼ lowest<br />

occupied molecular orbital). By <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> degree <strong>of</strong><br />

fluor<strong>in</strong>ation on <strong>the</strong> ligands and simultaneously replac<strong>in</strong>g pyrid<strong>in</strong>e<br />

by pyrazole, Dedeian et al. produced green-blue emitt<strong>in</strong>g<br />

tris-cyclometallated Ir III complexes (Scheme 1). [26] Samuel and<br />

co-workers reported blue emission [Commission Internationale<br />

PROGRESS REPORT<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4421


www.advmat.de<br />

PROGRESS REPORT<br />

de l 0 Eclairage (CIE) x,y-coord<strong>in</strong>ates 0.16 and 0.12] for Ir III<br />

complexes bear<strong>in</strong>g three phenyl-[1,2,4]triazoles as cyclometallat<strong>in</strong>g<br />

ligands. [67] These systems, however, still suffer from<br />

significant lum<strong>in</strong>escence quench<strong>in</strong>g due to vibrational decay.<br />

Various efficient red-emitt<strong>in</strong>g tris-cyclometallated Ir III complexes<br />

with a dendronized framework are discussed <strong>in</strong> a contribution by<br />

Zhou et al. [50] 4-Phenyl-phthalaz<strong>in</strong>es were <strong>in</strong>troduced as new<br />

cyclometallat<strong>in</strong>g ligands by Mi et al. [68] and Tong et al. [69] yield<strong>in</strong>g<br />

red-emitters which show high quantum efficiencies <strong>in</strong> multilayered<br />

devices.<br />

2.2. Charged Iridium(III) Complexes<br />

Due to <strong>the</strong>ir promis<strong>in</strong>g photophysical properties, ionic character<br />

and good solubility <strong>in</strong> polar organic solvents or even <strong>in</strong> aqueous<br />

media, cationic iridium(III) complexes have ga<strong>in</strong>ed much <strong>in</strong>terest<br />

<strong>in</strong> recent years. [21,70] As <strong>in</strong>troduced by Neve and co-workers, [61,71]<br />

<strong>the</strong> commonly used syn<strong>the</strong>tic protocol towards cationic biscyclometallated<br />

iridium(III) polypyridyl complexes is based on a<br />

bridge-splitt<strong>in</strong>g reaction <strong>of</strong> <strong>the</strong> appropriate chloro-bridged<br />

iridium dimer complexes under mild conditions. A variety <strong>of</strong><br />

different 2,2 0 -bipyrid<strong>in</strong>e, 1,10-phenanthrol<strong>in</strong>e, and 2,2 0 :6 0 ,2 00 -<br />

terpyrid<strong>in</strong>e derivatives has found use as neutral bidendate<br />

ligands. [9,20,68,72] The <strong>in</strong>troduction <strong>of</strong> electron-withdraw<strong>in</strong>g or<br />

electron-donat<strong>in</strong>g groups on <strong>the</strong> cyclometallat<strong>in</strong>g ligands <strong>in</strong><br />

comb<strong>in</strong>ation with lateral (p-conjugated) substituents on <strong>the</strong><br />

polypyridyl ligand enabled <strong>the</strong> adjustment <strong>of</strong> <strong>the</strong> electro-optical<br />

properties <strong>of</strong> <strong>the</strong> complexes. [9] Modify<strong>in</strong>g <strong>the</strong> cyclometallat<strong>in</strong>g<br />

ligand with different substituents [e.g., F, CF 3 , C(CH 3 ) 3 ] and<br />

coord<strong>in</strong>at<strong>in</strong>g various chelat<strong>in</strong>g ligands to <strong>the</strong> iridium(III) cores,<br />

Bernhard and co-workers have prepared a library <strong>of</strong> lum<strong>in</strong>ophores<br />

featur<strong>in</strong>g high color versatility, a broad range <strong>of</strong><br />

excited-state lifetimes (nanoseconds to several microseconds),<br />

as well as remarkable photolum<strong>in</strong>escence quantum yields<br />

(PLQYs). [9,73,74] Similar to <strong>the</strong>ir neutral counterparts, <strong>the</strong> ligand<br />

field stabilization energy (LFSE) <strong>in</strong> such charged complexes is<br />

strongly dependent on <strong>the</strong> position <strong>of</strong> <strong>the</strong> substituents with<br />

respect to <strong>the</strong> cyclometallat<strong>in</strong>g carbon atom. [32,75,76] Thompson<br />

et al. were able to show that <strong>the</strong> excited-state properties <strong>of</strong><br />

bis-cyclometallated Ir(III) complexes can be chemically controlled<br />

simply via <strong>the</strong> nature <strong>of</strong> <strong>the</strong> ancillary ligand. [77] The enhanc<strong>in</strong>g<br />

effect <strong>of</strong> <strong>the</strong> <strong>in</strong>creased steric h<strong>in</strong>drance <strong>of</strong> <strong>the</strong> ancillary N,N-ligand<br />

on <strong>the</strong> PLQYs has been reported by Wu and co-workers<br />

(Scheme 2). [78] Supported by <strong>the</strong>oretical <strong>in</strong>vestigations, Huang<br />

and co-workers recently described <strong>the</strong>ir concept <strong>of</strong> tunable<br />

emission via <strong>the</strong> expansion <strong>of</strong> <strong>the</strong> p-conjugated system <strong>of</strong> <strong>the</strong><br />

chelat<strong>in</strong>g ligand. [79] Related work by Muss<strong>in</strong>i, Roberto, Fantacci<br />

and <strong>the</strong>ir co-workers deals with <strong>the</strong> extension <strong>of</strong> this approach; <strong>the</strong><br />

photophysical properties <strong>of</strong> such cationic Ir III complexes could be<br />

fur<strong>the</strong>r f<strong>in</strong>e-tuned via lateral electron-rich or electron-poor<br />

substituents on phenanthrol<strong>in</strong>e-type ligands. [80] Functionalized<br />

2,2 0 :6 0 ,2 0 -terpyrid<strong>in</strong>e derivatives and related structures have also<br />

been used as <strong>the</strong> bidentate ligand <strong>in</strong> bis-cyclometallated<br />

iridium(III) compounds (Scheme 2). [81,82] Highly efficient<br />

triplet–triplet <strong>in</strong>tramolecular energy-transfer from a biscyclometallated<br />

Ir III core to a lateral C 60 -substituent on a<br />

functionalized bipyrid<strong>in</strong>e ligand was reported by Nierengarten<br />

and co-workers. [83]<br />

In cont<strong>in</strong>uation <strong>of</strong> prior work, De Cola and co-workers described<br />

new d<strong>in</strong>uclear iridium(III) complexes obta<strong>in</strong>ed by Pd(0)-catalyzed<br />

coupl<strong>in</strong>g reactions on bromophenyl-substituted mononuclear Ir III<br />

species (Scheme 2). [84] The same approach was used by Arm and<br />

Williams to obta<strong>in</strong> mixed metallic assemblies featur<strong>in</strong>g efficient<br />

energy transfer from Ir III cores to Ru II centers. [85]<br />

Such charged complexes f<strong>in</strong>d particular application <strong>in</strong> prote<strong>in</strong><br />

label<strong>in</strong>g for biomedical analysis, as oxygen sensors, and for<br />

photocatalytic water-splitt<strong>in</strong>g. Their potential usage as active<br />

species <strong>in</strong> LECs has moved <strong>in</strong>to <strong>the</strong> focus <strong>of</strong> current research.<br />

To suppress crystallization or aggregation occurr<strong>in</strong>g <strong>in</strong> blended<br />

films [86,87] and to enhance <strong>the</strong> processability (e.g., via <strong>in</strong>kjetpr<strong>in</strong>t<strong>in</strong>g<br />

or sp<strong>in</strong>-coat<strong>in</strong>g, by <strong>in</strong>duc<strong>in</strong>g film-form<strong>in</strong>g abilities [88] ),<br />

cationic Ir III complexes have successfully been <strong>in</strong>troduced <strong>in</strong>to<br />

polymeric materials, both non-conjugated [89–91] and conjugated<br />

ones. [92–95]<br />

In addition to <strong>the</strong> complexes bear<strong>in</strong>g three bidentate ligands, <strong>the</strong><br />

analogous compounds conta<strong>in</strong><strong>in</strong>g two tridentate ligands [96] (e.g.,<br />

2,2 0 :6 0 ,2 00 -terpyrid<strong>in</strong>e, 2,6-diaryl-pyrid<strong>in</strong>e, and <strong>the</strong>ir derivatives)<br />

have recently ga<strong>in</strong>ed more attention as potential candidates for<br />

applications <strong>in</strong> areas such as lum<strong>in</strong>escent sensors or materials for<br />

directional energy and electron transfer. [97–104] A detailed review<br />

about this concept has recently been published by Williams<br />

et al. [105] Iridium(III) mono-terpyrid<strong>in</strong>e complexes decorated with<br />

electron-donor or -acceptor groups have fur<strong>the</strong>rmore been<br />

employed as asymmetric chromophores <strong>in</strong> nonl<strong>in</strong>ear optics. [106,107]<br />

By <strong>in</strong>troduc<strong>in</strong>g strong ligand-field-stabiliz<strong>in</strong>g ligands, such as<br />

CN or CO, <strong>the</strong> energy gap between <strong>the</strong> HOMO and LUMO can<br />

be significantly <strong>in</strong>creased result<strong>in</strong>g <strong>in</strong> anionic or cationic<br />

iridium(III) complexes with bright blue emission. <strong>Recent</strong><br />

examples by Fantacci and Nazeerudd<strong>in</strong> and <strong>the</strong>ir<br />

co-workers [108,109] as well as Ch<strong>in</strong> et al. [110] have nicely expanded<br />

<strong>the</strong> toolbox <strong>of</strong> color-tun<strong>in</strong>g <strong>in</strong> iridium(III) complexes (Scheme 2).<br />

3. Polymers Conta<strong>in</strong><strong>in</strong>g Iridium(III) Complexes<br />

For optical device applications, phosphorescent emitters are<br />

commonly imbedded with<strong>in</strong> an appropriate matrix. Irrespective<br />

<strong>of</strong> <strong>the</strong> k<strong>in</strong>d <strong>of</strong> materials used (small molecules and/or<br />

macromolecules, e.g., polymers), <strong>the</strong> host should ideally promote<br />

several tasks: separation <strong>of</strong> phosphors, charge-<strong>in</strong>jection, charge/<br />

energy-transport, and transfer to <strong>the</strong> phosphorescent species.<br />

Excessively high concentration or aggregation <strong>of</strong> <strong>the</strong> emitters<br />

<strong>of</strong>ten leads to reduced emission efficiency due to concentration<br />

quench<strong>in</strong>g and triplet–triplet annihilation. For an efficient charge<br />

<strong>in</strong>jection, <strong>the</strong> energy barriers to <strong>the</strong> adjo<strong>in</strong><strong>in</strong>g layers should not be<br />

too high. [111] Host materials can be fur<strong>the</strong>r on classified based on<br />

<strong>the</strong>ir ability to transport holes or electrons. Besides hole- and<br />

electron-transporters, a third group – ambipolar chargetransporters<br />

– is def<strong>in</strong>ed as host materials that can readily<br />

transport both holes and electrons. [112]<br />

The comb<strong>in</strong>ation <strong>of</strong> suitable polymeric hosts with small<br />

emitter molecules, toge<strong>the</strong>r with additional charge transport<strong>in</strong>g<br />

molecules with<strong>in</strong> blends, has become a widespread technique <strong>in</strong><br />

<strong>the</strong> fabrication <strong>of</strong> polymer light-emitt<strong>in</strong>g diodes (PLEDs).<br />

Blended systems, however, <strong>in</strong>herently <strong>in</strong>volve <strong>the</strong> risk <strong>of</strong><br />

undesired phase separation, aggregation, or crystallization, which<br />

can harm <strong>the</strong> device performance. Therefore, <strong>the</strong> design <strong>of</strong><br />

(co)polymers, comb<strong>in</strong><strong>in</strong>g different functions (charge transport<br />

4422 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

PROGRESS REPORT<br />

Scheme 2. Schematic representation <strong>of</strong> selected charged iridium(III) complexes recently <strong>in</strong>troduced as promis<strong>in</strong>g lum<strong>in</strong>ophores <strong>in</strong> various types <strong>of</strong><br />

application (see text for details).<br />

and emission), has received <strong>in</strong>creas<strong>in</strong>g attention. [11,113,114] The<br />

expected benefits are better energy transfer to <strong>the</strong> emitters (and<br />

thus higher efficiencies) and higher durability <strong>of</strong> <strong>the</strong> device. In<br />

addition, polymeric materials are <strong>of</strong> special <strong>in</strong>terest, with respect<br />

to <strong>the</strong>ir flexibility, film-form<strong>in</strong>g properties, and processability<br />

from solution, e.g., by <strong>in</strong>kjet pr<strong>in</strong>t<strong>in</strong>g. [86,115]<br />

3.1. Complex-Conta<strong>in</strong><strong>in</strong>g Polymers: Syn<strong>the</strong>sis and Properties<br />

There are <strong>in</strong> pr<strong>in</strong>ciple five general routes to syn<strong>the</strong>size polymers<br />

conta<strong>in</strong><strong>in</strong>g transition metal complexes (Scheme 3): I) ‘‘decoration’’<br />

<strong>of</strong> (co)polymers with complexes, II) complexation at<br />

(co)polymers, III) (co)polymerization by complexation, IV)<br />

complex as polymerization <strong>in</strong>itiator, and V) (co)polymerization/<br />

condensation <strong>of</strong> complex ‘‘monomers’’.<br />

I) In order to ‘‘decorate’’ (co)polymers with complexes, suitable<br />

comb<strong>in</strong>ations <strong>of</strong> functionalities attached to <strong>the</strong> (co)polymer and<br />

<strong>the</strong> complex, respectively, are utilized. [25,58,59,116,117] Weck and<br />

co-workers reacted aldehyde-functionalized heteroleptic triscyclometallated<br />

Ir III complexes with am<strong>in</strong>o-group bear<strong>in</strong>g styrene<br />

units, copolymerized with N-v<strong>in</strong>ylcarbazole or styrene, form<strong>in</strong>g<br />

Schiff’s bases, which were fur<strong>the</strong>r on reduced to chemically more<br />

<strong>in</strong>ert am<strong>in</strong>es. [58] In ano<strong>the</strong>r approach, <strong>the</strong>y used a so-called ‘‘click’’<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4423


www.advmat.de<br />

PROGRESS REPORT<br />

Scheme 3. Schematic representation <strong>of</strong> different general approaches for <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong><br />

(co)polymers that conta<strong>in</strong> transition metal complexes.<br />

reaction to attach heteroleptic tris-cyclometallated Ir III complexes<br />

equipped with a term<strong>in</strong>al C C bond to azide-functionalized<br />

N-v<strong>in</strong>ylcarbazole (Scheme 4) and styrene copolymers. [59] S<strong>in</strong>ce<br />

polyv<strong>in</strong>ylcarbazole (PVK) is a well-known hole transporter and is<br />

widely used as a polymeric host for phosphors, <strong>the</strong><br />

N-v<strong>in</strong>ylcarbazole copolymers appear highly promis<strong>in</strong>g as emissive<br />

materials <strong>in</strong> PLEDs. By react<strong>in</strong>g bis-cyclometallated Ir III<br />

complexes bear<strong>in</strong>g a v<strong>in</strong>yl group at <strong>the</strong> ancillary ligand (i.e.,<br />

pyrid<strong>in</strong>e or acetoacetate) and hydride-term<strong>in</strong>ated poly(dimethylsiloxane)<br />

(PDMS) via hydrosilylation, DeRosa and Köse et al.<br />

obta<strong>in</strong>ed PDMS systems with complexes as endgroups. [25,114,115]<br />

Polysiloxanes are generally characterized by a high gas permeability,<br />

and <strong>the</strong> materials functionalized with Ir III emitters<br />

blended <strong>in</strong> polystyrene (PS) exhibited good performance as<br />

oxygen sensors.<br />

II) (Co)polymers bear<strong>in</strong>g suitable ligand sites can be<br />

transformed to emitter-equipped systems by react<strong>in</strong>g <strong>the</strong>m with<br />

proper precursor complexes. [87–90,118–125] One <strong>of</strong> <strong>the</strong> earliest<br />

examples <strong>of</strong> an iridium(III)-complex-conta<strong>in</strong><strong>in</strong>g polymer was<br />

obta<strong>in</strong>ed by Kim and coworkers <strong>in</strong> a one-pot, two-step<br />

complexation reaction; after treat<strong>in</strong>g Ir(acac) 3 with<br />

2-phenylpyrid<strong>in</strong>e, <strong>the</strong> ligand-equipped polymer [poly((2-(4-<br />

v<strong>in</strong>ylphenyl)pyrid<strong>in</strong>e)co-v<strong>in</strong>ylcarbazole)] was added to achieve<br />

<strong>the</strong> formation <strong>of</strong> polymer-bound tris-cyclometallated Ir III complexes<br />

under ra<strong>the</strong>r harsh conditions (170 8C for 12 h). [118]<br />

Photolum<strong>in</strong>escence (PL) <strong>in</strong>vestigations <strong>in</strong> solutions po<strong>in</strong>ted to an<br />

<strong>in</strong>termolecular energy transfer between host and guest ra<strong>the</strong>r<br />

than an <strong>in</strong>tramolecular one. While <strong>in</strong> dilute solutions only <strong>the</strong><br />

high-energy emission <strong>of</strong> <strong>the</strong> polymeric host could be observed,<br />

<strong>the</strong> complex emission appeared only at high concentrations. The<br />

PL <strong>of</strong> copolymer films showed only a small fraction <strong>of</strong> host<br />

emission. Upon electro-excitation, <strong>the</strong> emission <strong>of</strong> <strong>the</strong> host was<br />

almost completely suppressed. Apply<strong>in</strong>g this copolymer as <strong>the</strong><br />

emissive layer (EML) <strong>in</strong> multilayer devices, a maximum quantum<br />

efficiency (QE) <strong>of</strong> 4.4% and a power efficiency <strong>of</strong> 5.0 lm W 1<br />

could be achieved. Also, Holdcr<strong>of</strong>t and co-workers [119] as well as<br />

Langecker and Rehahn [120] performed <strong>in</strong>ter alia<br />

complexation reactions on conjugated copolymers<br />

<strong>in</strong> order to obta<strong>in</strong> systems equipped with<br />

tris-cyclometallated fac-iridium(III) complexes.<br />

Alter<strong>in</strong>g <strong>the</strong> reaction sequence applied by Kim’s<br />

group, Holdcr<strong>of</strong>t and co-workers treated<br />

first <strong>the</strong> polymer, poly(9,9-dihexylfluorenealt-pyrid<strong>in</strong>e),<br />

with Ir(acac) 3 at 250 8C for 12 h,<br />

which is supposed to lead to <strong>the</strong> formation <strong>of</strong><br />

mono-cyclometallated Ir III <strong>in</strong>termediates. In<br />

<strong>the</strong> second step, 2-phenylpyrid<strong>in</strong>e was added,<br />

and <strong>the</strong> mixture was heated aga<strong>in</strong> (250 8C for<br />

12 h) to f<strong>in</strong>ally obta<strong>in</strong> <strong>the</strong> desired complexed<br />

copolymer (Scheme 5). By adapt<strong>in</strong>g <strong>the</strong><br />

iridium(III)- and <strong>the</strong> ligand-feed, <strong>the</strong> extent<br />

<strong>of</strong> complexation at <strong>the</strong> polymer could<br />

be varied. [119] Langecker and Rehahn [120]<br />

applied a different syn<strong>the</strong>tic procedure.<br />

The treatment <strong>of</strong> poly(2,7-fluorene-co-5,4 0 -<br />

(2-phenylpyrid<strong>in</strong>e)) with a fourfold excess <strong>of</strong><br />

[Ir(ppy) 2 -m-Cl] 2 and silver triflate at about<br />

100 8C for 4 days resulted <strong>in</strong> <strong>the</strong> coord<strong>in</strong>ation<br />

<strong>of</strong> roughly 50% <strong>of</strong> <strong>the</strong> polymer-bound ligand<br />

sites (2-phenylpyrid<strong>in</strong>e). Schubert and co-workers reported a<br />

number <strong>of</strong> charged, polymer-equipped bis-cyclometallated Ir III<br />

complexes obta<strong>in</strong>ed by react<strong>in</strong>g dimeric chloro-bridged iridium(III)<br />

precursor complexes with poly(e-caprolactone)-<br />

functionalized bipyrid<strong>in</strong>e [87,88] or poly(ethylene glycol) [89,121]<br />

and PS-functionalized terpyrid<strong>in</strong>es (here act<strong>in</strong>g as a bidentate<br />

ligand only). [121] Detailed <strong>in</strong>vestigations by means <strong>of</strong> size<br />

exclusion chromatography (SEC) and matrix-assisted laser<br />

desorption/ionization time-<strong>of</strong>-flight (MALDI-TOF) mass spectrometry<br />

showed <strong>the</strong> formation <strong>of</strong> well-def<strong>in</strong>ed materials. By treat<strong>in</strong>g<br />

terpyrid<strong>in</strong>es te<strong>the</strong>red to <strong>the</strong> acrylate moieties <strong>of</strong> a styreneblock-acrylate-copolymer<br />

with iridium(III) mono-terpyrid<strong>in</strong>e<br />

complexes (at 200 8C for 20 m<strong>in</strong>), Aamer and Tew achieved <strong>the</strong><br />

formation <strong>of</strong> charged iridium(III) bis-terpyrid<strong>in</strong>e complexes at<br />

some <strong>of</strong> <strong>the</strong> polymer-bound terpyrid<strong>in</strong>es. [122] The micellization<br />

behavior <strong>of</strong> <strong>the</strong> block copolymer <strong>in</strong> various solvents was<br />

<strong>in</strong>vestigated. Deng et al. syn<strong>the</strong>sized random and block coand<br />

terpolymers copolymeriz<strong>in</strong>g ligand sites (i.e., styrenefunctionalized<br />

acetoacetone motifs) with various hole- and<br />

electron-transport<strong>in</strong>g monomers (styrene or acrylate derivatives)<br />

under nitroxide mediate polymerization (NMP) conditions. Upon<br />

complexation with Ir III - or Pt II -precursors, a broad set <strong>of</strong><br />

host–guest systems was obta<strong>in</strong>ed (Scheme 4). [121] Test<strong>in</strong>g <strong>the</strong>ir<br />

performance <strong>in</strong> multilayer device set ups, <strong>the</strong> best assemblies<br />

resulted <strong>in</strong> a white-emitt<strong>in</strong>g device with maximum external<br />

quantum efficiency (EQE) <strong>of</strong> 4.9% and <strong>in</strong> a green-emitt<strong>in</strong>g device<br />

with EQE <strong>of</strong> 10.5%. Cao and co-workers syn<strong>the</strong>sized conjugated<br />

fluorene-alt-carbazole polymers bear<strong>in</strong>g charged Ir III complexes<br />

<strong>in</strong> <strong>the</strong> side cha<strong>in</strong>s by react<strong>in</strong>g iridium(III) dimer complexes and<br />

2-(pyrid<strong>in</strong>e-2-yl)benzimidazoles, grafted via an alkyl spacer to <strong>the</strong><br />

carbazole units, <strong>in</strong> different ratios. [92] By <strong>the</strong> <strong>in</strong>troduction <strong>of</strong><br />

charged complex species, implementation <strong>of</strong> LEC-analogous<br />

features, such as improved charge-<strong>in</strong>jection, were attempted.<br />

Multilayer as well as s<strong>in</strong>gle-layer OLEDs were prepared and<br />

<strong>in</strong>vestigated. The <strong>in</strong>itial maximum EQE <strong>of</strong> 7.3% decreased rapidly<br />

to 3.4%. Koga et al. described <strong>the</strong> complexation <strong>of</strong> methyl<br />

4424 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

PROGRESS REPORT<br />

Scheme 4. Schematic representation <strong>of</strong> selected examples for <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> polymeric systems conta<strong>in</strong><strong>in</strong>g iridium(III) complexes.<br />

methacrylate-styryldiphenylphosp<strong>in</strong>e copolymers with a chlorobridged<br />

biphenyl cyclooctadiene and C,N-chelated iridium(III)<br />

dimer, <strong>in</strong> different ratios, obta<strong>in</strong><strong>in</strong>g <strong>the</strong> bis-phosph<strong>in</strong>e and<br />

mono-phosph<strong>in</strong>e iridium(III) polymer complexes, respectively.<br />

[124,125]<br />

For <strong>the</strong> ‘‘decoration’’ (I) and <strong>the</strong> complexation at (co)polymers<br />

(II) a high conversion at mild conditions is preferable, enabl<strong>in</strong>g<br />

<strong>the</strong> use <strong>of</strong> stoichiometric amounts by avoid<strong>in</strong>g damage and<br />

degradation at <strong>the</strong> polymer. The ‘‘click<strong>in</strong>g’’ <strong>of</strong> azides [59] and <strong>the</strong><br />

coord<strong>in</strong>ation to phosph<strong>in</strong>e [124] are two promis<strong>in</strong>g examples <strong>in</strong> this<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4425


www.advmat.de<br />

PROGRESS REPORT<br />

Scheme 5. Schematic representation <strong>of</strong> <strong>the</strong> general structure and selected examples <strong>of</strong> current polymers, non-conjugated and conjugated, conta<strong>in</strong><strong>in</strong>g<br />

iridium(III) complexes.<br />

respect. While <strong>the</strong> formation <strong>of</strong> tris-cyclometallated [118–120] and<br />

bis-terpyrid<strong>in</strong>e iridium(III) complexes [122] are usually ra<strong>the</strong>r<br />

demand<strong>in</strong>g with respect to temperature and conversion, o<strong>the</strong>r<br />

types <strong>of</strong> complexes, e.g., charged bis-cyclometallated complexes<br />

bear<strong>in</strong>g bipyrid<strong>in</strong>e, can <strong>of</strong>ten be obta<strong>in</strong>ed <strong>in</strong> high yields at ra<strong>the</strong>r<br />

mild conditions. [89,90] Steric demands (e.g., <strong>in</strong> <strong>the</strong> case <strong>of</strong><br />

coord<strong>in</strong>ation sites <strong>in</strong> a conjugated backbone, [119,120] polymer<br />

blocks, [121] or crossl<strong>in</strong>ked systems [125] ) is an aspect, which might<br />

need to be considered as well. Complex-free polymers are usually<br />

easier to <strong>in</strong>vestigate by techniques such as SEC, and <strong>in</strong>fluences <strong>of</strong><br />

<strong>in</strong>corporated complexes are easily revealed by compar<strong>in</strong>g f<strong>in</strong>al<br />

and precursor polymers. Both approaches I and II <strong>in</strong>herently<br />

<strong>in</strong>volve <strong>the</strong> possibility <strong>of</strong> vary<strong>in</strong>g <strong>the</strong> complex content <strong>of</strong> <strong>the</strong> f<strong>in</strong>al<br />

polymer by adjust<strong>in</strong>g <strong>the</strong> feed <strong>of</strong> <strong>the</strong> reactive complex or<br />

precursor, leav<strong>in</strong>g reactive and potential coord<strong>in</strong>ation sites at <strong>the</strong><br />

polymer unreacted and uncomplexed, respectively. [92,124]<br />

III) There is a number <strong>of</strong> known examples <strong>in</strong> literature deal<strong>in</strong>g<br />

with (co)polymerization by complexation, result<strong>in</strong>g <strong>in</strong> so-called<br />

cha<strong>in</strong>-extended polymers. Assemblies based on <strong>the</strong> ‘‘polycomplexation’’<br />

<strong>of</strong> bis(terpyrid<strong>in</strong>e)s by Ru II , [128,129] Ni II , [128] Co II ,<br />

Fe II , [129] and Zn II[130,131] as well as poly-Pt II -acetylene [132] and<br />

polyferrocene-systems, just to name a few, can be obta<strong>in</strong>ed this<br />

way – but up to now <strong>the</strong>re is no attempt reported to use this<br />

method for <strong>the</strong> formation <strong>of</strong> Ir III conta<strong>in</strong><strong>in</strong>g polymers.<br />

Iridium(III) can form bis-terpyrid<strong>in</strong>e complexes similar to Ru II<br />

and Fe II , but comparably harsh conditions, <strong>in</strong> particular high<br />

temperatures, are usually necessary to obta<strong>in</strong> <strong>the</strong> desired<br />

complexes <strong>in</strong> low to moderate yields.<br />

IV) Ano<strong>the</strong>r possibility for obta<strong>in</strong><strong>in</strong>g complex-conta<strong>in</strong><strong>in</strong>g<br />

polymers is to use a respective functionalized complex as<br />

(co)polymerization <strong>in</strong>itiator. While this approach has been<br />

described for Ru II complexes, [133] an iridium(III) complex<br />

4426 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

function<strong>in</strong>g as polymerization <strong>in</strong>itiator has not yet been reported<br />

<strong>in</strong> literature.<br />

V) The most widely utilized method to access polymers<br />

conta<strong>in</strong><strong>in</strong>g phosphorescent Ir III complexes is <strong>the</strong> (co)polymerization,<br />

[33,134–148] or (co)condensation, [36,93–95,119,120,147–169] <strong>of</strong> suitably<br />

functionalized complexes. Weck and co-workers used <strong>the</strong><br />

r<strong>in</strong>g-open<strong>in</strong>g meta<strong>the</strong>sis polymerization (ROMP) <strong>of</strong> functionalized<br />

exo-norbornene [134,136] or cyclooctene monomers [135] to<br />

syn<strong>the</strong>size homo- and copolymers equipped with Ir III emitters. A<br />

first pro<strong>of</strong> <strong>of</strong> <strong>the</strong> feasibility was ga<strong>in</strong>ed by polymeriz<strong>in</strong>g<br />

norbornenes bear<strong>in</strong>g tris-cyclometallated (facial and meridional)<br />

complexes as well as charged bis-cyclometallated iridium(III)<br />

bipyrid<strong>in</strong>e complexes and by perform<strong>in</strong>g copolymerizations with<br />

alkyl-functionalized norbornene. [134] They demonstrated <strong>the</strong><br />

copolymerization <strong>of</strong> a cyclooctene-functionalized triscyclometallated<br />

Ir III complex with a carbazole-functionalized<br />

cyclooctene. [135] Fur<strong>the</strong>r on, norbornenes bear<strong>in</strong>g various<br />

heteroleptic tris-cyclometallated Ir III complexes were copolymerized<br />

with a (bis-carbazole-fluorene)-norbornene derivative. [136,137]<br />

Test<strong>in</strong>g several materials <strong>in</strong> a multilayer device assembly, a<br />

maximum efficiency <strong>of</strong> 4.9% (at 100 cd m 2 ) could be realized. [137]<br />

Ulbricht and co-workers [138] and Rehmann et al. [139] reported <strong>the</strong><br />

syn<strong>the</strong>sis <strong>of</strong> oxetane-functionalized bis-cyclometallated iridium(III)<br />

acetoacetate complexes and <strong>the</strong> optimization <strong>of</strong> multilayer<br />

OLEDs employ<strong>in</strong>g <strong>the</strong>se emitters, which were covalently<br />

<strong>in</strong>corporated <strong>in</strong>to a crossl<strong>in</strong>ked matrix. The hole-transport layers<br />

(HTL) as well as <strong>the</strong> matrix <strong>of</strong> <strong>the</strong> EML consisted <strong>of</strong><br />

oxetane-equipped tetraphenylbenzid<strong>in</strong>e (TPD) derivatives, which<br />

were crossl<strong>in</strong>ked by photo-<strong>in</strong>duced cationic-r<strong>in</strong>g-open<strong>in</strong>g polymerization<br />

after deposition from solution. By improv<strong>in</strong>g <strong>the</strong><br />

charge balance, <strong>the</strong> efficiency <strong>of</strong> <strong>the</strong> manufactured devices could<br />

be significantly <strong>in</strong>creased; 18.4 cd A 1 at an operat<strong>in</strong>g voltage <strong>of</strong><br />

5 V and a brightness <strong>of</strong> 100 cd m 2 were achieved. This was<br />

accomplished by <strong>the</strong> deposition <strong>of</strong> a polymeric, electron-transport<strong>in</strong>g,<br />

and hole-block<strong>in</strong>g layer (HBL) on top <strong>of</strong> <strong>the</strong><br />

crossl<strong>in</strong>ked HTLs and EML as well as by <strong>the</strong> optimization <strong>of</strong> <strong>the</strong><br />

layer thicknesses. Wang et al. [140] as well as Park and<br />

co-workers [141] used free radical polymerization <strong>in</strong>itiated by<br />

2,2 0 -azobis(iso-butyronitrile) (AIBN) to syn<strong>the</strong>size copolymers<br />

possess<strong>in</strong>g iridium(III) complexes. In <strong>the</strong> first case, a biscyclometallated<br />

iridium(III) complex coord<strong>in</strong>at<strong>in</strong>g acrylate as <strong>the</strong><br />

polymerizable ancillary ligand was copolymerized with<br />

N-v<strong>in</strong>ylcarbazole. [140] Wang et al. found evidence that this<br />

copolymer can perform better <strong>in</strong> devices than blended analogues.<br />

Park and co-workers copolymerized 3-v<strong>in</strong>ylcarbazoles, bear<strong>in</strong>g<br />

ei<strong>the</strong>r a decyl-cha<strong>in</strong> or a bis-cyclometallated iridium(III)<br />

picol<strong>in</strong>ate complex connected via a dodecyl-spacer <strong>in</strong><br />

9-position. [141] The expected suppression <strong>of</strong> phase segregation<br />

<strong>in</strong> <strong>the</strong> copolymers compared to <strong>the</strong> doped analogues was verified<br />

by confocal laser scann<strong>in</strong>g microscopy (CLSM) studies. The<br />

performance <strong>of</strong> <strong>the</strong> materials <strong>in</strong> multilayer devices was<br />

<strong>in</strong>vestigated. Us<strong>in</strong>g 3-v<strong>in</strong>ylcarbazole-based build<strong>in</strong>g blocks<br />

<strong>in</strong>stead <strong>of</strong> conventional N-v<strong>in</strong>ylcarbazole led to a reduction <strong>of</strong><br />

carbazole-excimer formation <strong>in</strong> <strong>the</strong> polymeric materials upon<br />

excitation. This provided a higher triplet level for <strong>the</strong> host material<br />

compared to PVK and made it more suitable for phosphors with a<br />

high triplet energy. Sato and co-workers <strong>in</strong>vestigated iridium(III)<br />

complex conta<strong>in</strong><strong>in</strong>g polymeric systems, which were obta<strong>in</strong>ed by<br />

radical copolymerization as well. [33,142–145] They focused on<br />

copolymers from N-v<strong>in</strong>ylcarbazole and bis-cyclometallated Ir III<br />

complexes coord<strong>in</strong>ated to an acetoacetonate or a picol<strong>in</strong>ate ligand,<br />

which were te<strong>the</strong>red to styryl- or v<strong>in</strong>yl-functionalities. [33,142–144]<br />

The authors also reported on a terpolymer emerg<strong>in</strong>g from<br />

<strong>the</strong> copolymerization <strong>of</strong> v<strong>in</strong>yl-functionalized TPD and a<br />

1,3,4-oxadiazole derivative with bis-cyclometallated Ir III complexes<br />

possess<strong>in</strong>g an acetoacetonate ligand bear<strong>in</strong>g a styryl-function. [145]<br />

The copolymers functionalized with red, green, or blue<br />

phosphorescent emitters were <strong>in</strong>vestigated with respect to <strong>the</strong>ir<br />

performance <strong>in</strong> multilayer OLEDs. <strong>Recent</strong>ly, Ulbricht et al.<br />

described <strong>the</strong> copolymerization <strong>of</strong> a bis-cyclometallated Ir III<br />

complex coord<strong>in</strong>at<strong>in</strong>g a methacrylate-equipped acetoacetate<br />

ligand with methyl methacrylate by free radical polymerization<br />

(us<strong>in</strong>g AIBN as <strong>in</strong>itiator) and with a methacrylate-carbazole<br />

derivative apply<strong>in</strong>g atom transfer radical polymerization (ATRP)<br />

conditions (Scheme 4), respectively. [146] Unlike <strong>in</strong> PVK <strong>the</strong><br />

carbazole-moieties <strong>of</strong> <strong>the</strong> ATRP-copolymer were <strong>in</strong>troduced with<br />

a spacer to <strong>the</strong> polymeric backbone, which should even more<br />

suppress <strong>the</strong> formation <strong>of</strong> excimers [170] as <strong>in</strong> <strong>the</strong> case <strong>of</strong><br />

3-v<strong>in</strong>ylcarbazole based polymers. [141] An almost exclusive emission<br />

from <strong>the</strong> complex <strong>in</strong> highly diluted solutions <strong>in</strong>dicated an<br />

efficient <strong>in</strong>tramolecular energy transfer from <strong>the</strong> carbazole units<br />

to <strong>the</strong> triplet emitter.<br />

In order to syn<strong>the</strong>size conjugated polymers, polycondensation<br />

is usually <strong>the</strong> method <strong>of</strong> choice. For <strong>the</strong> preparation <strong>of</strong> conjugated<br />

polymeric systems conta<strong>in</strong><strong>in</strong>g phosphorescent Ir III complexes,<br />

<strong>the</strong> Suzuki cross-coupl<strong>in</strong>g [36,93–95,119,120,147–162,164–169] as well as<br />

<strong>the</strong> Yamamoto coupl<strong>in</strong>g [120,147,163,168] found widespread application.<br />

In <strong>the</strong> Suzuki reaction, arylic boronic acids or <strong>the</strong>ir esters<br />

are cross-coupled with arylic brom<strong>in</strong>es <strong>in</strong> <strong>the</strong> presence <strong>of</strong> a<br />

Pd 0 -catalyst lead<strong>in</strong>g to <strong>the</strong> formation <strong>of</strong> arylic carbon–carbon<br />

bonds. Us<strong>in</strong>g <strong>the</strong> Yamamoto method arylic brom<strong>in</strong>es are reacted<br />

with equimolar amounts <strong>of</strong> Ni(cod) 2 yield<strong>in</strong>g coupled aromatic<br />

systems.<br />

Independently from <strong>the</strong> applied coupl<strong>in</strong>g method (i.e., Suzuki<br />

or Yamamoto), all reported Ir III complexes used <strong>in</strong> <strong>the</strong> formation<br />

<strong>of</strong> conjugated polymeric systems are equipped with two arylic<br />

bromo-functionalities. Depend<strong>in</strong>g on <strong>the</strong> desired structural<br />

embedd<strong>in</strong>g <strong>of</strong> <strong>the</strong> complex <strong>in</strong> <strong>the</strong> f<strong>in</strong>al conjugated polymer<br />

(Scheme 4 and 5), different possibilities are used to anchor <strong>the</strong><br />

two reactive-sites at <strong>the</strong> complex. Both functionalities can be<br />

<strong>in</strong>troduced with <strong>the</strong> ancillary or a third cyclometallat<strong>in</strong>g ligand<br />

form<strong>in</strong>g <strong>the</strong> accord<strong>in</strong>g bis-cyclometallated or heteroleptic<br />

tris-cyclometallated Ir III species, respectively. Ano<strong>the</strong>r possibility<br />

is <strong>the</strong> coord<strong>in</strong>ation <strong>of</strong> a ligand te<strong>the</strong>red to a bis-brom<strong>of</strong>unctionalized<br />

aromatic system. As an alternative to <strong>the</strong><br />

<strong>in</strong>troduction <strong>of</strong> both reactive sites by one ligand, chloro-bridged<br />

iridium(III) precursor complexes bear<strong>in</strong>g one reactive site per<br />

ligand can be used for <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> bis-cyclometallated and<br />

heteroleptic tris-cyclometallated iridium(III) complexes possess<strong>in</strong>g<br />

two bromo-equipped cyclometallat<strong>in</strong>g ligands. These<br />

different possibilities <strong>of</strong> <strong>in</strong>troduc<strong>in</strong>g <strong>the</strong> complex moiety lead<br />

to a diversity <strong>of</strong> conjugated polymeric structures (Scheme 4<br />

and 5). All reported non-conjugated systems can be summarized<br />

as polymer-te<strong>the</strong>red complexes. Analogous conjugated assemblies,<br />

where complexes are attached with or without spacers to a<br />

carbazole or a fluorene moiety <strong>of</strong> a conjugated backbone, were<br />

described. In o<strong>the</strong>r cases, however, one or two <strong>of</strong> <strong>the</strong> complex<br />

ligands are <strong>in</strong>tegral parts <strong>of</strong> <strong>the</strong> conjugated polymeric backbone<br />

PROGRESS REPORT<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4427


www.advmat.de<br />

PROGRESS REPORT<br />

(Scheme 5). This group <strong>of</strong> materials can be fur<strong>the</strong>r subclassified<br />

depend<strong>in</strong>g on <strong>the</strong> <strong>in</strong>volved ligand(s) (Scheme 4 and 5). The<br />

ancillary ligand (e.g., bipyrid<strong>in</strong>e or 1,5-bis-phenyl-acetoacetone)<br />

<strong>in</strong> bis-cyclometallated complexes as well as one <strong>of</strong> <strong>the</strong> ligands <strong>in</strong><br />

heteroleptic tris-cyclometallated complexes can be <strong>in</strong>corporated<br />

with<strong>in</strong> <strong>the</strong> backbone. Ano<strong>the</strong>r possibility is to apply both<br />

cyclometallat<strong>in</strong>g ligands <strong>of</strong> a bis-cyclometallated complex as<br />

polycondensation endcappers, form<strong>in</strong>g a polymer backbone<br />

where conjugation is <strong>in</strong>terrupted by <strong>the</strong> metal centers <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>corporated complexes. Examples us<strong>in</strong>g respective heteroleptic<br />

tris-cyclometallated Ir III complexes are not described yet.<br />

Non-conjugated and conjugated systems possess dist<strong>in</strong>ct<br />

features, particularly regard<strong>in</strong>g optical applications. Conjugated<br />

polymers are expected to provide better charge transport to <strong>the</strong><br />

emitter, but <strong>the</strong> performance can suffer from <strong>the</strong> usually ra<strong>the</strong>r<br />

low triplet energy level <strong>of</strong> <strong>the</strong> polymeric backbone <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

probability <strong>of</strong> energy back-transfer from <strong>the</strong> emitter to <strong>the</strong><br />

polymer. Therefore, most <strong>of</strong> <strong>the</strong> current examples deal<strong>in</strong>g with<br />

conjugated polymeric hosts systems are focused on red triplet<br />

emitters. In contrast to this, non-conjugated polymers usually<br />

possess ra<strong>the</strong>r high triplet energy levels and can, <strong>the</strong>refore, be<br />

seen as more universal host systems, which are also able to deal<br />

with high bandgap emitters, i.e., also blue emitters with ra<strong>the</strong>r<br />

high LUMO levels. [182] However, <strong>the</strong> design <strong>of</strong> conjugated<br />

polymers with comparatively high triplet energy levels is <strong>in</strong><br />

progress. [111,171]<br />

Besides complex monomers, ma<strong>in</strong>ly two co-build<strong>in</strong>g block<br />

motifs – 2,7-l<strong>in</strong>ked 9,9-difunctionalized-fluorene and 3,6-bound<br />

9-functionalized-carbazole – are used <strong>in</strong> <strong>the</strong> formation <strong>of</strong> <strong>the</strong>se<br />

conjugated polymeric systems. They are <strong>in</strong>troduced as<br />

dibromo and/or di(boronic acid ester) derivatives (Scheme 6).<br />

Chen et al. presented some <strong>of</strong> <strong>the</strong> earliest examples <strong>of</strong><br />

iridium(III) complex-conta<strong>in</strong><strong>in</strong>g conjugated polymeric systems.<br />

By cocondensat<strong>in</strong>g fluorene species via Suzuki and Yamamoto<br />

coupl<strong>in</strong>g, a number <strong>of</strong> 2,7-l<strong>in</strong>ked polyfluorenes with vary<strong>in</strong>g<br />

substituents <strong>in</strong> <strong>the</strong> 9-position were obta<strong>in</strong>ed. Dioctyl, bis(Ncarbazolyl-decyl),<br />

and 9-hexyl-9-(11,13-dioxo-tetradecyl) coord<strong>in</strong>at<strong>in</strong>g<br />

a bis-cyclometallated iridium(III) complex were <strong>the</strong><br />

substituents applied. [147] The performance <strong>of</strong> <strong>the</strong> obta<strong>in</strong>ed<br />

copolymers was <strong>in</strong>vestigated <strong>in</strong> solution-processed devices<br />

(ITO/PEDOT/emissive polymer/Au/Al) exhibit<strong>in</strong>g red emission.<br />

Mei et al., [151] Evans et al. [148] as well as Cao and<br />

co-workers [149,150,153] used <strong>the</strong> same structural approach. Utiliz<strong>in</strong>g<br />

<strong>the</strong> Suzuki cross-coupl<strong>in</strong>g method, conjugated polymers<br />

bear<strong>in</strong>g phosphorescent Ir III complexes <strong>in</strong> <strong>the</strong> side cha<strong>in</strong> were<br />

obta<strong>in</strong>ed. Also here <strong>the</strong> bis-cyclometallated Ir III complexes were<br />

Scheme 6. Schematic representation <strong>of</strong> <strong>the</strong> most widely used co-build<strong>in</strong>g<br />

blocks <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> conjugated polymeric systems host<strong>in</strong>g phosphorescent<br />

iridium(III) complexes – 2,7-bis(bromo/boronic acid ester)-9,9-<br />

dialkylfluorene (left) and 3,6-bis(bromo/boronic acid ester)-9-<br />

alkylcarbazole (right).<br />

te<strong>the</strong>red via a b-diketonate ligand to <strong>the</strong> polymeric backbone. Mei<br />

et al. cocondensated <strong>the</strong> same fluorene-complex motif used by<br />

Chen et al. [147] with dialkylfluorene derivatives. [151] As <strong>the</strong> relative<br />

<strong>in</strong>corporation rates <strong>of</strong> <strong>the</strong> applied monomers determ<strong>in</strong>e <strong>in</strong> part<br />

<strong>the</strong>ir distribution with<strong>in</strong> <strong>the</strong> formed copolymer cha<strong>in</strong>, Evans et al.<br />

applied a system narrowed down to two complementary<br />

components. Cross-coupl<strong>in</strong>g di(boronic ester)-dialkylfluorene<br />

macromonomers (approximately 15 and 16 fluorene units,<br />

respectively) and fluorene-complex monomer with each o<strong>the</strong>r,<br />

compositional drifts <strong>in</strong> <strong>the</strong> f<strong>in</strong>al copolymers, as well as a close<br />

proximity <strong>of</strong> complexes with<strong>in</strong> a cha<strong>in</strong> were excluded. [148] The<br />

respective applied fluorene-complex monomer possessed ei<strong>the</strong>r<br />

an octyl-spacer between <strong>the</strong> fluorene moiety and <strong>the</strong> complex or a<br />

spacerless connection. It could be demonstrated that <strong>the</strong><br />

<strong>in</strong>troduction <strong>of</strong> a non-conjugated spacer between <strong>the</strong> phosphor<br />

and <strong>the</strong> conjugated polymer backbone is beneficial for <strong>the</strong><br />

emission efficiency <strong>of</strong> <strong>the</strong> system. The spacerless system<br />

considerably suffered from triplet energy back-transfer from<br />

<strong>the</strong> complex to <strong>the</strong> polymer.<br />

Instead <strong>of</strong> fluorene-complex comb<strong>in</strong>ations, Cao and co-workers<br />

made use <strong>of</strong> carbazole-bound complexes <strong>in</strong> <strong>the</strong>ir syn<strong>the</strong>ses <strong>of</strong><br />

conjugated polymers with iridium(III) complexes <strong>in</strong> <strong>the</strong> side<br />

cha<strong>in</strong>s. [149,150,153] They coord<strong>in</strong>ated 3,6-dibromo-N-(14-<br />

trifluoro-11, 13-dioxo-tetradecyl)-carbazole as ancillary ligand<br />

to form monomer-te<strong>the</strong>red bis-cyclomettalated Ir III complexes.<br />

Co-condensations <strong>of</strong> bis-(boronic acid ester)-dialkylfluorene with<br />

dibromo-N-alkyl-carbazole and different carbazole-complex<br />

monomers resulted <strong>in</strong> a number <strong>of</strong> copolymers<br />

(Scheme 4). [149] In fur<strong>the</strong>r <strong>in</strong>vestigations, modified assemblies<br />

were prepared exchang<strong>in</strong>g dibromo-N-alkyl-carbazole with<br />

4,7-dibromo-2,1,3-benzothiadiazole and dibromo-dialkylfluorene<br />

<strong>in</strong> <strong>the</strong> coupl<strong>in</strong>g mixtures. [150,152] Systems consist<strong>in</strong>g <strong>of</strong> red<br />

phosphors bound to <strong>the</strong> fluorene-alt-carbazole backbones<br />

revealed an efficient energy transfer from backbone to emitter<br />

upon photoexcitation <strong>in</strong> films. The electrolum<strong>in</strong>escence (EL)<br />

spectra exhibited almost no emission orig<strong>in</strong>at<strong>in</strong>g from <strong>the</strong><br />

polymer matrix even at ra<strong>the</strong>r low complex load<strong>in</strong>gs (e.g., 0.5%).<br />

In an optimized device configuration (multilayer; EML doped<br />

with electron transporter), a maximum EQE <strong>of</strong> 4.9% and a<br />

lum<strong>in</strong>ous efficiency <strong>of</strong> 4.0 cd A 1 with 240 cd m 2 at a bias voltage<br />

<strong>of</strong> 7.7 V and peak emission at 610 nm were recorded. [149] The<br />

o<strong>the</strong>r systems consist<strong>in</strong>g <strong>of</strong> blue (fluorene moieties) and green<br />

([2,1,3]-benzothiadiazole moieties) fluorophors, as well as red<br />

(te<strong>the</strong>red Ir III complexes) phosphors were optimized for <strong>the</strong><br />

emission <strong>of</strong> white light by adjust<strong>in</strong>g <strong>the</strong> green and red emitter<br />

content. White light with CIE coord<strong>in</strong>ates very close to <strong>the</strong><br />

optimum could be obta<strong>in</strong>ed. [150,153]<br />

Wu et al. cross-coupled a mixture <strong>of</strong> bis(boronic acid<br />

ester)-dialkylfluorene, three different dibromo-fluorene derivatives,<br />

and 4,7-dibromo-2,1,3-benzothiadiazole to obta<strong>in</strong> conjugated<br />

copolymer systems bear<strong>in</strong>g bis-cyclometallated Ir III complexes.<br />

[152] The phosphorescent emitter possessed a spacerless<br />

connection via <strong>the</strong> five-position <strong>of</strong> its picol<strong>in</strong>ate ligand to a<br />

fluorene unit <strong>of</strong> <strong>the</strong> polymeric backbone. Similar to Cao’s reports,<br />

<strong>the</strong> content <strong>of</strong> green fluorophor and red phosphor were varied<br />

with<strong>in</strong> a blue-emitt<strong>in</strong>g matrix to obta<strong>in</strong> white emission.<br />

To support <strong>the</strong> charge transport, hole- (triarylam<strong>in</strong>e units) as<br />

well as electron-transport motifs (oxadiazole derivatives) were<br />

<strong>in</strong>troduced with fluorene build<strong>in</strong>g blocks. White light with<br />

4428 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

contributions from all three primary colors and with <strong>the</strong> CIE<br />

coord<strong>in</strong>ates close to <strong>the</strong> equal-energy white po<strong>in</strong>t was obta<strong>in</strong>ed<br />

from a s<strong>in</strong>gle EML device configuration. A maximum lum<strong>in</strong>ance<br />

efficiency (LE) <strong>of</strong> 8.2 cd A 1 and a power conversion efficiency<br />

(PCE) <strong>of</strong> 7.2 lm W 1 could be realized.<br />

The monomers differ<strong>in</strong>g <strong>in</strong> <strong>the</strong>ir substituents (e.g., complex,<br />

alkyl, etc.) can be expected to possess similar reactivity, which<br />

should promote a statistical <strong>in</strong>corporation with<strong>in</strong> <strong>the</strong> f<strong>in</strong>al<br />

copolymers (i.e., compositional drifts might be avoided).<br />

While <strong>the</strong> non-conjugated anchor<strong>in</strong>g as a side-group can<br />

usually be expected to have only m<strong>in</strong>or effects on <strong>the</strong><br />

phosphorescent emitter, <strong>the</strong> <strong>in</strong>corporation with<strong>in</strong> conjugated<br />

systems can result <strong>in</strong> considerable changes <strong>in</strong> <strong>the</strong> optical<br />

behavior. As mentioned previously, extend<strong>in</strong>g <strong>the</strong> conjugation<br />

on cyclometallat<strong>in</strong>g ligands is usually accompanied by a clear<br />

bathochromic shift <strong>in</strong> absorption and emission. For ancillary<br />

ligands such as bipyrid<strong>in</strong>e and 1,5-bis(phenyl) acetoacetone, <strong>the</strong><br />

effect on <strong>the</strong> optical properties <strong>of</strong> <strong>the</strong> complex appears to be less<br />

pronounced.<br />

Cao and co-workers reported <strong>the</strong> <strong>in</strong>corporation <strong>of</strong> biscyclometallated<br />

Ir III complexes via <strong>the</strong>ir ancillary ligands,<br />

1,5-bis( p-bromophenyl)-acetoacetone and 1-(p-bromophenyl)-<br />

acetoacetone, <strong>in</strong>to polymeric structures as monomer and endcapper<br />

units, respectively. A variety <strong>of</strong> polymers were obta<strong>in</strong>ed by<br />

cocondensat<strong>in</strong>g <strong>the</strong> complex monomers, <strong>the</strong> complex endcappers,<br />

dibromo-dialkylfluorene, dibromo N-alkylcarbazole,<br />

and/or dibromo fluorenone with bis(boronic acid ester)-<br />

dialkylfluorene via Suzuki cross-coupl<strong>in</strong>g. [156–160] Besides a<br />

number <strong>of</strong> red-emitt<strong>in</strong>g systems, [156,158–160] white-emitt<strong>in</strong>g<br />

copolymers were obta<strong>in</strong>ed. [157] Instead <strong>of</strong> benzothiadiazole as<br />

<strong>in</strong> <strong>the</strong> previous examples <strong>of</strong> white-emitt<strong>in</strong>g systems, [152]<br />

fluorenone was applied as green-emitt<strong>in</strong>g species (Scheme 5).<br />

In ano<strong>the</strong>r variant <strong>of</strong> this approach, Huang and co-workers<br />

syn<strong>the</strong>sized charged bis-cyclometallated Ir III complexes conta<strong>in</strong><strong>in</strong>g<br />

dibromo-bipyrid<strong>in</strong>e or dibromo-phenanthrol<strong>in</strong>e. Apply<strong>in</strong>g<br />

<strong>the</strong> Suzuki cross-coupl<strong>in</strong>g reaction, bis(boronic acid ester)-<br />

dialkylfluorene was cocondensated with <strong>the</strong> complex monomers,<br />

dibromo-dialkylfluorene, N-alkylcarbazole, and/or dibromo<br />

bis(N-carbazolyl-alkyl) fluorene. [93–95] Several red-emitt<strong>in</strong>g materials<br />

were obta<strong>in</strong>ed and <strong>in</strong>vestigated. While blended systems <strong>of</strong><br />

charged complexes with<strong>in</strong> hydrophobic conjugated polymers<br />

suffered from phase segregation, <strong>the</strong> imbedd<strong>in</strong>g <strong>of</strong> <strong>the</strong> complexes<br />

<strong>in</strong> <strong>the</strong> polymer backbone promotes <strong>the</strong>ir compatibility. The<br />

copolymers showed dist<strong>in</strong>ctly improved host–guest energytransfer<br />

compared to blended systems. However, lum<strong>in</strong>ance<br />

and efficiency <strong>of</strong> devices apply<strong>in</strong>g <strong>the</strong>se materials were found to<br />

be <strong>in</strong>ferior to assemblies based on neutral Ir III complexes.<br />

Therefore, fur<strong>the</strong>r device optimization is required.<br />

Instead <strong>of</strong> a symmetrical build<strong>in</strong>g block, Kappaun et al.<br />

<strong>in</strong>troduced commercially available 5,7-dibromo-8-hydroxyqu<strong>in</strong>ol<strong>in</strong>e<br />

as ancillary ligand. The obta<strong>in</strong>ed complex and dibromo<br />

dialkylfluorene were reacted with di(boronic acid ester) dialkylfluorene<br />

under <strong>the</strong> conditions <strong>of</strong> Suzuki cross-coupl<strong>in</strong>g. [169]<br />

Us<strong>in</strong>g <strong>the</strong> pure material <strong>in</strong> a device, only weak red electrolum<strong>in</strong>escence<br />

was obta<strong>in</strong>ed. By dilut<strong>in</strong>g <strong>the</strong> material <strong>in</strong><br />

polyfluorene, white light (CIE: x ¼ 0.30, y ¼ 0.35) was emitted<br />

from <strong>the</strong> device.<br />

Ito et al. presented <strong>the</strong> first example <strong>of</strong> heteroleptic<br />

tris-cyclometallated Ir III complexes implemented via one <strong>of</strong> <strong>the</strong>ir<br />

ligands <strong>in</strong>to a conjugated polymeric structure. Coupl<strong>in</strong>g <strong>the</strong><br />

2,5-bis(2-bromo-dialkylfluorene)-pyrid<strong>in</strong>e ligand <strong>of</strong> <strong>the</strong> complex<br />

with bis(boronic acid ester)-dialkylfluorene under Suzuki crosscoupl<strong>in</strong>g<br />

conditions yielded a polymeric material with high<br />

complex load<strong>in</strong>g (approximately 50 wt%). [154] A device apply<strong>in</strong>g<br />

<strong>the</strong> red-emissive copolymer as EML showed ra<strong>the</strong>r poor<br />

performance, which was ma<strong>in</strong>ly attributed to concentration<br />

quench<strong>in</strong>g. Blend<strong>in</strong>g <strong>the</strong> copolymer with 4,4 0 -N,N 0 -carbazolebiphenyl<br />

(CBP) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,<br />

4-oxadiazole (PDB) could significantly improve <strong>the</strong> device output<br />

from 0.03 to 0.63% maximum EQE.<br />

Schulz et al., [119] Zhang et al., [155] and Langecker and<br />

Rehahn [120] made use <strong>of</strong> <strong>the</strong> same heteroleptic triscyclometallated<br />

complex, fac-bis(2-phenylpyrid<strong>in</strong>e-C 2 ,N 0 )[2-( p-<br />

bromophenyl)-5-bromopyrid<strong>in</strong>e-C 2 ,N 0 ]iridium(III), to assemble<br />

<strong>the</strong>ir polymer variants, respectively.<br />

Aside from <strong>the</strong> previously mentioned complexation reactions<br />

at polymer-<strong>in</strong>herent ligand sites towards polymer-imbedded<br />

heteroleptic tris-cyclometallated Ir III complexes, Langecker and<br />

Schulz et al., made use <strong>of</strong> coupl<strong>in</strong>g reactions to directly syn<strong>the</strong>size<br />

such systems. Schulz et al. cocondensated bis(boronic acid<br />

ester)-dialkylfluorene with 3,4-dibromothiophene and complex<br />

monomers. [119] Two iridium(III)-conta<strong>in</strong><strong>in</strong>g polymers exhibit<strong>in</strong>g<br />

red and greenish-yellow emission, respectively, were obta<strong>in</strong>ed.<br />

While only traces <strong>of</strong> complex emission could be found <strong>in</strong> PL<br />

spectra <strong>of</strong> solutions, energy transfer from <strong>the</strong> host to <strong>the</strong> emitter<br />

was observed <strong>in</strong> films. In EL spectra, <strong>the</strong> host emission was<br />

almost completely quenched.<br />

Langecker and Rehahn compared <strong>the</strong> Suzuki and Yamamoto<br />

coupl<strong>in</strong>g reactions with respect to <strong>the</strong>ir performance <strong>in</strong> <strong>the</strong><br />

syn<strong>the</strong>sis <strong>of</strong> such complex-conta<strong>in</strong><strong>in</strong>g conjugated systems. The<br />

complex monomer was coupled ei<strong>the</strong>r with just dibromodialkylfluorene<br />

(Yamamoto) or with additional equimolar<br />

amounts <strong>of</strong> 1,4-bis(boronic acid ester)-2,5-dialkylbenzene<br />

(Suzuki). Due to dist<strong>in</strong>ctly higher yields and higher degrees <strong>of</strong><br />

polymerization, <strong>the</strong> Yamamoto coupl<strong>in</strong>g reaction was found to be<br />

<strong>the</strong> superior method for <strong>the</strong> direct syn<strong>the</strong>sis <strong>of</strong> <strong>the</strong> desired<br />

polymers. [120] In Suzuki cocondensations, <strong>the</strong> complex monomers<br />

appeared to act as endcappers, which was attributed to a<br />

lower reactivity <strong>of</strong> <strong>the</strong> brom<strong>in</strong>e function at <strong>the</strong> phenyl r<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

cyclometallat<strong>in</strong>g ligand. Comparable to previous examples, <strong>the</strong> PL<br />

spectra from solutions are dom<strong>in</strong>ated by host emission. In films,<br />

energy transfer occurs from host to guest.<br />

In Suzuki cross-coupl<strong>in</strong>g reactions, Zhang et al. cocondensated<br />

bis(boronic acid ester)-dialkylfluorene with complex monomer and<br />

dibromo-di(3-dimethylam<strong>in</strong>o)-propyl-fluorene. By quarternation<br />

<strong>of</strong> <strong>the</strong> te<strong>the</strong>red am<strong>in</strong>o functions with bromoethane, <strong>the</strong> obta<strong>in</strong>ed<br />

copolymers were transformed <strong>in</strong>to polyelectrolytes. [155] Beside <strong>the</strong><br />

commonly used low work-function cathode material (Ba/Al), high<br />

work-function Al- and Au-cathodes were applied <strong>in</strong> <strong>the</strong> device<br />

configurations (ITO/PEDOT:PSS/PVK/emissive copolymer/cathode).<br />

Us<strong>in</strong>g a non-quaternized copolymer, similar performances<br />

were observed – EQEs <strong>of</strong> 0.54% (Au), 0.69% (Al), and 0.79% (Ba/<br />

Al) were obta<strong>in</strong>ed. It seems that <strong>the</strong> am<strong>in</strong>o groups facilitate <strong>the</strong><br />

electron <strong>in</strong>jection from high work-function metals. The quaternized<br />

materials, however, exhibited much lower device efficiency,<br />

and no LEC characteristics were found.<br />

Sandee et al., [167] Cao and co-workers [36,161,162,164–166] as well as<br />

Lee et al. [163] reported complex-conta<strong>in</strong><strong>in</strong>g polymers with metal<br />

PROGRESS REPORT<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4429


www.advmat.de<br />

PROGRESS REPORT<br />

centers <strong>in</strong>terrupt<strong>in</strong>g <strong>the</strong> conjugation. They all used Ir III<br />

complexes conta<strong>in</strong><strong>in</strong>g two bromo-functionalized<br />

cyclometallat<strong>in</strong>g ligands and acetoacetonate or an analogue<br />

(e.g., 2,2,6,6-tetramethyl-3,5-heptanedione) as an ancillary<br />

ligand.<br />

In <strong>the</strong> first contribution deal<strong>in</strong>g with this polymer class,<br />

Sandee et al. applied such bis-cyclometallated Ir III acetoacetonate<br />

complexes as endcappers <strong>in</strong> Suzuki cross-coupl<strong>in</strong>g reactions <strong>of</strong><br />

2-(boronic acid ester)-7-bromo-dialkylfluorene, obta<strong>in</strong><strong>in</strong>g acetoacetonate<br />

complexes coord<strong>in</strong>at<strong>in</strong>g two cyclometallat<strong>in</strong>g macroligands.<br />

[167] Photophysical studies revealed a contribution <strong>of</strong> <strong>the</strong><br />

connected fluorene moieties to <strong>the</strong> complex emissive state.<br />

Moderate efficient green-emitt<strong>in</strong>g devices were fabricated. Due to<br />

<strong>the</strong> better energy match between <strong>the</strong> phosphor and <strong>the</strong> fluorene<br />

segments, <strong>the</strong> red-emitt<strong>in</strong>g devices showed a significantly better<br />

efficiency.<br />

Several reports by Cao and co-workers describe related<br />

polymeric systems. Besides <strong>the</strong> complex moieties, ma<strong>in</strong>ly<br />

fluorene and/or carbazole elements were <strong>in</strong>corporated by Suzuki<br />

cross-coupl<strong>in</strong>g reactions. [36,161,162,164–166] Also, 4,7-dibromo-[2,1,<br />

3]-benzothiadiazole was used as an additional comonomer<br />

to tune <strong>the</strong> optical properties towards white emission<br />

(Scheme 6). [166] Polyelectrolytes were obta<strong>in</strong>ed by quaternation<br />

<strong>of</strong> fluor<strong>in</strong>e-te<strong>the</strong>red am<strong>in</strong>o groups [161] <strong>in</strong> a manner analogous to<br />

<strong>the</strong> previously mentioned systems. [155] Besides <strong>the</strong> acetoacetonate<br />

derivatives, picol<strong>in</strong>ate as well as 5-methyl-3-(pyrid<strong>in</strong>e-2-yl)-<br />

1,2,4-triazolate were applied as ancillary ligand. The result<strong>in</strong>g<br />

materials showed dist<strong>in</strong>ct differences <strong>in</strong> <strong>the</strong>ir device performance.<br />

[36] In an early description, Cao and co-workers applied<br />

Yamamoto coupl<strong>in</strong>g reactions to cocondensate Ir III complexes<br />

with different k<strong>in</strong>ds <strong>of</strong> p-dibromo phenyl compounds. Aside from<br />

a coupl<strong>in</strong>g reaction with a bis-cyclometallated acetoacetonate<br />

complex, condensation reactions with fac-tris(3-bromo-phenyl)-<br />

pyrid<strong>in</strong>e) iridium(III) were performed result<strong>in</strong>g <strong>in</strong> hyperbranched<br />

structures. [168]<br />

Lee et al. used <strong>the</strong> Yamamoto coupl<strong>in</strong>g reaction to realize<br />

fur<strong>the</strong>r polymer variants. Complex monomer and dibromodialkylfluorene<br />

were cocondensated, and N-phenyl-4-bromo-1,8-<br />

naphthalimide was applied as endcapper. [163] Besides <strong>the</strong><br />

<strong>in</strong>troduction <strong>of</strong> additional functional structures, <strong>the</strong> use <strong>of</strong><br />

mono-functional species as endcappers enables one to exert an<br />

<strong>in</strong>fluence on <strong>the</strong> f<strong>in</strong>al molar mass and to obta<strong>in</strong> polymers with<br />

quenched cha<strong>in</strong> ends. Analogous to similar reports, <strong>the</strong> emission<br />

<strong>of</strong> white light could be tuned by adapt<strong>in</strong>g <strong>the</strong> ratios <strong>of</strong> <strong>the</strong> blue<br />

(fluorene moieties) and green (naphthalimide endcapper)<br />

flurophores and <strong>the</strong> red phosphor (Ir III complex). The variation<br />

<strong>of</strong> <strong>the</strong> monomer feed ratios is a general method to optimize <strong>the</strong><br />

system with respect to high efficiencies, color purity (or white<br />

emission), and/or light output.<br />

Due to <strong>the</strong> cocondensation <strong>of</strong> analogous functionalities (arylic<br />

brom<strong>in</strong>es), copolymers syn<strong>the</strong>sized by Yamamoto coupl<strong>in</strong>g can<br />

usually be obta<strong>in</strong>ed <strong>in</strong> high molar masses. To realize high molar<br />

mass copolymers by cross-coupl<strong>in</strong>g bis-bromo- with bis(boronic<br />

acid ester)-arylic compounds <strong>in</strong> <strong>the</strong> Suzuki condensation<br />

reaction, an equimolar ratio <strong>of</strong> <strong>the</strong> reactive species is <strong>of</strong> outmost<br />

importance. This can be circumvented by <strong>the</strong> use <strong>of</strong> monomers<br />

equipped with both complementary reactive sites. However, <strong>the</strong><br />

cross-coupl<strong>in</strong>g <strong>of</strong> bis(homo-functionalized) comonomer species<br />

ensures a strictly alternat<strong>in</strong>g <strong>in</strong>corporation with<strong>in</strong> <strong>the</strong> copolymer<br />

syn<strong>the</strong>sized exclud<strong>in</strong>g undesired homo-coupl<strong>in</strong>g <strong>of</strong> complex<br />

monomers.<br />

3.2. Dendritic Systems: A Brief Overview<br />

As an alternative to <strong>the</strong> embedd<strong>in</strong>g <strong>of</strong> phosphorescent emitters<br />

with<strong>in</strong> polymeric systems dendritic assemblies have been<br />

proposed. Like <strong>the</strong> polymeric systems, dendritic structures<br />

can be classified as conjugated [50,51,55,174–180] and nonconjugated<br />

[31,56,181–183] systems. In most cases, a heteroleptic<br />

or homoleptic facial tris-cyclometallated iridium(III) complex<br />

constitutes <strong>the</strong> core with two [173,174] or three [50,51,55,56,172–180]<br />

ligand-te<strong>the</strong>red dendritic arms form<strong>in</strong>g <strong>the</strong> shell. L<strong>in</strong> et al.<br />

reported on a number <strong>of</strong> bis(cyclometallated) Ir III complexes<br />

coord<strong>in</strong>at<strong>in</strong>g dendrimer-functionalized acetoacetonate derivatives<br />

as ancillary ligand. [181] Fur<strong>the</strong>r examples for dendritic<br />

systems with a bis-cyclometallated Ir III complex-core were<br />

presented by Liang et al. Introduc<strong>in</strong>g a dendritic arm with each<br />

cyclometallat<strong>in</strong>g ligand, <strong>the</strong> f<strong>in</strong>al complexes were formed by <strong>the</strong><br />

coord<strong>in</strong>ation <strong>of</strong> 5-methyl-3-(pyrid<strong>in</strong>e-2 0 -yl)-1H-1,2,4-triazole as<br />

ancillary ligand. [178] Usually <strong>the</strong> core–shell assemblies are<br />

obta<strong>in</strong>ed by <strong>the</strong> coord<strong>in</strong>ation <strong>of</strong> dendrimer-equipped ligands to<br />

an iridium(III) metal center. Alternatively, a complex bear<strong>in</strong>g<br />

reactive sites can be equipped with dendritic arms <strong>in</strong><br />

postcomplexation-functionalization reactions. Us<strong>in</strong>g this approach,<br />

Jung et al. condensated a homoleptic tris-cyclometallated Ir III<br />

complex, bear<strong>in</strong>g a carboxylic acid group at each ligand, with<br />

hydroxy-functionalized structures <strong>in</strong> esterification reactions to<br />

form three different dendrimer generations with peripheral<br />

carbazole moieties. [180] Kwong et al. reported on <strong>the</strong><br />

functionalization <strong>of</strong> bis[(4,6-difluorophenyl)-pyrid<strong>in</strong>ato-N,C 20 ]3-<br />

hydroxypicol<strong>in</strong>ate with different dendritic structures by e<strong>the</strong>rification<br />

reactions. Three donor–acceptor (phosphor–dendrimer)<br />

systems connected via <strong>the</strong> ancillary ligand were obta<strong>in</strong>ed. [31]<br />

Aside from carbazole-derived dendritic structures, [31,177,179–181]<br />

triphenylam<strong>in</strong>e-based systems [50,178] were applied to function as<br />

antennas for <strong>the</strong> transfer <strong>of</strong> charge and/or energy to <strong>the</strong> emitt<strong>in</strong>g<br />

center. Based on such tris-cyclometallated Ir III complexes<br />

(Scheme 1), Zhou et al. fabricated devices exhibit<strong>in</strong>g efficient<br />

red emission (h ext ¼ 11.6%, h P ¼ 3.7 lm W 1 ) with high color<br />

purity (CIE x,y-coord<strong>in</strong>ates 0.70, 0.30). [50]<br />

Samuel and co-workers focused <strong>in</strong> particular on phenyl-based<br />

configurations, [55,56,172–177] while You et al. presented a complex<br />

equipped with tetraphenyl silyl moieties. [51]<br />

The possibility to construct highly def<strong>in</strong>ed and very dense<br />

assemblies is <strong>the</strong> most beneficial aspect <strong>of</strong> dendritic systems.<br />

Introduc<strong>in</strong>g a high density <strong>of</strong> antenna moieties <strong>in</strong> close proximity<br />

to <strong>the</strong> emitt<strong>in</strong>g complex core can also improve <strong>the</strong> energyharvest<strong>in</strong>g<br />

and -transfer processes. The bulky dendritic configurations,<br />

fur<strong>the</strong>rmore, support <strong>the</strong> isolation <strong>of</strong> <strong>the</strong> emitt<strong>in</strong>g<br />

centers (i.e., suppression <strong>of</strong> concentration and triplet–triplet<br />

quench<strong>in</strong>g).<br />

However, syn<strong>the</strong>tic effort might be <strong>the</strong> major drawback <strong>of</strong><br />

<strong>the</strong> dendritic approach. With <strong>the</strong> number <strong>of</strong> generations, <strong>the</strong><br />

syn<strong>the</strong>tic demands can grow significantly; decreas<strong>in</strong>g yields are<br />

accompanied by an <strong>in</strong>creas<strong>in</strong>g probability <strong>of</strong> structural defects. In<br />

contrast to <strong>the</strong> dendritic approach, compositional variations <strong>in</strong><br />

polymeric systems can be realized with negligible efforts by<br />

4430 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

adapt<strong>in</strong>g <strong>the</strong> feed ratios. Fur<strong>the</strong>rmore, a large variety <strong>of</strong><br />

monomers is comparatively easily available.<br />

4. Phosphorescent Ir(III) Complexes <strong>in</strong> OLED<br />

<strong>Application</strong>s: A Grow<strong>in</strong>g Field<br />

4.1. General Structure <strong>of</strong> OLEDs<br />

Due to <strong>the</strong>ir very good color reproduction, high color fidelity, low<br />

power requirement, and very good light efficiency, OLEDs have<br />

<strong>the</strong> potential to be superior as batw<strong>in</strong>g radiators <strong>in</strong> contrast to<br />

po<strong>in</strong>t light sources such as light bulbs and <strong>in</strong>organic LEDs.<br />

Devices can be extremely th<strong>in</strong>, flat, and transparent and can be<br />

built up even on flexible substrates. [1,2,182–187] A schematic<br />

representation <strong>of</strong> a multilayer OLED and its mode <strong>of</strong> operation<br />

are depicted <strong>in</strong> Figure 1. It comprises an anode, usually <strong>in</strong>dium<br />

t<strong>in</strong> oxide (ITO), <strong>the</strong> HTL, <strong>the</strong> EML conta<strong>in</strong><strong>in</strong>g a host material and<br />

<strong>the</strong> emissive dopant, <strong>the</strong> HBL, <strong>the</strong> electron-transport<strong>in</strong>g layer<br />

(ETL), and <strong>the</strong> cathode (usually a low work-function metal with an<br />

electron-<strong>in</strong>jection layer). Examples <strong>of</strong> charge-transport<strong>in</strong>g materials<br />

and Ir III emitters applied <strong>in</strong> OLED configurations are<br />

summarized <strong>in</strong> Table 1 and 2. There are also several materials<br />

available which can be contemporaneously used for different<br />

layers due to <strong>the</strong>ir characteristics result<strong>in</strong>g from <strong>the</strong> HOMO and<br />

LUMO level. The claims for <strong>the</strong> host materials are well<br />

summarized by Tsuzuki and Tokito. [202]<br />

Figure 1 illustrates <strong>the</strong> idealized work<strong>in</strong>g pr<strong>in</strong>ciple <strong>of</strong> a<br />

multilayer OLED. The charge carriers, i.e., electrons ( ) and<br />

holes (þ), are <strong>in</strong>jected under <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> an external electrical<br />

field by <strong>the</strong> cathode and anode <strong>in</strong>to <strong>the</strong> ETL and HTL, respectively<br />

(1). The charge transfer is realized via a hopp<strong>in</strong>g-mechanism<br />

between <strong>the</strong> localized p-electron states. The electrons and holes<br />

bounce alongside <strong>the</strong> molecules from one to each o<strong>the</strong>r. After<br />

arriv<strong>in</strong>g at <strong>the</strong> EML, holes and electrons accumulate at <strong>the</strong> LUMO<br />

and HOMO <strong>of</strong> <strong>the</strong> emissive dopant (3). Thereupon, <strong>the</strong><br />

electron–hole pair formation occurs lead<strong>in</strong>g to an exciton<br />

generation (4). [2,182,185,190] The states <strong>of</strong> <strong>the</strong> tightly bound and<br />

Figure 1. Schematic representation <strong>of</strong> <strong>the</strong> general structure <strong>of</strong> a multilayered<br />

high-efficiency electrophosphorescent OLED. After <strong>the</strong> charge<br />

carrier <strong>in</strong>jection (1), hole and electron transport takes place via a hopp<strong>in</strong>g<br />

mechanism along <strong>the</strong> HOMO and LUMO levels <strong>of</strong> <strong>the</strong> molecules, respectively<br />

(2). After accumulation <strong>of</strong> <strong>the</strong> electrons ( ) and holes (þ) <strong>in</strong> <strong>the</strong> active<br />

layer (3), exciton formation occurs and <strong>the</strong>y collapse under light emission<br />

(4). Abbreviations: HTL, hole-transport<strong>in</strong>g layer; EML, emissive layer; HBL,<br />

hole-block<strong>in</strong>g layer; ETL, electron-transport<strong>in</strong>g layer.<br />

localized excitons collapse and recomb<strong>in</strong>e under emission. [189] In<br />

a host–guest system, three processes <strong>in</strong>duc<strong>in</strong>g <strong>the</strong> excitation <strong>of</strong><br />

<strong>the</strong> phosphor are considered: <strong>the</strong> long-range Förster-type transfer<br />

<strong>of</strong> s<strong>in</strong>glet excitons between matrix and guest, <strong>the</strong> short-range<br />

Dexter-type transfer <strong>of</strong> s<strong>in</strong>glet and triplet excitons generated on<br />

<strong>the</strong> host to <strong>the</strong> dopant, as well as charge trapp<strong>in</strong>g and direct<br />

creation <strong>of</strong> s<strong>in</strong>glet and triplet excitons on <strong>the</strong> guest. [190] In<br />

consequence <strong>of</strong> <strong>the</strong> strong sp<strong>in</strong>–orbit coupl<strong>in</strong>g derived from <strong>the</strong><br />

heavy metal atoms, both electrogenerated s<strong>in</strong>glet and triplet<br />

excitons can be utilized for <strong>the</strong> emission. Therefore, an <strong>in</strong>ternal<br />

efficiency <strong>of</strong> 100% can be <strong>the</strong>oretically achieved. [2,10,182,186,191] To<br />

assure an efficient triplet harvest<strong>in</strong>g on <strong>the</strong> metal complex, <strong>the</strong><br />

T 1 –S 0 energy <strong>of</strong> <strong>the</strong> guest has to be smaller than that <strong>of</strong> <strong>the</strong><br />

host. [190] Due to <strong>the</strong> longer lifetime <strong>of</strong> triplet excitons <strong>the</strong>ir<br />

diffusion lengths are up to two magnitudes larger (>1000 Å)<br />

compared to s<strong>in</strong>glet excitons (10–100 Å), [185] which can lead to<br />

exciton leakage. This has to be considered <strong>in</strong> <strong>the</strong> construction <strong>of</strong><br />

devices and can be countered by us<strong>in</strong>g <strong>the</strong> right comb<strong>in</strong>ation <strong>of</strong><br />

PROGRESS REPORT<br />

Table 1. Selected examples <strong>of</strong> OLED materials. [a]<br />

Layer [b] Compounds HOMO [eV] LUMO [eV]<br />

HTL N,N 0 -Bis(1-naphthyl)-N,N 0 -diphenyl-1,1 0 -biphenyl-4,4 0 -diam<strong>in</strong>e (NPB) [1,10,182,183,192,196,207–210,212,214,216] 5.5 [182,188] 2.5 [182]<br />

2.4 [216]<br />

4,4 0 ,4 00 -Tris(N-carbazolyl)-triphenylam<strong>in</strong>e (TCTA) [d] [215] 5.7 [216] 2.3 [216]<br />

EML [c] 4,4 0 -N,N 0 -Dicarbazolebiphenyl (CBP) [e] [183,184,192,196,207,208,214,218] 5.6 [2] 2.3 [2]<br />

5.9 [188,208] 2.5 [188,208]<br />

6.3 [192,217] 3.0 [217]<br />

p-Bis(triphenylsilyl)-benzene (UGH2) [182,203,216] 7.2 [182,216] 2.8 [216]<br />

1,3-Bis(9-carbazolyl)-benzene (mCP) [10,182] 5.9 [182,216] 2.4 [182,216]<br />

HBL Bathocupro<strong>in</strong>e (BCP) [182–184,192,200,208,216,218] 6.5 [182,216] 3.0 [182,216]<br />

5.9 [188] 2.9 [188]<br />

ETL 2-2 0 -2 00 -(1,3,5-Benz<strong>in</strong>etriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBI) [e] [1,10,200] 6.0 [2] 2.8 [182,216]<br />

6.3 [182] 3.0 [188]<br />

Tris(8-hydroxyqu<strong>in</strong>ol<strong>in</strong>ato) alum<strong>in</strong>um (Alq 3 ) [183,184,192,213,214,218] 3.3 [2]<br />

Bathophenanthrol<strong>in</strong>e (Bphen) [e] [209,216] 6.4 [216] 3.0 [216]<br />

[a] For more <strong>in</strong>formation about charge carrier transport<strong>in</strong>g molecular materials and <strong>the</strong>ir applications <strong>in</strong> devices, <strong>the</strong> reader is referred to <strong>the</strong> recent review <strong>of</strong> Shirota and<br />

Kageyama [112]. [b] ITO has a HOMO level <strong>of</strong> 4.7 eV, and MgAg for <strong>the</strong> cathode has a LUMO level <strong>of</strong> 3.7 eV; <strong>the</strong> HOMO <strong>of</strong> LiF/Al is 4.1 eV [180]. [c] Host material for<br />

SMOLEDs. [d] Also usable as host material [194]. [e] Also hole-block<strong>in</strong>g ability.<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4431


www.advmat.de<br />

PROGRESS REPORT<br />

Table 2. Selected examples <strong>of</strong> phosphorescent Ir III dopants for OLED applications.<br />

Emitter Ir III complex HOMO [eV] LUMO [eV]<br />

Blue phosphorescent dopant Bis(4 0 ,6 0 -difluoro-phenylpyrid<strong>in</strong>ato) iridium(III) picol<strong>in</strong>ate (FIrpic) [196,203,207,218]<br />

Bis(4 0 ,6 0 -difluoro-phenylpyrid<strong>in</strong>ato) iridium(III) tetra(1-pyrazolyl)borate (FIr6) [182,203] 6.1 [182] 3.1 [182]<br />

Green phosphorescent dopant Bis(2-phenylpyrid<strong>in</strong>ato) iridium(III) acetylacetonate [Ir(ppy) 2 (acac)] [207] 5.6 [191] 3.0 [191]<br />

fac-Tris(2-phenylpyrid<strong>in</strong>ato) iridium(III) [Ir(ppy) 3 ] [208–210,215] 5.3 [188] 2.8 [188]<br />

5.1 [182] 2.6 [182]<br />

Red phosphorescent dopant Bis(1-(phenyl)isoqu<strong>in</strong>ol<strong>in</strong>ato-N,C 2 ) iridium(III) acetylacetonate [Ir(piq) 2 (acac)] [200,209,210,214,215] 5.2 [188] 3.2 [188]<br />

Bis(2-benzo[b]thiophen-2-yl-pyrid<strong>in</strong>ato) iridium(III) acetylacetonate [Ir(btp) 2 (acac)] [196,207,208,213]<br />

Tris(1-phenylisoqu<strong>in</strong>olato) iridium(III)[Ir(piq) 3 ] [192] 5.1 [192] 3.0 [201]<br />

5.0 [201]<br />

charge transport, charge block<strong>in</strong>g and/or exciton block<strong>in</strong>g<br />

layers. [2] In many cases <strong>the</strong> electron block<strong>in</strong>g layer (EBL) can<br />

be dispensed due to <strong>the</strong> higher mobility <strong>of</strong> <strong>the</strong> holes.<br />

For <strong>the</strong> fabrication <strong>of</strong> OLED layers, a diversity <strong>of</strong> techniques,<br />

such as vacuum deposition, conformal elastomeric mask<strong>in</strong>g, cold<br />

weld<strong>in</strong>g, <strong>the</strong>rmal imag<strong>in</strong>g, organic vapor jet pr<strong>in</strong>t<strong>in</strong>g, or solution<br />

processes (e.g., sp<strong>in</strong>-coat<strong>in</strong>g and <strong>in</strong>kjet pr<strong>in</strong>t<strong>in</strong>g), are used. [184,193]<br />

Vapor deposition is a very accurate process that allows design<strong>in</strong>g<br />

complicated structures by apply<strong>in</strong>g mask techniques, but it is also<br />

ra<strong>the</strong>r <strong>in</strong>tricate, expensive, and limited to <strong>the</strong> handl<strong>in</strong>g <strong>of</strong> small<br />

and <strong>the</strong>rmally stable molecules. In contrast, solution process<strong>in</strong>g<br />

techniques are ra<strong>the</strong>r low-priced, easily applicable to large areas,<br />

and much less restricted regard<strong>in</strong>g <strong>the</strong> processed materials.<br />

While vapor-deposited devices <strong>of</strong>ten exhibit superior characteristics,<br />

solution-processed devices are catch<strong>in</strong>g up to show<br />

comparable performance. [138,192–197]<br />

Besides <strong>the</strong> optimization <strong>of</strong> <strong>the</strong> employed layers, fur<strong>the</strong>r<br />

technical approaches are pursued to improve <strong>the</strong> device<br />

outcoupl<strong>in</strong>g. [196,197] The application <strong>of</strong> transparent organic [198]<br />

or semitransparent metal cathodes [199] leads to so-called<br />

top-emissive devices with high power and EQE, which enables<br />

<strong>the</strong> fabrication <strong>of</strong> fully transparent displays and light<strong>in</strong>g<br />

devices. [197,198] A fur<strong>the</strong>r possibility to classify OLEDs is by<br />

<strong>the</strong> dist<strong>in</strong>guished namely small organic molecules (SMOLEDs),<br />

polymeric systems (PLEDs), and dendritic structures. [1]<br />

4.2. Monochromatic OLEDs<br />

In 2002, Adachi et al. presented a green-emitt<strong>in</strong>g device<br />

conta<strong>in</strong><strong>in</strong>g bis(2-phenylpyrid<strong>in</strong>ato-N,C 2 )iridium(III)-acetylacetonate<br />

[Ir(ppy) 2 (acac)] as dopant featur<strong>in</strong>g a maximum external<br />

efficiency <strong>of</strong> 19.0% and a lum<strong>in</strong>ous power efficiency <strong>of</strong><br />

h P ¼ (60 5) lm W 1 . [191] A recent example for <strong>the</strong> great potential<br />

with respect to device improvement was reported by Zhou et al.<br />

They prepared OLEDs with iridium(III) acetylacetonates where<br />

different ma<strong>in</strong> group elements were <strong>in</strong>troduced as substituents at<br />

<strong>the</strong> cyclometallat<strong>in</strong>g ligands (Scheme 1). Depend<strong>in</strong>g on <strong>the</strong><br />

nature <strong>of</strong> <strong>the</strong> substituent, emission color rang<strong>in</strong>g from bluish<br />

green ( OPh as substituent) to red ( B(mesityl) 2 as substituent)<br />

could be realized. Fur<strong>the</strong>rmore, when <strong>in</strong>corporated <strong>in</strong>to devices,<br />

good power efficiencies (h P ¼ 26.8 to 28.6 lm W 1 ) and external<br />

quantum efficiencies (h ext ¼ 10.3 to 11.1%) were achieved. [183] Xie<br />

et al. exploited <strong>the</strong> positive <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> exciton-collect<strong>in</strong>g<br />

effect <strong>of</strong> a doped HBL. This pr<strong>in</strong>ciple <strong>of</strong> a double-EML led to<br />

improvements <strong>of</strong> <strong>the</strong> power efficiency up to 25–36%. [200]<br />

So far, <strong>the</strong> efficiencies <strong>of</strong> green triplet emitters are usually<br />

superior to red [201] and blue ones. [192] The comparably poor<br />

performance <strong>of</strong> red emitters can be reasoned by <strong>the</strong> energy gap<br />

law. [192] One <strong>of</strong> <strong>the</strong> best true red color device emissions could be<br />

obta<strong>in</strong>ed by Ho et al. us<strong>in</strong>g neutral acetoacetone complexes with<br />

9-arylcarbazole motivs <strong>in</strong> <strong>the</strong> cyclometallated ligands. These<br />

devices showed remarkable external quantum efficiencies <strong>of</strong> 12%<br />

and power efficiencies <strong>of</strong> 5.3 lm W 1 . [192] Beside <strong>the</strong> typical<br />

compounds (Table 1), <strong>the</strong> utilization <strong>of</strong> [Ir(ppy) 2 (acac)] (Table 2) as<br />

host material was demonstrated, whereas <strong>the</strong> host emission was<br />

completely quenched by <strong>the</strong> dopant [Ir(piq) 3 ] (1 wt%) lead<strong>in</strong>g to<br />

an improvement <strong>of</strong> <strong>the</strong> OLED durability due to a lower driv<strong>in</strong>g<br />

voltage. [202]<br />

The design <strong>of</strong> stable, efficient ‘‘deep blue’’ light emitters<br />

rema<strong>in</strong>s a challenge. To obta<strong>in</strong> blue emitters <strong>the</strong> energy gap<br />

between <strong>the</strong> frontier orbitals has to be <strong>in</strong>creased, but this usually<br />

br<strong>in</strong>gs <strong>the</strong> lowest excited states <strong>in</strong> proximity to non-emissive<br />

states, which can become <strong>the</strong>rmally accessible. Therefore, <strong>the</strong><br />

syn<strong>the</strong>sis <strong>of</strong> a deep blue emitter with high QE is ra<strong>the</strong>r<br />

demand<strong>in</strong>g. Frequently employed iridium(III) complexes for<br />

blue OLEDs are, for example, <strong>the</strong> greenish-blue emitt<strong>in</strong>g<br />

bis(4 0 ,6 0 -difluorophenylpyrid<strong>in</strong>ato)iridium(III)-picol<strong>in</strong>ate (FIrpic)<br />

and <strong>the</strong> sky-blue emitt<strong>in</strong>g bis(4 0 ,6 0 -difluorophenylpyrid<strong>in</strong>ato)<br />

iridium(III)-tetra(1-pyrazolyl)-borate (FIr6). Here, for an optimal<br />

device efficiency, host materials with a wide energy bandgap are<br />

required (e.g., UGH2, Table 1). [203] Us<strong>in</strong>g <strong>the</strong> complex<br />

[Ir(dfppy)(fppz) 2 ] (dffpyH: 2-(2,4-difluorophenyl)pyrid<strong>in</strong>e, fppzH:<br />

5-(2-pyridyl)-3-trifluoromethylpyrazole) as dopant enabled <strong>the</strong><br />

construction <strong>of</strong> a deep blue OLED with coord<strong>in</strong>ates (0.16, 0.18)<br />

accord<strong>in</strong>g to CIE. A high EQE <strong>of</strong> up to 8.5% and a power<br />

efficiency h P <strong>of</strong> 8.5 lm W 1 could be obta<strong>in</strong>ed. [205]<br />

4.3. White OLEDs: Grow<strong>in</strong>g Interest <strong>in</strong> <strong>the</strong> Last Few Years<br />

The <strong>in</strong>terest <strong>in</strong> WOLEDs, with focus on applications such as<br />

display backlights and illum<strong>in</strong>ation (Fig. 2), is grow<strong>in</strong>g<br />

significantly. [182,205,206] Merits, such as low driv<strong>in</strong>g voltage, high<br />

efficiency, and freedom <strong>in</strong> <strong>the</strong> design (e.g., large surfaces) are very<br />

appeal<strong>in</strong>g.<br />

As def<strong>in</strong>ed by <strong>the</strong> CIE, <strong>the</strong> x,y-coord<strong>in</strong>ates <strong>of</strong> (0.33, 0.33) <strong>in</strong> <strong>the</strong><br />

chromaticity coord<strong>in</strong>ate system correspond to an ideal white light<br />

source. Moreover, <strong>the</strong> color render<strong>in</strong>g <strong>in</strong>dex (CRI) represents a<br />

4432 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

doped devices or stacked configurations. [213] Due to <strong>the</strong> strong<br />

dependency on <strong>the</strong> host material and <strong>the</strong> stability <strong>of</strong> blue<br />

phosphorescent emitters, <strong>of</strong>ten <strong>the</strong>se are replaced by a blue<br />

fluorophor. [210,214] The general strategy is to utlize <strong>the</strong> energy<br />

from <strong>the</strong> blue fluorescent emission to excite a green and/or a red<br />

triplet emitter [196,205,210] or to suppress <strong>the</strong> triplet–triplet energy<br />

transfer between <strong>the</strong> two phosphorescent dopants if this<br />

fluorescent layer was sandwiched between <strong>the</strong>m. [215] S<strong>in</strong>gle<br />

EML WOLEDs are simple to fabricate, and <strong>the</strong>ir CIE<br />

x,y-coord<strong>in</strong>ates rema<strong>in</strong> stable with chang<strong>in</strong>g current densities<br />

due to <strong>the</strong> existence <strong>of</strong> only one recomb<strong>in</strong>ation zone. The<br />

drawback <strong>of</strong> this approach is <strong>the</strong> comparatively low efficiency. In<br />

contrast, <strong>the</strong> multi-EML structured WOLEDs <strong>in</strong>deed work more<br />

efficiently, but <strong>the</strong>y show <strong>the</strong> above ment<strong>in</strong>oned currentdensity-dependent<br />

CIE x,y-coord<strong>in</strong>ates because <strong>of</strong> <strong>the</strong> recomb<strong>in</strong>ation-zone<br />

shift. [213]<br />

PROGRESS REPORT<br />

Figure 2. Examples <strong>of</strong> white OLEDs, which represent an alternative illum<strong>in</strong>ation<br />

source to <strong>in</strong>candescent light bulbs. (Images reproduced with<br />

permission <strong>of</strong> Philips Light<strong>in</strong>g.).<br />

quantitative measure describ<strong>in</strong>g <strong>the</strong> color shift which occurs<br />

when an object is illum<strong>in</strong>ated by <strong>the</strong> light source and a reference<br />

source <strong>of</strong> comparable color temperature. [206] The CRI values can<br />

range from 0 to 100, whereas 100 <strong>in</strong>dicates no color shift. White<br />

light sources are referred to daylight.<br />

S<strong>in</strong>ce electrophosphorescent OLEDs generally show very<br />

high external quantum (h ext ) and power efficiencies (h P ) for<br />

monochromatic light emission, a comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong>m <strong>in</strong> a s<strong>in</strong>gle<br />

device to achieve white light was a natural consequence. Besides<br />

<strong>the</strong> right choice <strong>of</strong> <strong>the</strong> emitters, <strong>the</strong> right thickness <strong>of</strong> each layer is<br />

essential. [182] Ano<strong>the</strong>r important factor is <strong>the</strong> dopant concentration<br />

<strong>in</strong> <strong>the</strong> s<strong>in</strong>gle layers. [184] Phosphorescent dopant concentrations<br />

<strong>in</strong> WOLEDs range between 0.5 and 11 wt%, whereas <strong>the</strong><br />

requirements are <strong>in</strong> general lower for <strong>the</strong> green and blue dopants,<br />

respectively. [183,199,207–210]<br />

Generally, <strong>the</strong> layout <strong>of</strong> <strong>the</strong> EML ranges between 25 and<br />

40 nm. [199,202,210,211] A th<strong>in</strong> thickness is preferred to ensure low<br />

voltage (


www.advmat.de<br />

PROGRESS REPORT<br />

spectrum <strong>of</strong> <strong>the</strong> WOLED. After device optimization, good<br />

performances were obta<strong>in</strong>ed: h ext ¼ 13.0%, h P ¼ 12.4 lm W 1 ,<br />

and a CRI-value <strong>of</strong> 86. Fur<strong>the</strong>rmore, a stable white color was<br />

achieved with a narrow chromaticity range <strong>of</strong> 0.015 around<br />

(0.40, 0.40). [196] Divergent from this all-phosphor design, Li et al.<br />

used an assembly with NPB (Table 1) as <strong>the</strong> blue-emitt<strong>in</strong>g HTL.<br />

The yellow emission was provided by bis(2-(2-fluorophenyl)-1,3-<br />

benzothiozolato-N,C 2 )iridium(III) acetylacetonate [(F-BT) 2 Ir(acac)].<br />

CIE-coord<strong>in</strong>ates <strong>of</strong> (0.39, 0.41), power efficiency <strong>of</strong> 10.3 lm W 1<br />

and an EQE <strong>of</strong> 8.4% were achieved. [207] In both aforementioned<br />

cases, an additional block<strong>in</strong>g layer between <strong>the</strong> doped layers was<br />

necessary to prevent undesired charge or energy transfer. [196,209]<br />

4.3.3. (O B) Strategy<br />

Due to <strong>the</strong> smaller number <strong>of</strong> dopants, this approach <strong>in</strong>evitably<br />

has <strong>the</strong> <strong>in</strong>herent advantage <strong>of</strong> a lower requirement <strong>of</strong> dye material<br />

and, as a result, lower costs, fewer masks, and a simpler<br />

fabrication process. Wong and co-workers recently reported on a<br />

comb<strong>in</strong>ation <strong>of</strong> an orange-emitt<strong>in</strong>g iridium(III) phosphor<br />

and 5-trifluoromethyl-2-[3-(N-phenylcarbazolyl)]-pyrid<strong>in</strong>e as blue<br />

fluorophor for white emission exhibit<strong>in</strong>g high color stability. [205]<br />

The optimized device configuration yielded a maximum power<br />

efficiency <strong>of</strong> 23 lm W 1 and an electrolum<strong>in</strong>escent device<br />

performance almost <strong>in</strong>variant from <strong>the</strong> applied voltage. In <strong>the</strong><br />

range <strong>of</strong> 6 to 14 V, <strong>the</strong> CIE x,y-coord<strong>in</strong>ates (0.35, 0.38) varied only<br />

for (0.01, 0.01). By this, promis<strong>in</strong>g devices could be obta<strong>in</strong>ed<br />

that outperform some <strong>of</strong> <strong>the</strong> best two-element all-fluorescent and<br />

all-phosphorescent WOLEDs. Only <strong>the</strong> comparatively low CRI<br />

values <strong>of</strong> 50–60 are still <strong>in</strong> need <strong>of</strong> fur<strong>the</strong>r improvement. [205] In<br />

similar approaches yellow phosphorescent iridium complexes<br />

such as bis[2-(4-tert-butylphenyl) benzothiazolato-N,C 2 ]iridium(III)<br />

[(t-bt) 2 Ir(acac)] and bis(2-(2-fluorophenyl)-1,3-benzothiolato-<br />

N,C 2 )iridium(III) acetylacetonate [(F-BT) 2 Ir(acac)] and <strong>the</strong> blue<br />

fluorescent emitter 4,4 0 -bis (2,2 0 -diphenylv<strong>in</strong>yl)-1,1 0 -diphenyl<br />

were applied. [217,218]<br />

Kwok and co-workers demonstrated recently an all-phosphor<br />

EML with FIrPic doped <strong>in</strong> mCP (Table 1) for blue light and an<br />

orange emitt<strong>in</strong>g iridium(III) complex doped <strong>in</strong> CBP. To achieve<br />

good device performance, it was necessary to firstly deposit <strong>the</strong><br />

orange-dye-doped layer and afterwards <strong>the</strong> blue-dye-doped one.<br />

The thus obta<strong>in</strong>ed CIE-coord<strong>in</strong>ates were located at (0.31, 0.41)<br />

and a power efficiency <strong>of</strong> h P ¼ 7.6 lm W 1 was determ<strong>in</strong>ed. [210]<br />

For comparison to <strong>the</strong> aforementioned examples, an<br />

O B-based device constructed by all-fluorescent dopants could<br />

nearly achieve <strong>the</strong> white po<strong>in</strong>t with CIE-coord<strong>in</strong>ates <strong>of</strong> (0.33,<br />

0.34), but with a maximum power efficiency <strong>of</strong> 3.44 lm W 1 . [188]<br />

From ano<strong>the</strong>r fluorescent device possess<strong>in</strong>g a s<strong>in</strong>gle EML<br />

with orange-emitt<strong>in</strong>g 2,1,3-benzothiadiazole derivatives<br />

<strong>in</strong>corporated <strong>in</strong> polyfluorene as blue emitter, a power efficiency<br />

<strong>of</strong> h P ¼ 5.75 lm W 1 and an EQE <strong>of</strong> h ext ¼ 3.8% with CIE<br />

coord<strong>in</strong>ates (0.35, 0.34) was obta<strong>in</strong>ed, [219] which is already good <strong>in</strong><br />

contrast to o<strong>the</strong>r examples. [220]<br />

However, s<strong>in</strong>ce <strong>the</strong> operational lifetime <strong>of</strong> current blue<br />

electrophosphorescent emitters <strong>in</strong> OLEDs is still ra<strong>the</strong>r short,<br />

<strong>the</strong> color stability <strong>of</strong> <strong>the</strong> all-phosphor-doped WOLEDs is still<br />

limited. Therefore, many examples as already mentioned arose<br />

us<strong>in</strong>g o<strong>the</strong>r blue-emitt<strong>in</strong>g materials. [186] Thompson and<br />

co-workers expla<strong>in</strong>ed that <strong>the</strong> blue fluorescent emitter is able<br />

to harness all electrically generated high-energy s<strong>in</strong>glet excitons,<br />

and <strong>the</strong> phosphorescent dopants harvest <strong>the</strong> rema<strong>in</strong>ed lower-energy<br />

triplet excitons for <strong>the</strong> green and red emission. S<strong>in</strong>glet<br />

excitons are transferred follow<strong>in</strong>g a resonant Förster-type process<br />

onto <strong>the</strong> lightly doped blue fluorophor as opposed to direct trap<br />

formation. Plac<strong>in</strong>g an undoped host spacer between <strong>the</strong><br />

fluorophor and <strong>the</strong> phosphors prevents undesired direct energy<br />

transfer and <strong>the</strong>refore m<strong>in</strong>imizes <strong>the</strong> energy loss. This structure<br />

led to an <strong>in</strong>crease <strong>of</strong> <strong>the</strong> power efficiency <strong>of</strong> 20% by energy<br />

transfer compared to ideal all-phosphor devices. The improvement<br />

<strong>of</strong> <strong>the</strong> described architecture compared to all-phosphor<br />

doped WOLEDs is <strong>the</strong> circumstance that blue emission becomes<br />

stronger to a smaller extent with <strong>in</strong>creas<strong>in</strong>g driv<strong>in</strong>g voltage (less<br />

efficiency roll-<strong>of</strong>f at high current densities). [186] Chen et al. could<br />

even show that a color tunability is possible via vary<strong>in</strong>g <strong>the</strong><br />

thickness <strong>of</strong> <strong>the</strong> undoped host spacer. [218]<br />

5. Phosphorescent Ir III Complexes: Look<strong>in</strong>g<br />

Beyond OLED <strong>Application</strong>s<br />

5.1. Lum<strong>in</strong>escent Ir III Complexes <strong>in</strong> LECs<br />

The so far most prom<strong>in</strong>ent application <strong>of</strong> phosphorescent<br />

charged Ir III complexes lies <strong>in</strong> <strong>the</strong> field <strong>of</strong> LECs as alternative to<br />

light-emitt<strong>in</strong>g diodes. [17,221–224] In general, LECs are s<strong>in</strong>gle-layer<br />

electrolum<strong>in</strong>escent devices consist<strong>in</strong>g <strong>of</strong> a lum<strong>in</strong>escent material<br />

<strong>in</strong> comb<strong>in</strong>ation with ionic charges clamped between two<br />

electrodes. Crucial issues, such as efficiency limitation, response<br />

times, multicolor approaches and device lifetimes, were reviewed<br />

by Sl<strong>in</strong>ker et al. [225] The <strong>in</strong>sensitivity towards <strong>the</strong> work-function <strong>of</strong><br />

<strong>the</strong> electrodes is <strong>the</strong> ma<strong>in</strong> characteristic <strong>of</strong> such devices. As a<br />

consequence air-stable metals, such as Au or Ag, can be used. By<br />

apply<strong>in</strong>g an external electric field over <strong>the</strong> device a strong<br />

<strong>in</strong>terfacial electric field, caused by <strong>the</strong> displacement <strong>of</strong> <strong>the</strong> mobile<br />

ionic species towards <strong>the</strong> charged electrodes, is generated. [226]<br />

The thus separated ions <strong>in</strong>duce dop<strong>in</strong>g (i.e., oxidation and<br />

reduction) <strong>of</strong> <strong>the</strong> emissive materials near <strong>the</strong> electrodes (p-type<br />

near <strong>the</strong> anode and n-type near <strong>the</strong> cathode). These doped regions<br />

<strong>in</strong>duce ohmic contacts with <strong>the</strong> electrodes and enhance <strong>the</strong><br />

<strong>in</strong>jection <strong>of</strong> holes and electrons recomb<strong>in</strong><strong>in</strong>g at <strong>the</strong> junction<br />

between p- and n-type regions. Therefore, s<strong>in</strong>gle-layered LECs<br />

can be operated at very low voltages with balanced carrier<br />

<strong>in</strong>jection and high power efficiencies (see also Scheme 2). [227]<br />

Fur<strong>the</strong>rmore, <strong>the</strong> production process via sp<strong>in</strong>-coat<strong>in</strong>g or<br />

<strong>in</strong>kjet-pr<strong>in</strong>t<strong>in</strong>g techniques is comparably simple, s<strong>in</strong>ce LECs<br />

feature a wide tolerance to <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> emitt<strong>in</strong>g layer.<br />

Conjugated polymers to which <strong>in</strong>organic salts or transition<br />

metal complexes were added, were conventionally used. [228,229] In<br />

recent years, <strong>the</strong> focus has shifted more towards cationic<br />

phosphorescent transition metal complexes yield<strong>in</strong>g s<strong>in</strong>glecomponent<br />

LECs. Two advantages over <strong>the</strong> conventional<br />

polymer-based LECs are prom<strong>in</strong>ent: i) no additional ionconduct<strong>in</strong>g<br />

material is required s<strong>in</strong>ce <strong>the</strong> transition metal<br />

complexes are <strong>in</strong>tr<strong>in</strong>sically ionic and ii) higher electrolum<strong>in</strong>escence<br />

efficiencies are reachable due to <strong>the</strong> phosphorescent nature<br />

<strong>of</strong> <strong>the</strong> complexes. [227] Apart from <strong>the</strong> <strong>in</strong>tensively studied LECs<br />

based on [Ru(bpy) 3 ] 2þ and closely related complexes, [1,11,225,230]<br />

4434 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

iridium(III)-based complexes have turned out to be highly<br />

promis<strong>in</strong>g candidates for LEC devices due to <strong>the</strong>ir high quantum<br />

efficiencies. [9,77–80,231–234] As a highlight <strong>in</strong> this respect, <strong>the</strong><br />

green-emitt<strong>in</strong>g complex [(ppy-F 2 ) 2 Ir( t Bu 2 -bpy)](PF 6 ) (Scheme 2)<br />

should be mentioned. It showed <strong>in</strong> th<strong>in</strong> solid film [5 wt% <strong>in</strong><br />

poly(methyl methacrylate)matrix] a PLQY close to unity. [235]<br />

Accord<strong>in</strong>g to Bol<strong>in</strong>k et al., <strong>the</strong> PL quantum yield <strong>in</strong> <strong>the</strong> solid state<br />

can be considered as a limit<strong>in</strong>g factor for <strong>the</strong> device efficiency.<br />

When <strong>in</strong>corporated <strong>in</strong>to a s<strong>in</strong>gle-layer LEC, <strong>in</strong> <strong>the</strong> present case an<br />

EQE <strong>of</strong> almost 15% and a power efficiency <strong>of</strong> 38 lm W 1 were<br />

obta<strong>in</strong>ed.<br />

However, <strong>the</strong> accessible range <strong>of</strong> emission colors and <strong>the</strong><br />

limited temporal stability (from m<strong>in</strong>utes to a few hours) <strong>of</strong> ionic<br />

Ir III complexes compared to <strong>the</strong>ir neutral counterparts used <strong>in</strong><br />

OLEDs rema<strong>in</strong> considerable constrictions. In particular, <strong>the</strong><br />

design <strong>of</strong> efficient blue-emitt<strong>in</strong>g charged Ir III complexes with<br />

respect to <strong>the</strong> generation <strong>of</strong> white light by color-mix<strong>in</strong>g is highly<br />

desirable. Here, <strong>the</strong> major contributions by <strong>the</strong> groups <strong>of</strong><br />

Bernhard [73,74,236] and Nazeerudd<strong>in</strong> [75,237] should be emphasized<br />

(Scheme 2). Fur<strong>the</strong>r color-tun<strong>in</strong>g <strong>of</strong> charged Ir III complexes for<br />

LECs could be realized via tris-cyclometallated complexes with<br />

charged groups, e.g., phosphonium salts, <strong>in</strong> <strong>the</strong> periphery <strong>of</strong> <strong>the</strong><br />

cyclometallat<strong>in</strong>g ligand (Scheme 2). However, <strong>the</strong> <strong>in</strong>stability <strong>of</strong><br />

such devices is still a drawback <strong>of</strong> this approach. [238] As a<br />

promis<strong>in</strong>g step <strong>in</strong> <strong>the</strong> development <strong>of</strong> light<strong>in</strong>g technology, <strong>the</strong><br />

first example <strong>of</strong> a white LEC (WLEC) was realized by Wu and<br />

co-workers [227] by comb<strong>in</strong><strong>in</strong>g a blue-green and a red emitt<strong>in</strong>g<br />

complex <strong>in</strong> a host–guest system. As depicted <strong>in</strong> Figure 3, white<br />

light (x,y-coord<strong>in</strong>ates 0.35 and 0.39, accord<strong>in</strong>g to CIE) with a good<br />

EQE <strong>of</strong> 4% and a power efficiency <strong>of</strong> 7.8 lm W 1 was obta<strong>in</strong>ed.<br />

<strong>Recent</strong> studies by Bol<strong>in</strong>k et al. have shown that <strong>the</strong> second<br />

crucial issue <strong>in</strong> LEC technology, i.e., <strong>the</strong> lifetime <strong>of</strong> such devices,<br />

can be significantly improved by <strong>in</strong>troduc<strong>in</strong>g bulky shield<strong>in</strong>g<br />

ligands <strong>in</strong>to <strong>the</strong> coord<strong>in</strong>ation sphere <strong>of</strong> Ir III (Scheme 2). [239,240]<br />

LECs <strong>in</strong> general exhibit a delay between <strong>the</strong> time when <strong>the</strong> device<br />

is turned on and <strong>the</strong> time when a steady-state light emission is<br />

reached, <strong>the</strong> so-called turn-on time. [1] This important parameter<br />

strongly depends on <strong>the</strong> mobility <strong>of</strong> <strong>the</strong> counterion and can range<br />

from seconds to hours. [225] Previous attempts to improve <strong>the</strong><br />

device turn-on <strong>in</strong>cluded <strong>the</strong> reduction <strong>of</strong> <strong>the</strong> EML thickness [241] or<br />

<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> applied bias above <strong>the</strong> turn-on voltage; [242]<br />

however, <strong>in</strong> <strong>the</strong>se cases <strong>the</strong> efficiency was lowered due to exciton<br />

quench<strong>in</strong>g at <strong>the</strong> electrodes and <strong>the</strong> device lifetimes were<br />

shortened, respectively. Apply<strong>in</strong>g a high-voltage pulse and <strong>the</strong>n<br />

operat<strong>in</strong>g <strong>the</strong> device at lower voltage helped to reduce <strong>the</strong> turn-on<br />

Figure 3. White EL emission from a s<strong>in</strong>gle-layered solid-state LEC based<br />

on host–guest cationic iridium(III) complexes. Image reproduced with<br />

permission <strong>of</strong> [227]. Copyright 2007, The Royal Society <strong>of</strong> Chemistry.<br />

time without affect<strong>in</strong>g <strong>the</strong> lifetime, but this scheme appears not to<br />

be compatible with all device architectures and applications. [243]<br />

Chang<strong>in</strong>g <strong>the</strong> nature <strong>of</strong> <strong>the</strong> counterion <strong>in</strong> charged Ir III complexes<br />

or us<strong>in</strong>g ionic liquids as support<strong>in</strong>g agents could somehow<br />

reduce <strong>the</strong> turn-on times, but it could simultaneously <strong>in</strong>crease <strong>the</strong><br />

degradation <strong>of</strong> <strong>the</strong> devices. [1,244] <strong>Recent</strong>ly, Zysman-Coleman et al.<br />

<strong>in</strong>troduced Ru II and Ir III complexes with bipyrid<strong>in</strong>e ligands<br />

bear<strong>in</strong>g alkyltriethylammonium side cha<strong>in</strong>s to mimic an ionic<br />

liquid. [245] Thus, <strong>the</strong> turn-on times <strong>of</strong> <strong>the</strong> LECs were remarkably<br />

lowered by nearly two orders <strong>of</strong> magnitude compared to<br />

[(ppy) 2 Ir( t Bu 2 -bpy)](PF 6 ); <strong>the</strong>se turn-on times were reported to<br />

be <strong>the</strong> fastest values for devices solely based on heteroleptic Ir III<br />

complexes.<br />

5.2. Phosphorescent Ir III Complexes <strong>in</strong> Oxygen Sens<strong>in</strong>g<br />

The long-lived triplet excited state <strong>of</strong> lum<strong>in</strong>escent iridium(III)<br />

complexes enables <strong>the</strong> efficient transfer <strong>of</strong> energy to <strong>the</strong> triplet<br />

ground state <strong>of</strong> molecular oxygen, result<strong>in</strong>g <strong>in</strong> lum<strong>in</strong>escence<br />

quench<strong>in</strong>g and <strong>the</strong> generation <strong>of</strong> s<strong>in</strong>glet oxygen. [116] This feature<br />

<strong>of</strong> iridium(III) lum<strong>in</strong>ophores can be utilized as sensitive oxygen<br />

probe <strong>in</strong>, e.g., medic<strong>in</strong>al, chemical or environmental sensors.<br />

[34,84,246–248] An experimental array for <strong>the</strong> measurement<br />

<strong>of</strong> oxygen concentration with respect to medic<strong>in</strong>al applications,<br />

i.e., for <strong>in</strong>traocular measurements, was recently <strong>in</strong>troduced by<br />

Nazeerudd<strong>in</strong> and co-workers. [249]<br />

S<strong>in</strong>ce <strong>the</strong> oxygen concentration is <strong>in</strong> general related to sudden<br />

changes <strong>in</strong> <strong>the</strong> lum<strong>in</strong>escence <strong>of</strong> <strong>the</strong> Ir III complex, new materials<br />

with high quantum yields and long excited-state lifetimes (i.e., up<br />

to several microseconds) for reliable, sensitive detection are <strong>the</strong><br />

focus <strong>of</strong> current research. [9] Among o<strong>the</strong>rs, mixed-ligand<br />

iridium(III) complexes are highly promis<strong>in</strong>g candidates, due to<br />

<strong>the</strong>ir well-tunable excited state properties, high durability, and<br />

stability towards <strong>the</strong> generated s<strong>in</strong>glet oxygen. [34] However, for<br />

successful development <strong>of</strong> solid-state iridium(III)-conta<strong>in</strong><strong>in</strong>g<br />

sensors, <strong>the</strong> compatibility <strong>of</strong> <strong>the</strong> lum<strong>in</strong>escent dye with <strong>the</strong><br />

polymer matrix represents a crucial requirement. [115,250,251]<br />

Polymer-dye <strong>in</strong>compatibility or high load<strong>in</strong>g can lead to dye<br />

aggregation and/or phase segregation result<strong>in</strong>g <strong>in</strong> self-quench<strong>in</strong>g<br />

and, <strong>the</strong>refore, poor sensor performance. [117] Oxygen permeable<br />

polymers, e.g., PDMS, fluor<strong>in</strong>ated polyacrylates, poly(thionylphosphazene)s,<br />

and PS, have been widely used as matrix<br />

materials. [9,117] The most promis<strong>in</strong>g approach so far to<br />

circumvent <strong>the</strong>se limitations is <strong>the</strong> covalent l<strong>in</strong>kage <strong>of</strong> <strong>the</strong><br />

iridium(III) dyes to <strong>the</strong> polymer backbone. DeRosa et al. have<br />

reported <strong>the</strong> syn<strong>the</strong>sis <strong>of</strong> well-def<strong>in</strong>ed polymers consist<strong>in</strong>g <strong>of</strong><br />

lum<strong>in</strong>escent Ir III complexes be<strong>in</strong>g attached to l<strong>in</strong>ear<br />

PDMS. [25,116,117] While developments <strong>in</strong> this field are ongo<strong>in</strong>g,<br />

<strong>the</strong> process<strong>in</strong>g <strong>of</strong> <strong>the</strong>se Ir III -PDMS systems with PS resulted <strong>in</strong><br />

permeable blended membranes featur<strong>in</strong>g good material properties,<br />

i.e., relatively hard and stable films as well as good<br />

lum<strong>in</strong>escent sensor response to oxygen.<br />

Beyond <strong>the</strong> development <strong>of</strong> novel lum<strong>in</strong>escent probes for<br />

molecular oxygen, highly sensitive systems based on iridium(III)<br />

complexes for <strong>the</strong> sens<strong>in</strong>g <strong>of</strong> various anions, [252–254] am<strong>in</strong>o<br />

acids, [255] and alkali [256] as well as heavy transition metal<br />

cations [257–259] have been <strong>in</strong>troduced <strong>in</strong> recent years.<br />

PROGRESS REPORT<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4435


www.advmat.de<br />

PROGRESS REPORT<br />

5.3. Cationic Iridium(III) Complexes <strong>in</strong> Bioanalytical<br />

<strong>Application</strong>s<br />

Besides <strong>the</strong> previously discussed chemosensory applications,<br />

<strong>the</strong>ir electrochemical and photophysical properties have made<br />

iridium(III) complexes also highly promis<strong>in</strong>g candidates as<br />

label<strong>in</strong>g reagents and probes <strong>in</strong> biological systems. [9,260–262]<br />

Sensitive, time-resolved detection is enabled due to <strong>the</strong>ir <strong>in</strong>tense<br />

emission and excited-state lifetimes. For applications as label<strong>in</strong>g<br />

compounds for lum<strong>in</strong>escence imag<strong>in</strong>g <strong>in</strong> biomaterials, charged<br />

iridium(III) complexes can be bound covalently [260–265] or<br />

non-covalently, e.g., by DNA or prote<strong>in</strong> <strong>in</strong>tercalation, [261,266] to<br />

biological substrates. Generally, <strong>the</strong> bound complexes exhibit<br />

lum<strong>in</strong>escence properties that significantly differ from that <strong>of</strong> <strong>the</strong><br />

free substrate, due to changes <strong>in</strong> rigidity and hydrophobicity <strong>of</strong><br />

<strong>the</strong> surround<strong>in</strong>gs. [267] Therefore, <strong>the</strong> facile monitor<strong>in</strong>g <strong>of</strong><br />

bioconjunction reactions or <strong>the</strong> <strong>in</strong>vestigation <strong>of</strong> b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities<br />

can be conducted utiliz<strong>in</strong>g such lum<strong>in</strong>escent iridium(III)<br />

complexes. The progress <strong>in</strong> this emerg<strong>in</strong>g field <strong>of</strong> bioanalytical<br />

applications has been topic <strong>of</strong> a number <strong>of</strong> recent reviews by Lo<br />

and co-workers. [18–20]<br />

The exceed<strong>in</strong>g potential <strong>of</strong> charged phosphorescent iridium(III)<br />

complexes <strong>in</strong> modern biomedical research is highlighted<br />

by <strong>the</strong> first example <strong>of</strong> bioimag<strong>in</strong>g <strong>of</strong> liv<strong>in</strong>g cells us<strong>in</strong>g such<br />

complexes. Yu et al. successfully <strong>in</strong>troduced phosphorescent<br />

complexes <strong>in</strong>to <strong>the</strong> cytoplasm <strong>of</strong> cervical cancer cells (HeLa) and<br />

observed low cytotoxicitiy and reduced photobleach<strong>in</strong>g, compared<br />

to conventional dyes (Scheme 2, Fig. 4). [268]<br />

5.4. Iridium(III) Complexes for Photocatalytic Hydrogen<br />

Generation<br />

The <strong>in</strong>creas<strong>in</strong>g global energy consumption makes <strong>the</strong> conversion<br />

<strong>of</strong> solar irradiation <strong>in</strong>to convenient and susta<strong>in</strong>able forms <strong>of</strong><br />

energy one <strong>of</strong> <strong>the</strong> ma<strong>in</strong> challenges <strong>in</strong> modern materials research.<br />

One envisioned goal is to realize artificial photosyn<strong>the</strong>tic systems<br />

that convert a redox product <strong>in</strong>to its energy and oxidant parent<br />

materials, <strong>the</strong>reby stor<strong>in</strong>g solar energy for later use. [269,270]<br />

Among o<strong>the</strong>r approaches, [271,272] utiliz<strong>in</strong>g solar energy through a<br />

photocatalytic circle to split water <strong>in</strong>to molecular hydrogen and<br />

oxygen appears to be <strong>the</strong> most promis<strong>in</strong>g solution. [9] The overall<br />

process can be considered as two half-reactions, where water is<br />

oxidized to oxygen and reduced to hydrogen. Ma<strong>in</strong>ly <strong>the</strong> high<br />

gravimetric energy density and <strong>the</strong> clean combustion products<br />

make hydrogen a highly feasible source for energy and <strong>the</strong>refore,<br />

much focus is laid on <strong>the</strong> hydrogen production. In general, such<br />

photochemical set-ups consist <strong>of</strong> a transition metal photosensitizer<br />

comb<strong>in</strong>ed with an electron relay collect<strong>in</strong>g and stor<strong>in</strong>g<br />

radiant energy and convert<strong>in</strong>g protons <strong>in</strong>to molecular hydrogen.<br />

[273,274]<br />

Various types <strong>of</strong> transition metal complexes (e.g., based on Rh I ,<br />

Ru, II or Pt II ) have been employed as photosensitizers, [275–278] but<br />

<strong>in</strong> particular heteroleptic iridium(III) complexes have ga<strong>in</strong>ed<br />

attraction <strong>in</strong> this field due to <strong>the</strong>ir highly tunable photophysical<br />

properties. [9] Bernhard and co-workers have <strong>in</strong>troduced Ir III -<br />

based sensitizers featur<strong>in</strong>g remarkable improvements <strong>in</strong> <strong>the</strong><br />

production <strong>of</strong> molecular hydrogen, compared to previously<br />

<strong>in</strong>vestigated Ru II -based systems. [73] A detailed study has mirrored<br />

Figure 4. Top: Confocal lum<strong>in</strong>escence (a,d) and brightfield images (b,e) <strong>of</strong><br />

liv<strong>in</strong>g HeLa cells <strong>in</strong>cubated with 20 mM <strong>of</strong> a green (top) or red iridium(III)<br />

emitter (bottom) <strong>in</strong> DMSO/phosphate buffer solution (pH 7, 1:49, v/v) for<br />

10 m<strong>in</strong> at 25 8C. Overlays <strong>of</strong> lum<strong>in</strong>escence (l ex ¼ 405 nm) and brightfield<br />

images are shown <strong>in</strong> (c) and (f), respectively. Images reproduced with<br />

permission <strong>of</strong> [268]. Copyright 2008, The Royal Society <strong>of</strong> Chemistry.<br />

Bottom: A 16-well LED photoreactor allow<strong>in</strong>g a parallel array <strong>of</strong> 16 pressure<br />

transducers to monitor <strong>the</strong> k<strong>in</strong>etics <strong>of</strong> hydrogen gas evolution. The<br />

<strong>in</strong>tensity <strong>of</strong> <strong>the</strong> light (l ¼ 465 nm) is approximately 130 W cm 1 mimick<strong>in</strong>g<br />

<strong>the</strong> solar irradiation. Image reproduced with permission <strong>of</strong> [9]. Copyright<br />

2006, Wiley-VCH.<br />

an enhanced reduc<strong>in</strong>g strength, i.e., <strong>the</strong> ability to donate an<br />

electron to <strong>the</strong> electron relay, <strong>of</strong> <strong>the</strong> Ir III complex compared to<br />

related Ru II complexes. A fur<strong>the</strong>r major achievement by <strong>the</strong> same<br />

group was <strong>the</strong> use <strong>of</strong> comb<strong>in</strong>atorial syn<strong>the</strong>sis and <strong>the</strong><br />

implementation <strong>of</strong> <strong>the</strong> basic measurement set up <strong>in</strong>to a<br />

high-throughput parallel screen<strong>in</strong>g work-flow (Fig. 4) allow<strong>in</strong>g<br />

simple, fast and reproducible <strong>in</strong>vestigation <strong>of</strong> diverse libraries <strong>of</strong><br />

new iridium(III) photosensitizers (Scheme 2). [269,279,280]<br />

6. DFT Calculations<br />

Besides <strong>the</strong> <strong>in</strong>tense activities <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis and characterization<br />

<strong>of</strong> new materials as well as <strong>the</strong>ir <strong>in</strong>vestigation <strong>in</strong> various<br />

applications, <strong>the</strong> utilization <strong>of</strong> computational calculations for a<br />

better understand<strong>in</strong>g <strong>of</strong> structure–property relationships is<br />

steadily grow<strong>in</strong>g.<br />

4436 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

S<strong>in</strong>ce <strong>the</strong> contribution <strong>of</strong> Hay [281] it became more and more<br />

common to support experimental work on lum<strong>in</strong>escent iridium(III)<br />

systems with density functional <strong>the</strong>ory (DFT) calculations.<br />

[41,75,282–287] Us<strong>in</strong>g computational chemistry provides<br />

considerably more detailed <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> structure <strong>of</strong> <strong>the</strong><br />

molecular orbitals <strong>in</strong>volved <strong>in</strong> essential photophysical processes.<br />

This enhances <strong>the</strong> possibilities <strong>of</strong> selective color tun<strong>in</strong>g. With<strong>in</strong><br />

this field, almost all groups have used Becke’s popular hybrid<br />

functional B3LYP at a 6–31G*/LANL2DZ or 6–31G**/LANL2DZ<br />

level. In a recent paper by Nie et al., where calculated geometries<br />

were compared to experimental data, <strong>the</strong> authors showed that<br />

o<strong>the</strong>r functionals, ma<strong>in</strong>ly those <strong>in</strong>clud<strong>in</strong>g a high amount <strong>of</strong> exact<br />

exchange, can lead to much better results. [288] Hence, if<br />

computational calculations spread out <strong>in</strong> iridium(III) chemistry,<br />

fur<strong>the</strong>r <strong>in</strong>vestigations regard<strong>in</strong>g <strong>the</strong> quality <strong>of</strong> <strong>the</strong> used methods<br />

<strong>in</strong> this particular field are required.<br />

7. Conclusions<br />

The evolution <strong>of</strong> phosphorescent iridium(III) complexes <strong>of</strong>fers<br />

immense opportunities towards <strong>the</strong>ir application <strong>in</strong> <strong>the</strong> fields <strong>of</strong><br />

OLEDs and related technologies. In this respect, we summarized<br />

<strong>the</strong> current developments <strong>in</strong> <strong>the</strong> design and preparation <strong>of</strong><br />

various types <strong>of</strong> small-molecule complexes for light-emitt<strong>in</strong>g<br />

devices. The utilization <strong>of</strong> advanced mixed-ligand complexes<br />

brought fur<strong>the</strong>r achievements with respect to color-tun<strong>in</strong>g, which<br />

is <strong>of</strong> utmost importance for potential full-color device applications.<br />

Contributions from <strong>the</strong> field <strong>of</strong> <strong>the</strong>oretical chemistry,<br />

precisely predict<strong>in</strong>g <strong>the</strong> electro-optical properties <strong>of</strong> <strong>the</strong> phosphorescent<br />

emitters, helped to rationalize structure–property<br />

relationships. In particular, we placed <strong>the</strong> focus on <strong>the</strong> covalent<br />

<strong>in</strong>corporation <strong>of</strong> Ir III phosphors <strong>in</strong>to polymers. The comb<strong>in</strong>ation<br />

<strong>of</strong> metal complexes with various types <strong>of</strong> polymers for PLED<br />

applications represents a fast grow<strong>in</strong>g field <strong>of</strong> research. Improved<br />

processability <strong>of</strong> <strong>the</strong> materials, homogenity, and enhanced<br />

flexibility <strong>of</strong> <strong>the</strong> device architecture and better <strong>in</strong>tracha<strong>in</strong><br />

energy-transfer are <strong>the</strong> ma<strong>in</strong> benefits from this approach.<br />

However, <strong>the</strong> development <strong>of</strong> conjugated polymers, <strong>in</strong> particular<br />

those with high triplet energies, <strong>in</strong> order to realize blue-light<br />

emission and rais<strong>in</strong>g <strong>the</strong> external quantum efficiency rema<strong>in</strong> <strong>the</strong><br />

major challenges <strong>in</strong> this field. Dendritic assemblies with <strong>the</strong>ir<br />

well-def<strong>in</strong>ed structures might be alternative emissive systems,<br />

but <strong>the</strong> syn<strong>the</strong>tic effort required to produce <strong>the</strong>m is a considerable<br />

drawback.<br />

With a grow<strong>in</strong>g demand <strong>of</strong> efficient materials for multicolor<br />

displays and light<strong>in</strong>g applications, phosphorescent iridium(III)<br />

complexes were <strong>in</strong>troduced as promis<strong>in</strong>g candidates for highefficiency<br />

OLED devices. In this respect, we highlighted new<br />

iridium systems for monochromatic and white light-emitt<strong>in</strong>g<br />

diodes (WOLEDs). The family <strong>of</strong> red-, green-, and blue-emitt<strong>in</strong>g<br />

complexes for <strong>the</strong>se purposes is cont<strong>in</strong>uously grow<strong>in</strong>g.<br />

Besides provid<strong>in</strong>g an overview on <strong>the</strong> wide range <strong>of</strong><br />

applications <strong>in</strong> OLED technology, we also discuss new application<br />

prospects. In particular, we discussed <strong>the</strong> recent improvements <strong>of</strong><br />

light-emitt<strong>in</strong>g electrochemical cells based on charged phosphoresencent<br />

iridium(IIII) complexes. In recent years, <strong>the</strong> utilization<br />

<strong>of</strong> such emitters for photocatalytic water-splitt<strong>in</strong>g processes has<br />

attracted much attention, and today, <strong>the</strong>y appear to be far superior<br />

than o<strong>the</strong>r transition metal complexes <strong>in</strong> this respect. Bioanlytical<br />

and sensor applications utiliz<strong>in</strong>g <strong>the</strong> outstand<strong>in</strong>g photophysical<br />

properties <strong>of</strong> charged and neutral iridium(III) complexes,<br />

respectively, are discussed and complete <strong>the</strong> survey <strong>of</strong> potential<br />

applications for phosphorescent iridium(III) complexes.<br />

Acknowledgements<br />

F<strong>in</strong>ancial support by <strong>the</strong> Dutch Polymer Institute (DPI), <strong>the</strong> Nederlandse<br />

Organisatie voor Wetenschappelijk Onderzoek (NWO, VICI award<br />

for U.S.S.), and <strong>the</strong> Fond der Chemischen Industrie is k<strong>in</strong>dly acknowledged.<br />

Received: November 30, 2008<br />

Revised: February 10, 2009<br />

Published onl<strong>in</strong>e: October 1, 2009<br />

[1] E. Holder, B. M. W. Langeveld, U. S. Schubert, Adv. Mater. 2005, 17, 1109.<br />

[2] Highly Efficient OLEDs with Phosphorescent Materials, (Ed: H. Yers<strong>in</strong>),<br />

Wiley-VCH, We<strong>in</strong>heim, Germany 2008.<br />

[3] Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Appl.<br />

Phys. Lett. 2005, 86, 071104.<br />

[4] H. Yers<strong>in</strong>, Top. Curr. Chem. 2004, 241, 1.<br />

[5] L. Flamigni, A. Barbieri, C. Sabat<strong>in</strong>i, B. Ventura, F. Barigelleti, Top. Curr.<br />

Chem. 2007, 281, 143.<br />

[6] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C.<br />

Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc.<br />

2001, 123, 4304.<br />

[7] Y. You, Y. Park, J. Am. Chem. Soc. 2005, 127, 12438.<br />

[8] I. M. Dixon, J.-P. Coll<strong>in</strong>, J.-P. Sauvage, L. Flamigni, S. Enc<strong>in</strong>as, F. Barigeletti,<br />

Chem. Soc. Rev. 2000, 29, 385.<br />

[9] M. S. Lowry, S. Bernhard, Chem. Eur. J. 2006, 12, 7970.<br />

[10] P.-T. Chou, Y. Chi, Chem. Eur. J. 2007, 13, 380.<br />

[11] V. Mar<strong>in</strong>, E. Holder, R. Hoogenboom, U. S. Schubert, Chem. Soc. Rev.<br />

2007, 36, 618.<br />

[12] J. D. Sl<strong>in</strong>ker, J. Rivnay, J. S. Moskowitz, J. B. Parker, S. Bernhard, H. D.<br />

Abruña, G. G. Malliaras, J. Mater. Chem. 2007, 17, 2976.<br />

[13] M. E. Thompson, MRS Bull. 2007, 32, 694.<br />

[14] Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature 1999, 397, 414.<br />

[15] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeney,<br />

Nature 2001, 409, 494.<br />

[16] P. I. Djurovic, M. E. Thompson, <strong>in</strong> Highly Efficient OLEDs with Phosphorescent<br />

Materials, (Ed: H. Yers<strong>in</strong>), Wiley-VCH, We<strong>in</strong>heim, Germany 2008,<br />

pp. 131–161.<br />

[17] Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, Science 1995, 269, 1086.<br />

[18] K. K.-W. Lo, K. H.-K. Tsang, K.-S. Sze, C.-K. Chung, T. K.-M. Lee, K. Y.<br />

Zhang, W.-K. Hui, C.-K. Li, J. S.-Y. Lau, D. C.-M. Ng, N. Zhu, Coord. Chem.<br />

Rev. 2007, 251, 2292.<br />

[19] K. K.-W. Lo, W.-K. Hui, C.-K. Chung, K. H.-K. Tsang, T. K.-M. Lee, C.-K. Li,<br />

J. S.-Y. Lau, D. C.-M. Ng, Coord. Chem. Rev. 2006, 250, 1724.<br />

[20] K. K.-W. Lo, W.-K. Hui, C.-K. Chung, K. H.-K. Tsang, D. C.-M. Ng, N. Zhu,<br />

K.-C. Cheung, Coord. Chem. Rev. 2005, 249, 1434.<br />

[21] S. Lamansky, P. I. Djurovic, D. Murphy, F. Abdel-Razzaq, R. Kwong, I.<br />

Tysba, M. Bortz, B. Mui, R. Bau, M. E. Thompson, Inorg. Chem. 2001, 40,<br />

1704.<br />

[22] C. H. Yang, K.-H. Fang, C.-H. Chen, I.-W. Sun, Chem. Commun. 2004,<br />

2232.<br />

[23] A. B. Tamayo, B. D. Alleyne, P. I. Djurovic, S. Lamansky, I. Tysba, N. N. Ho,<br />

R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377.<br />

[24] T. Karatsu, T. Nakamura, S. Yagai, A. Kitamura, K. Yamaguchi, Y. Matsushima,<br />

T. Iwata, Y. Hori, T. Hagiwara, Chem. Lett. 2003, 32, 886.<br />

[25] M. C. DeRosa, P. J. Mosher, G. P. A. Yap, K. S. Focsaneanu, R. J. Crutchley,<br />

C. E. B. Evans, Inorg. Chem. 2003, 42, 4864.<br />

[26] K. Dedeian, J. Shi, N. Shepherd, E. Forsy<strong>the</strong>, D. C. Morton, Inorg. Chem.<br />

2005, 44, 4445.<br />

PROGRESS REPORT<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4437


www.advmat.de<br />

PROGRESS REPORT<br />

[27] T. Karatsu, E. Ito, S. Yagai, A. Kitamura, Chem. Phys. Lett. 2006, 424, 353.<br />

[28] S. Q. Huo, J. C. Deaton, M. Rajeswaran, W. C. Lenhard, Inorg. Chem. 2006,<br />

45, 3155.<br />

[29] A. R. McDonald, M. Lutz, L. S. von Chrzanowski, G. P. M. van Kl<strong>in</strong>k, A. L.<br />

Spek, G. van Koten, Inorg. Chem. 2008, 47, 6681.<br />

[30] K. Dedeian, P. I. Djurovic, F. O. Garces, G. Carlson, R. J. Watts, Inorg.<br />

Chem. 1991, 30, 1685.<br />

[31] T.-H. Kwon, M. K. Kim, J. Kwon, D.-Y. Sh<strong>in</strong>, S. J. Park, C.-L. Lee, J.-J. Kim,<br />

J.-I. Hong, Chem. Mater. 2007, 19, 3673.<br />

[32] T. Tsuzuki, N. Shirasawa, T. Suzuki, S. Tokito, Adv. Mater. 2003, 15,<br />

1455.<br />

[33] M. Suzuki, T. Hatakeyama, S. Tokito, F. Sato, IEEE J. Sel. Top. Quant.<br />

Electron. 2004, 10, 115.<br />

[34] M. C. DeRosa, D. J. Hodgson, G. D. Enright, B. Dawson, C. E. B. Evans,<br />

R. J. Crutchley, J. Am. Chem. Soc. 2004, 126, 7619.<br />

[35] M. Graf, V. Gancheva, M. Thesen, H. Krüger, P. Mayer, K. Sünkel, Inorg.<br />

Chem. Commun. 2008, 11, 234.<br />

[36] H. Zhen, J. Luo, W. Yang, Q. Chen, L. Y<strong>in</strong>g, Z. Jianhua, H. Wu, Y. Cao,<br />

J. Mater. Chem. 2007, 17, 2824.<br />

[37] E. Baran<strong>of</strong>f, S. Suàrez, P. Bugnon, C. Barolo, R. Busca<strong>in</strong>o, R. Scopelliti, L.<br />

Zuppiroli, M. Graetzel, Md, K. Nazeerudd<strong>in</strong>, Inorg. Chem. 2008, 47, 6575.<br />

[38] H. J. Bol<strong>in</strong>k, E. Coronado, S. G. Santamaria, M. Sessolo, N. Evans, C.<br />

Kle<strong>in</strong>, E. Baran<strong>of</strong>f, K. Kalyanasundaram, M. Grätzel, M. K. Nazeerudd<strong>in</strong>,<br />

Chem. Commun. 2007, 3276.<br />

[39] P. Coppo, M. Duati, V. N. Kozhevnikov, J. W. H<strong>of</strong>straat, L. De Cola, Angew.<br />

Chem. Int. Ed. 2005, 44, 1806.<br />

[40] E. Orselli, G. S. Kottas, A. E. Konradsson, P. Coppo, R. Fröhlich, L. De<br />

Cola, A. van Dijken, M. Büchel, H. Börner, Inorg. Chem. 2007, 46, 11082.<br />

[41] I. Avilov, P. M<strong>in</strong>o<strong>of</strong>ar, J. Cornil, L. De Cola, J. Am. Chem. Soc. 2007, 129,<br />

8247.<br />

[42] C.-J. Chang, C.-H. Yang, K. Chen, Y. Chi, C.-F. Shu, M.-L. Ho, Y.-S. Yeh,<br />

P.-T. Chou, Dalton Trans. 2007, 1881.<br />

[43] K. A. K<strong>in</strong>g, P. J. Spillane, R. J. Watts, J. Am. Chem. Soc. 1985, 107, 1431.<br />

[44] R. Ragni, E. A. Plummer, K. Brunner, J. W. H<strong>of</strong>straat, F. Babudri, G. F.<br />

Far<strong>in</strong>ola, F. Naso, L. De Cola, J. Mater. Chem. 2006, 16, 1161.<br />

[45] Y. J. Su, H. L. Huang, C. L. Li, C. H. Chien, Y. T. Tao, P. T. Chou, S. Datta,<br />

R. S. Liu, Adv. Mater. 2003, 15, 884.<br />

[46] G. Y. Park, Y. Kim, Y. Ha, Mol. Cryst. Liq. Cryst. 2007, 462, 179.<br />

[47] J. Otsuki, T. Tokimoto, Y. Noda, H. Tomohiro, C. Takeshi, X. Chen, Y.<br />

Okamoto, Chem. Eur. J. 2007, 13, 2311.<br />

[48] K. Ono, M. Joho, K. Saito, M. Tomura, Y. Matsushita, S. Naka, H. Okada,<br />

H. Onnagawa, Eur. J. Inorg. Chem. 2006, 3676.<br />

[49] H. C. Böttcher, M. Graf, H. Krüger, C. Wagner, Inorg. Chem. Commun.<br />

2005, 8, 278.<br />

[50] G. Zhou, W.-Y. Wong, B. Yao, Z. Xie, L. Wang, Angew. Chem. Int. Ed. 2007,<br />

46, 1149.<br />

[51] Y. You, C.-G. An, D.-S. Lee, J.-J. Park, S. Y. Park, J. Mater. Chem. 2006, 46,<br />

4706.<br />

[52] S. Bett<strong>in</strong>gton, M. Tavasli, M. R. Bryce, A. Beeby, H. Al-Attar, A. P.<br />

Monkman, Chem. Eur. J. 2007, 13, 1423.<br />

[53] M. Tavasli, S. Bett<strong>in</strong>gton, M. R. Bryce, A. S. Batsanov, A. P. Monkman,<br />

Syn<strong>the</strong>sis 2005, 1619.<br />

[54] S. Okada, K. Ok<strong>in</strong>aka, H. Iwawaki, M. Furugori, M. Hashimoto, T.<br />

Mukaide, J. Kamatani, S. Igawa, A. Tsuboyama, T. Takiguchi, K. Uneo,<br />

Dalton Trans. 2005, 1583.<br />

[55] N. Cumpstey, R. N. Bera, P. L. Burn, I. D. W. Samuel, Macromolecules<br />

2005, 38, 9564.<br />

[56] S. C. Lo, G. J. Gary, J. P. J. Markham, E. B. Eb<strong>in</strong>azar, S. Sharma, P. L. Burn,<br />

I. D. W. Samuel, Adv. Funct. Mater. 2005, 15, 1451.<br />

[57] L. Chen, C. Yang, J. Q<strong>in</strong>, J. Gao, H. You, D. Ma, J. Organomet. Chem. 2006,<br />

691, 3591.<br />

[58] X.-Y. Wang, R. N. Prabhu, R. H. Schmehl, M. Weck, Macromolecules 2006,<br />

39, 3140.<br />

[59] X.-Y. Wang, A. Kimyonok, M. Weck, Chem. Commun. 2006, 3933.<br />

[60] M. E. Thompson, P. I. Djorovic, S. Barlow, S. R. Marder, Comprehensive<br />

Organometallic Chemistry, Vol. 12 (Ed.: D. O’Hare), Elsevier, Oxford 2007,<br />

pp. 101–194.<br />

[61] F. Neve, A. Crisp<strong>in</strong>i, Eur. J. Inorg. Chem. 2000, 1039.<br />

[62] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S.<br />

Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hosh<strong>in</strong>o, K.<br />

Ueno, J. Am. Chem. Soc. 2003, 125, 12971.<br />

[63] H. Konno, Y. Sasaki, Chem. Lett. 2003, 32, 252.<br />

[64] K. Saito, N. Matsusue, H. Kanno, Y. Hamada, H. Takahashi, T. Matsumura,<br />

Jap. J. App. Phys. 2004, 43, 2733.<br />

[65] K. A. McGee, K. R. Mann, Inorg. Chem. 2007, 46, 7800.<br />

[66] A. J. Wilk<strong>in</strong>son, H. Puschmann, J. A. K. Howard, C. E. Foster, J. A. G.<br />

Williams, Inorg. Chem. 2006, 43, 8685.<br />

[67] S. C. Lo, C. P. Shipley, R. N. Bera, E. Hard<strong>in</strong>g, A. R. Cowley, P. L. Burn,<br />

I. D. W. Samuel, Chem. Mater. 2006, 18, 5119.<br />

[68] B. X. Mi, P. F. Wang, Z. Q. Gao, C. S. Lee, S. T. Lee, H. L. Hong, X. M. Chen,<br />

M. S. Wong, P. F. Xia, K. W. Cheah, C. H. Chen, W. Hunag, Adv. Mater.<br />

2009, 21, 339.<br />

[69] B. Tong, Q. Mei, S. Wang, Y. Fang, Y. Meng, B. Wang, J. Mater. Chem.<br />

2008, 18, 1636.<br />

[70] A. J. Wilk<strong>in</strong>son, A. E. Goeta, C. E. Foster, J. A. G. Williams, Inorg. Chem.<br />

2004, 43, 6513.<br />

[71] F. Neve, A. Crisp<strong>in</strong>i, S. Campagna, S. Serroni, Inorg. Chem. 1999, 38,<br />

2250.<br />

[72] B. Whittle, N. S. Everest, C. Howard, M. D. Ward, Inorg. Chem. 1995, 34,<br />

2025.<br />

[73] M. S. Lowry, J. I. Goldsmith, J. D. Sl<strong>in</strong>ker, R. Pohl, R. A. Pascal, Jr, G. G.<br />

Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712.<br />

[74] M. S. Lowry, W. R. Hudson, R. A. Pascal, Jr, S. Bernhard, J. Am. Chem. Soc.<br />

2004, 126, 14129.<br />

[75] H. J. Bol<strong>in</strong>k, L. Cappelli, S. Cheylan, E. Coronado, R. C. Costa, N. Lardiés,<br />

Md, K. Nazeerudd<strong>in</strong>, E. Ortí, J. Mater. Chem. 2007, 17, 5032.<br />

[76] P. Coppo, E. A. Plummer, L. De Cola, Chem. Commun. 2004, 1774.<br />

[77] J. Li, P. I. Djurovic, B. D. Alleyne, M. Yousufudd<strong>in</strong>, N. N. Ho, J. C. Thomas,<br />

J. C. Peters, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 1713.<br />

[78] H.-C. Su, F.-C. Fang, T.-Y. Hwu, H.-H. Hsieh, H.-F. Chen, G.-S. Lee, S.-M.<br />

Peng, K.-T. Wong, C.-C. Wu, Adv. Mater. 2007, 17, 1019.<br />

[79] Q. Zhao, S. L<strong>in</strong>, M. Shi, C. Wang, M. Yu, L. Li, F. Li, T. Yi, C. Huang, Inorg.<br />

Chem. 2006, 45, 6152.<br />

[80] C. Dragonetti, L. Falciola, P. Muss<strong>in</strong>i, S. Righetto, D. Roberto, R. Ugo, A.<br />

Valore, F. De Angelis, S. Fantacci, A. Sgamelotti, M. Ramon, M. Mucc<strong>in</strong>i,<br />

Inorg. Chem. 2007, 46, 8533.<br />

[81] A. W<strong>in</strong>ter, C. Ulbricht, E. Holder, N. Risch, U. S. Schubert, Aust. J. Chem.<br />

2006, 59, 773.<br />

[82] F. Neve, M. La Deda, F. Puntoreiro, S. Campagna, Inorg. Chim. Acta 2006,<br />

359, 1666.<br />

[83] F. Nastasi, F. Puntoriero, S. Campagna, S. Schergna, M. Magg<strong>in</strong>i, F.<br />

Card<strong>in</strong>ali, B. Delavaux-Nicot, J.-F. Nierengarten, Chem. Commun. 2007,<br />

3556.<br />

[84] F. Lafolet, S. Welter, Z. Popović, L. De Cola, J. Mater. Chem. 2005, 15,<br />

2820.<br />

[85] K. J. Arm, J. A. G. Williams, Chem. Commun. 2005, 230.<br />

[86] Y. Byun, Y.-Y. Lyu, R. R. Das, O. Kwon, T.-W. Lee, Y. J. Park, Apll. Phys. Lett.<br />

2007, 91, 211106.<br />

[87] A. B. Tamayo, S. Garon, T. Sajoto, D. I. Djurovic, I. M. Tysba, R. Bau, M. E.<br />

Thompson, Inorg. Chem. 2005, 44, 8732.<br />

[88] E. Tek<strong>in</strong>, E. Holder, V. Mar<strong>in</strong>, B.-J. de Gans, U. S. Schubert, Macromol.<br />

Rapid Commun. 2005, 26, 293.<br />

[89] E. Holder, V. Mar<strong>in</strong>, A. Alexeev, U. S. Schubert, J. Polym. Sci., Part A:<br />

Polym. Chem. 2005, 43, 2765.<br />

[90] V. Mar<strong>in</strong>, E. Holder, R. Hoogenboom, U. S. Schubert, J. Polym. Sci., Part A:<br />

Polym. Chem. 2004, 42, 4153.<br />

[91] E. Holder, V. Mar<strong>in</strong>, M. A. R. Meier, U. S. Schubert, Macromol. Rapid<br />

Commun. 2004, 25, 1491.<br />

4438 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

[92] B. Du, L. Wang, H.-B. Wu, W. Yang, Y. Zhang, R.-S. Liu, M.-L. Sun, J. Peng,<br />

Y. Cao, Chem. Eur. J. 2007, 13, 7432.<br />

[93] S.-J. Liu, Q. Zhao, R. F. Chen, Y. Deng, Q.-L. Fan, F.-Y. Li, L.-H. Wang, C.-H.<br />

Huang, W. Huang, Chem. Eur. J. 2006, 12, 4351.<br />

[94] S.-J. Liu, Q. Zhao, Y. Deng, Y.-J. Xia, J. L<strong>in</strong>, Q.-L. Fan, L.-H. Wang, W.<br />

Huang, J. Phys. Chem. C 2007, 111, 1166.<br />

[95] Y. Deng, S.-J. Liu, Q.-L. Fan, C. Fang, R. Zhu, K.-Y. Pu, L.-H. Yuwen, L.-H.<br />

Wang, W. Huang, Synth. Met. 2007, 157, 813.<br />

[96] J.-P. Sauvage, J.-P. Coll<strong>in</strong>, J.-C. Chambron, S. Guillerez, C. Coudret, V.<br />

Balzani, F. Barigeletti, L. De Cola, L. Flamigni, Chem. Rev. 1994, 94, 993.<br />

[97] J.-P. Coll<strong>in</strong>, I. M. Dixon, J.-P. Sauvage, J. A. G. Williams, F. Barigeletti, L.<br />

Flamigni, J. Am. Chem. Soc. 1999, 121, 5009.<br />

[98] T. Yutaka, S. Obara, S. Ogawa, K. Nozaki, N. Ikeda, T. Ohno, Y. Isii, K. Saki,<br />

M.-A. Haga, Inorg. Chem. 2005, 44, 4737.<br />

[99] A. J. S. Bexon, J. A. G. Williams, C. R. Chim. 2005, 8, 1326.<br />

[100] M. Polson, M. Ravaglia, S. Fracasso, M. Garavelli, F. Scandola, Inorg.<br />

Chem. 2005, 44, 1282.<br />

[101] L. Flamigni, E. Baran<strong>of</strong>f, J.-P. Coll<strong>in</strong>, J.-P. Sauvage, Chem. Eur. J. 2006, 12,<br />

6592.<br />

[102] E. Baran<strong>of</strong>f, I. M. Dixon, J.-P. Coll<strong>in</strong>, J.-P. Sauvage, B. Ventura, L. Flamigni,<br />

Inorg. Chem. 2004, 43, 3057.<br />

[103] L. Flamigni, E. Baran<strong>of</strong>f, J.-P. Coll<strong>in</strong>, J.-P. Sauvage, B. Ventura, Chem-<br />

PhysChem 2007, 8, 1943.<br />

[104] V. L. Whittle, J. A. G. Williams, Inorg. Chem. 2008, 47, 6596.<br />

[105] J. A. G. Williams, A. J. Wilk<strong>in</strong>son, V. L. Whittle, Dalton Trans. 2008, 2081.<br />

[106] F. Tessore, D. Roberto, R. Ugo, M. Pizzotti, S. Quici, M. Cavazz<strong>in</strong>i, S.<br />

Bruni, F. De Angelis, Inorg. Chem. 2005, 44, 8967.<br />

[107] D. Roberto, F. Tessore, R. Ugi, S. Bruni, A. Manfredi, S. Quici, Chem.<br />

Commun. 2002, 846.<br />

[108] D. Di Censo, S. Fantacci, F. De Angelis, C. Kle<strong>in</strong>, N. Evans, K.<br />

Kalyanasundaram, H. J. Bol<strong>in</strong>k, M. Grätzel, M. K. Nazeerudd<strong>in</strong>, Inorg.<br />

Chem. 2008, 47, 980.<br />

[109] M. K. Nazeerudd<strong>in</strong>, C. Kle<strong>in</strong>, M. Grätzel, L. Zuppiroli, D. Berner, Molecular<br />

Eng<strong>in</strong>eer<strong>in</strong>g <strong>of</strong> Iridium Complexes and Their <strong>Application</strong> <strong>in</strong> Organic Light<br />

Emitt<strong>in</strong>g Diodes <strong>in</strong> Highly Efficient OLEDs With Phosphorescent Materials,<br />

(Ed.: H. Yers<strong>in</strong>), Wiley-VCH, We<strong>in</strong>heim, Germany 2008, pp. 363–390.<br />

[110] C.-S. Ch<strong>in</strong>, M.-S. Eum, S.-Y. Kim, C. Kim, S. K. Kang, Eur. J. Inorg. Chem.<br />

2007, 372.<br />

[111] A. Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, C.<br />

Ro<strong>the</strong>, A. Monkman, I. Bach, P. Stössel, K. Brunne, J. Am. Chem. Soc.<br />

2004, 126, 7718.<br />

[112] Y. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953.<br />

[113] J. Jian, W. Yang, Y. Cao, J. Inorg. Organomet. Polym. Mater. 2007, 17, 37.<br />

[114] R. Shunmugam, G. N. Tew, Macromol. Rapid Commun. 2008, 29, 1355.<br />

[115] B. J. de Gans, P. Du<strong>in</strong>eveld, U. S. Schubert, Adv. Mater. 2004, 16, 203.<br />

[116] M. C. DeRosa, P. J. Mosher, C. E. B. Evans, R. J. Crutchley, Macromol.<br />

Symp. 2003, 196, 235.<br />

[117] M. E. Köse, R. J. Crutchley, M. C. DeRosa, N. Ananthakrishnan, J. R.<br />

Reynolds, K. S. Schanze, Langmuir 2005, 21, 8255.<br />

[118] C.-L. Lee, N.-G. Kang, Y.-S. Cho, J.-S. Lee, J.-J. Kim, Opt. Mater. 2002, 21,<br />

119.<br />

[119] G. L. Schulz, X. Chen, S.-A. Chen, S. Holdcr<strong>of</strong>t, Macromolecules 2006, 39,<br />

9157.<br />

[120] J. Langecker, M. Rehahn, Macromol. Chem. Phys. 2008, 209, 258.<br />

[121] E. Holder, V. Mar<strong>in</strong>, D. Kozodaev, M. A. R. Meier, B. G. G. Lohmeijer, U. S.<br />

Schubert, Macromol. Chem. Phys. 2005, 206, 989.<br />

[122] K. A. Aamer, G. N. Tew, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 1109.<br />

[123] L. Deng, P. T. Furuta, S. Garon, J. Li, D. Kavulak, M. E. Thompson, J. M. J.<br />

Fréchet, Chem. Mater. 2006, 18, 386.<br />

[124] Y. Koga, K. Ueno, K. Matsubara, Fukuoka Daigaku Rigaku Shuho 2007, 37,<br />

45.<br />

[125] Y. Koga, K. Ueno, K. Matsubara, J. Polym. Sci., Part A: Polym. Chem. 2006,<br />

44, 4204.<br />

[126] S. Kelch, M. Rehahn, Macromolecules 1999, 32, 5818.<br />

[127] H. H<strong>of</strong>meier, S. Schmatloch, D. Wouters, U. S. Schubert, Macromol.<br />

Chem. Phys. 2003, 204, 2197.<br />

[128] M. Chiper, M. A. R. Meier, J. M. Kranenburg, U. S. Schubert, Macromol.<br />

Chem. Phys. 2007, 208, 679.<br />

[129] S. Schmatloch, A. M. J. van den Berg, A. S. Alexeev, H. H<strong>of</strong>meier, U. S.<br />

Schubert, Macromolecules 2003, 36, 9943.<br />

[130] A. W<strong>in</strong>ter, C. Friebe, M. D. Hager, U. S. Schubert, Macromol. Rapid<br />

Commun. 2008, 29, 1679.<br />

[131] Y.-Y. Chen, H.-C. L<strong>in</strong>, J. Polym. Sci., Part A: Polym. Chem. 2007, 45,<br />

3243.<br />

[132] K. S. Schanze, E. E. Silverman, X. Zhao, J. Phys. Chem. B 2005, 109, 18451.<br />

[133] L. Viau, M. Even, O. Maury, D. M. Haddleton, H. L. Bozec, C. R. Chim.<br />

2005, 8, 1298.<br />

[134] J. R. Carlise, X.-Y. Wang, M. Weck, Macromolecules 2005, 38, 9000.<br />

[135] A. Kimyonok, M. Weck, Macromol. Rapid Commun. 2007, 28, 152.<br />

[136] A. Kimyonok, B. Domercq, A. Haldi, J.-Y. Cho, J. R. Carlise, X.-Y. Wang,<br />

L. E. Hayden, S. C. Jones, S. Barlow, S. R. Marder, B. Kippelen, M. Weck,<br />

Chem. Mater. 2007, 19, 5602.<br />

[137] A. Haldi, A. Kimyonok, B. Domercq, L. E. Hayden, S. C. Jones, S. R.<br />

Marder, M. Weck, B. Kippelen, Adv. Funct. Mater. 2008, 18, 3056.<br />

[138] N. Rehmann, C. Ulbricht, A. Köhnen, P. Zacharias, M. C. Ga<strong>the</strong>r, D.<br />

Hertel, E. Holder, U. S. Schubert, K. Meerholz, Adv. Mater. 2008, 20, 129.<br />

[139] C. Ulbricht, N. Rehmann, E. Holder, D. Hertel, K. Meerholz, U. S.<br />

Schubert, Macromol. Chem. Phys. 2009, 210, 531.<br />

[140] X. Wang, K. Og<strong>in</strong>o, K. Tanaka, H. Usui, IEEE J. Sel. Top. Quantum Electron.<br />

2004, 10, 121.<br />

[141] Y. Youngm<strong>in</strong>, S. H. Kim, H. K. Jung, S. Y. Park, Macromolecules 2006, 39,<br />

349.<br />

[142] S. Tokito, M. Suzuki, F. Sato, M. Kamachi, K. Shirane, Org. Electron. 2003,<br />

4, 105.<br />

[143] S. Tokito, M. Suzuki, F. Sato, Th<strong>in</strong> Solid Films 2003, 445, 353.<br />

[144] M. Suzuki, S. Tokito, M. Kamachi, K. Shirane, F. Sato, J. Photopolym. Sci.<br />

Technol. 2003, 16, 309.<br />

[145] M. Suzuki, S. Tokito, F. Sato, Appl. Phys. Lett. 2005, 86, 103507.<br />

[146] C. Ulbricht, C. R. Becer, A. W<strong>in</strong>ter, D. Veldman, U. S. Schubert, Macromol.<br />

Rapid Commun. 2008, 29, 1919.<br />

[147] X. Chen, J.-L. Liao, Y. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, J. Am.<br />

Chem. Soc. 2003, 125, 636.<br />

[148] N. R. Evans, L. S. Devi, C. S. K. Mak, S. E. Watk<strong>in</strong>s, S. I. Pascu, A. Köhler,<br />

R. H. Friend, C. K. Williams, A. B. Holmes, J. Am. Chem. Soc. 2006, 128,<br />

6647.<br />

[149] J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang, Y. Cao, Macromolecules<br />

2005, 38, 4072.<br />

[150] J. Jiang, Y. Xu, W. Yang, R. Guan, Z. Liu, H. Zhen, Y. Cao, Adv. Mater. 2006,<br />

18, 1769.<br />

[151] C. Mei, J. D<strong>in</strong>g, B. Yao, Y. Cheng, Z. Xie, Y. Geng, L. Wang, J. Polym. Sci.,<br />

Part A: Polym. Chem. 2007, 45, 1746.<br />

[152] F.-I. Wu, X.-H. Yang, D. Neher, R. Dodda, Y.-H. Tseng, C.-F. Shu, Adv.<br />

Funct. Mater. 2007, 17, 1085.<br />

[153] Y. Xu, R. Guan, J. Jiang, W. Yang, H. Zhen, J. Peng, Y. Cao, J. Polym. Sci.,<br />

Part A: Polym. Chem. 2008, 46, 453.<br />

[154] T. Ito, S. Suzuki, J. Kido, Polym. Adv. Technol. 2005, 16, 480.<br />

[155] Y. Zhang, Y. Xu, Q. Niu, J. Peng, W. Yang, X. Zhu, Y. Cao, J. Mater. Chem.<br />

2007, 17, 992.<br />

[156] K. Zhang, Z. Chen, C. Yang, Y. Zou, S. Gong, Y. Tao, J. Q<strong>in</strong>, Y. Cao,<br />

J. Mater. Chem. 2008, 18, 3366.<br />

[157] K. Zhang, Z. Chen, C. Yang, Y. Tao, Y. Zou, S. Gong, J. Q<strong>in</strong>, Y. Cao,<br />

J. Mater. Chem. 2008, 18, 291.<br />

[158] K. Zhang, Z. Chen, C. Yang, Y. Zou, S. Gong, J. Q<strong>in</strong>, Y. Cao, J. Phys. Chem.<br />

C 2008, 112, 3907.<br />

[159] K. Zhang, Z. Chen, Y. Zou, C. Yang, J. Q<strong>in</strong>, Y. Cao, Organometallics 2007,<br />

26, 3699.<br />

[160] K. Zhang, Z. Chen, C. Yang, S. Gong, J. Q<strong>in</strong>, Y. Cao, Macromol. Rapid<br />

Commun. 2006, 27, 1926.<br />

PROGRESS REPORT<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4439


www.advmat.de<br />

PROGRESS REPORT<br />

[161] Y. Zhang, Y. Xiong, Y. Sun, X. Zhu, J. Peng, Y. Cao, Polymer 2007, 48,<br />

3468.<br />

[162] Y. Xiong, Y. Zhang, J.-L. Zhou, J.-B. Peng, W.-B. Huang, Y. Cao, Ch<strong>in</strong>. Phys.<br />

Lett. 2007, 24, 3547.<br />

[163] P.-I. Lee, S. L.-C. Hsu, J.-F. Lee, J. Polym. Sci., Part A: Polym. Chem. 2008,<br />

46, 464.<br />

[164] H. Zhen, C. Luo, W. Yang, W. Song, B. Du, J. Jiang, C. Jiang, Y. Zhang, Y.<br />

Cao, Macromolecules 2006, 39, 1693.<br />

[165] H. Zhen, C. Jiang, W. Yang, J. Jiang, F. Huang, Y. Cao, Chem. Eur. J. 2005,<br />

11, 5007.<br />

[166] H. Zhen, W. Xu, W. Yang, Q. chen, Y. Xu, J. Jiang, J. Peng, Y. Cao,<br />

Macromol. Rapid Commun. 2006, 27, 2095.<br />

[167] A. J. Sandee, C. K. Williams, N. R. Evans, J. E. Davies, C. E. Boothby, A.<br />

Köhler, R. H. Friend, A. B. Holmes, J. Am. Chem. Soc. 2004, 126, 7041.<br />

[168] W. Yang, H. Y. Zhen, C. Y. Jiang, L. J. Su, J. X. Jiang, H. H. Shi, Y. Cao,<br />

Synth. Met. 2005, 153, 189.<br />

[169] S. Kappaun, S. Eder, S. Sax, R. Saf, K. Mereiten, E. J. W. List, C. Slugovc,<br />

J. Mater. Chem. 2006, 16, 4389.<br />

[170] A. Ledwith, N. J. Rowley, S. M. Walker, Polymer 1981, 22, 435.<br />

[171] Z. Wu, Y. Xiong, J. Zhou, L. Wang, J. Liu, Q. Chen, W. Yang, J. Peng, Y. Cao,<br />

Adv. Mater. 2008, 20, 2359.<br />

[172] J. P. J. Markham, I. D. W. Samuel, S.-C. Lo, P. L. Burn, M. Weiter, H.<br />

Bässler, J. Appl. Phys. 2004, 95, 438.<br />

[173] T. D. Anthopoulos, M. J. Frampton, E. B. Namdas, P. L. Burn, I. D. W.<br />

Samuel, Adv. Mater. 2004, 16, 557.<br />

[174] M. J. Frampton, E. B. Namdas, S.-C. Lo, P. L. Burn, I. D. W. Samuel,<br />

J. Mater. Chem. 2004, 14, 2881.<br />

[175] S.-C. Lo, E. B. Namdas, P. L. Burn, I. D. W. Samuel, Macromolecules 2003,<br />

36, 9721.<br />

[176] S.-C. Lo, T. D. Anthopoulos, E. B. Namdas, P. L. Burn, I. D. W. Samuel,<br />

Adv. Mater. 2005, 17, 1945.<br />

[177] S.-C. Lo, E. B. Namdas, C. P. Shipley, J. P. J. Markham, T. D. Anthopolous,<br />

P. L. Burn, I. D. W. Samuel, Org. Electron. 2006, 7, 85.<br />

[178] B. Liang, L. Wang, Y. Xu, H. Shi, Y. Cao, Adv. Funct. Mater. 2007, 17, 3580.<br />

[179] T. Tsuzuki, N. Shirasawa, T. Suzuki, S. Tokito, Jpn. J. Appl. Phys. 2005, 44,<br />

4151.<br />

[180] K. M. Jung, K. H. Kim, J.-I. J<strong>in</strong>, M. J. Cho, D. H. Choi, J. Polym. Sci., Part A:<br />

Polym. Chem. 2008, 46, 7517.<br />

[181] B.-L. L<strong>in</strong>, L. Wu, Y.-M. He, Q.-H. Fan, Dalton Trans. 2007, 2048.<br />

[182] B. W. D’Andrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585.<br />

[183] G. Zhou, C.-L. Ho, W.-Y. Wong, Q. Wang, D. Ma, X. J<strong>in</strong>g, F. Wang, Z. L<strong>in</strong>,<br />

T. B. Marder, A. Beeby, Adv. Funct. Mater. 2008, 18, 499.<br />

[184] C.-L. Ho, W.-Y. Wong, G.-J. Zhou, B. Yao, Z. Xie, L. Wang, Adv. Funct.<br />

Mater. 2007, 17, 2925.<br />

[185] B. W. D’Andrade, M. E. Thompson, S. R. Forrest, Adv. Mater. 2002, 14,<br />

147.<br />

[186] Y. Sun, N. C. Gieb<strong>in</strong>k, H. Kanno, B. Ma, M. E. Thompson, S. R. Forrest,<br />

Nature 2006, 400, 908.<br />

[187] Y. H<strong>in</strong>o, H. Kajii, Y. Ohmori, Jpn. J. Appl. Phys. 2007, 46, 2673.<br />

[188] B. D. Ch<strong>in</strong>, M. C. Suh, M.-H. Kim, S.-T. Lee, H. D. Kim, H. K. Chung, Appl.<br />

Phys. Lett. 2005, 86, 133505.<br />

[189] W. Y. Liang, Phys. Educ. 1970, 5, 226.<br />

[190] S. Kappaun, C. Slugovc, E. J. W. List, Int. J. Mol. Sci. 2008, 9, 1527.<br />

[191] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2001,<br />

90, 5048.<br />

[192] C.-L. Ho, W.-Y. Wong, Z.-Q. Gao, C.-H. Chen, K.-W. Cheah, B. Yao, Z. Xie,<br />

Q. Wang, D. Ma, L. Wang, X.-M. Yu, H.-S. Kwok, Z. L<strong>in</strong>, Adv. Funct. Mater.<br />

2008, 18, 319.<br />

[193] M. S. Arnold, G. J. McGraw, S. R. Forrest, R. R. Lunt, Appl. Phys. Lett. 2008,<br />

92, 053301.<br />

[194] X. Yang, D. C. Müller, D. Neher, K. Meerholz, Adv. Mater. 2006, 18, 548.<br />

[195] E. Tek<strong>in</strong>, P. J. Smith, U. S. Schubert, S<strong>of</strong>t Matter 2008, 4, 703.<br />

[196] X.-M. Yu, G.-J. Zhou, C.-S. Lam, W.-Y. Wong, X.-L. Zhu, J.-X. Sun, M.<br />

Wong, H.-S. Kwok, J. Organomet. Chem. 2008, 693, 1518.<br />

[197] Y. Sun, S. R. Forrest, J. Appl. Phys. 2006, 100, 073106.<br />

[198] H. Kanno, Y. Sun, S. R. Forrest, Appl. Phys. Lett. 2005, 86, 263502.<br />

[199] X. Zhu, J. Sun, X. Yu, M. Wong, H.-S. Kwok, Jpn. J. Appl. Phys. 2007, 46,<br />

4054.<br />

[200] W. Xie, Y. Zhao, C. Li, S. Liu, Solid-State Electron. 2007, 51, 1129.<br />

[201] B. Liang, C. Jiang, Z. Chen, X. Zhang, H. Shi, Y. Cao, J. Mater. Chem. 2006,<br />

16, 1281.<br />

[202] T. Tsuzuki, S. Tokito, Adv. Mater. 2007, 19, 276.<br />

[203] C.-H. Yang, Y.-M. Cheng, Y. Chi, C.-J. Hsu, F.-C. Fang, K.-T. Wong, P.-T.<br />

Chou, C.-H. Chang, M.-H. Tsai, C.-C. Wu, Angew. Chem. Int. Ed. 2007, 46,<br />

2418.<br />

[204] R. Song, Y. Duan, S. Chen, Y. Zhao, J. Hou, S. Liu, Semicond. Sci. Technol.<br />

2007, 22, 728.<br />

[205] C.-L. Ho, W.-Y. Wong, Q. Wang, D. Ma, L. Wang, Z. L<strong>in</strong>, Adv. Funct. Mater.<br />

2008, 18, 928.<br />

[206] Method <strong>of</strong> Measur<strong>in</strong>g and Specify<strong>in</strong>g Colour Render<strong>in</strong>g Properties <strong>of</strong> Light<br />

Sources, Commission Internationale de L’Eclairage, Paris 1974.<br />

[207] X. Zhu, J. Sun, X. Yu, M. Wong, H.-S. Kwok, Jpn. J. Appl. Phys. 2007, 46,<br />

4054.<br />

[208] H. I. Baek, C. H. Lee, J. Phys. D: Appl. Phys. 2008, 41, 105101.<br />

[209] J. Li, P. Chen, Y. Duan, F. Zhao, C. Li, W. Xie, S. Liu, L. Zhang, B. Li,<br />

Semicond. Sci. Technol. 2007, 22, 798.<br />

[210] J.-F. Li, S.-F. Chen, S.-H. Su, K.-S. Hwang, M. Yokoyama, J. Electrochem.<br />

Soc. 2006, 11, H195.<br />

[211] X.-M. Yu, H. S. Kwok, W.-Y. Wong, G. J. Zhou, Chem. Mater. 2006, 18,<br />

5097.<br />

[212] H. Sirr<strong>in</strong>ghaus, Nat. Mater. 2003, 2, 641.<br />

[213] Y. G. Lee, I. S. Kee, H. S. Shim, I. H. Ko, S. Lee, K. H. Koh, Appl. Phys. Lett.<br />

2007, 90, 243508.<br />

[214] X.-M. Wu, Y.-L. Hua, S.-G. Y<strong>in</strong>, L.-J. Zhang, Y. Wang, Q.-C. Hou, J.-M.<br />

Zhang, Ch<strong>in</strong>. Phys. Lett. 2008, 25, 294.<br />

[215] G. Cheng, Y. Zhang, Y. Zhao, S. Liu, Appl. Phys. Lett. 2006, 88, 083512.<br />

[216] Y. Sun, S. R. Forrest, Appl. Phys. Lett. 2007, 91, 263503.<br />

[217] J. Wang, J. Yu, L. Li, X. Tang, Y. Jiang, J. Phys. D: Appl. Phys. 2008, 41,<br />

045104.<br />

[218] P. Chen, W. Xie, J. Li, T. Guan, Y. Duan, Y. Zhao, S. Liu, C. Ma, Appl. Phys.<br />

Lett. 2007, 91, 023505.<br />

[219] J. Liu, Q. Zhou, Y. Cheng, Y. Geng, L. Wang, D. Ma, X. J<strong>in</strong>g, F. Wang, Adv.<br />

Funct. Mater. 2006, 16, 957.<br />

[220] J. Park, N. Suganuma, Y. Kawakami, J. Disp. Technol. 2008, 4, 61.<br />

[221] G. Kalyuzhny, M. Buda, J. NcNeill, P. Barbara, A. J. Bard, J. Am. Chem. Soc.<br />

2003, 125, 6272.<br />

[222] Y. Yang, Q. Pei, Appl. Phys. Lett. 1996, 68, 2708.<br />

[223] Y. Yang, Q. Pei, Appl. Phys. Lett. 1997, 70, 1926.<br />

[224] B. S. Chaub, D. H. Hwang, S. M. Chang, J. E. Davies, S. C. Moratti, X. C. Li,<br />

A. B. Holmes, J. C. De Mello, N. Tessler, R. H. Friend, Proc. SPIE-Int. Soc.<br />

Opt. Eng. 1997, 3148, 132.<br />

[225] J. Sl<strong>in</strong>ker, D. Bernhards, P. L. Houston, H. D. Abruña, S. Bernhard, G. G.<br />

Malliaras, Chem. Commun. 2003, 2392.<br />

[226] J. C. De Mello, Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66,<br />

235210/1.<br />

[227] H.-C. Su, H.-F. Chen, F.-C. Fang, C.-C. Liu, C.-C. Wu, K.-T. Wong, Y.-H. Liu,<br />

S.-M. Peng, J. Am. Chem. Soc. 2008, 130, 3413.<br />

[228] Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, Science 1995, 270, 719.<br />

[229] S. Welter, K. Brunner, J. W. H<strong>of</strong>straat, L. De Cola, Nature 2003, 421, 54.<br />

[230] G. Santos, F. Fonseca, A. M. Andrade, A. O. T. Patroc<strong>in</strong>io, S. K. Mizoguchi,<br />

N. Y. Iha, P. M. Murakami, T. Monteiro, L. Pereira, Phys. Stat. Sol. A: Appl.<br />

Mater. Sci. 2008, 205, 2057.<br />

[231] J. D. Sl<strong>in</strong>ker, A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker, R. Pohl, S.<br />

Bernhard, G. G. Malliaras, J. Am. Chem. Soc. 2004, 126, 2763.<br />

[232] L. He, L. Duan, J. Qiao, R. Wang, P. Wie, L. Wang, Y. Qiu, Adv. Funct.<br />

Mater. 2008, 18, 2123.<br />

[233] X. Zeng, M. Tavasli, I. F. Perepichka, A. S. Batsanov, M. R. Bryce, C.-J.<br />

Chiang, C. Ro<strong>the</strong>, A. P. Monkman, Chem. Eur. J. 2008, 14, 933.<br />

4440 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Mater. 2009, 21, 4418–4441


www.advmat.de<br />

[234] F.-C. Chen, Y. Yang, Q. Pei, Apll. Phys. Lett. 2002, 81, 4279.<br />

[235] H. J. Bol<strong>in</strong>k, E. Coronado, R. D. Costa, N. Lardiés, E. Ortí, Inorg. Chem.<br />

2008, 47, 9149.<br />

[236] J. D. Sl<strong>in</strong>ker, C. Y. Koh, G. G. Malliaras, M. S. Lowry, S. Bernhard, Appl.<br />

Phys. Lett. 2005, 86, 173506.<br />

[237] M. K. Nazeerudd<strong>in</strong>, R. T. Wegh, Z. Zhou, C. Kle<strong>in</strong>, Q. Wang, F. De Angelis,<br />

S. Fantacci, M. Grätzel, Inorg. Chem. 2006, 45, 9245.<br />

[238] H. J. Bol<strong>in</strong>k, L. Cappelli, E. Coronado, A. Parham, P. Stössel, Chem. Mater.<br />

2006, 18, 2778.<br />

[239] H. J. Bol<strong>in</strong>k, L. Cappelli, E. Coronado, M. Grätzel, M. K. Nazeerudd<strong>in</strong>,<br />

J. Am. Chem. Soc. 2006, 128, 46.<br />

[240] H. J. Bol<strong>in</strong>k, L. Cappelli, E. Coronado, M. Grätzel, E. Orti, R. D. Costa,<br />

P. M. Viruela, M. K. Nazeerudd<strong>in</strong>, J. Am. Chem. Soc. 2006, 128, 14786.<br />

[241] K. W. Lee, J. D. Sl<strong>in</strong>ker, A. A. Gorodetsky, S. Flores-Torres, H. D. Abruña,<br />

P. L. Houston, G. G. Malliaras, Phys. Chem. Chem. Phys. 2003, 5, 2706.<br />

[242] S. Bernhard, J. A. Barron, P. L. Houston, H. D. Abruña, J. L. Rugovsky, X.<br />

Gao, G. G. Malliaras, J. Am. Chem. Soc. 2002, 124, 13624.<br />

[243] A. D. Bernards, J. D. Sl<strong>in</strong>ker, G. G. Malliaras, S. Flores-Torres, H. D.<br />

Abruña, Appl. Phys. Lett. 2004, 84, 4980.<br />

[244] S. T. Parker, J. D. Sl<strong>in</strong>ker, M. S. Lowry, M. P. Cox, S. Bernhard, G. G.<br />

Malliaras, Chem. Mater. 2005, 17, 3187.<br />

[245] E. Zysman-Coleman, J. D. Sl<strong>in</strong>ker, J. B. Parker, G. G. Malliaras, S.<br />

Bernhard, Chem. Mater. 2008, 20, 388.<br />

[246] L. Huynh, Z. Wang, J. Yang, V. Stoeva, A. Lough, I. Manners, M. A. W<strong>in</strong>nik,<br />

Chem. Mater. 2005, 17, 4765.<br />

[247] A. M. Borisov, I. Klimant, Anal. Chem. 2007, 79, 7501.<br />

[248] J. F. Fernández-Sánchez, R. Cannas, S. Spichiger, R. Steiger, U. E.<br />

Spichiger-Keller, Anal. Chim. Acta 2006, 566, 271.<br />

[249] O. Ergeneman, G. Dogangil, M. P. Kummer, J. J. Abbot, M. K.<br />

Nazeerudd<strong>in</strong>, B. J. Bradley, IEEE Sensors J. 2008, 8, 29.<br />

[250] J. M. Bedlek-Anslow, J. P. Hubner, B. F. Carroll, K. S. Schanze, Langmuir<br />

2000, 16, 9137.<br />

[251] J. F. Fernández-Sánchez, T. Roth, R. Canans, M. K. Nazeerudd<strong>in</strong>, S.<br />

Spichiger, M. Grätzel, U. E. Spichiger-Keller, Talanta 2007, 71, 242.<br />

[252] Q. Zhao, F. Li, M. Yu, Z. Liu, T. Yi, C. Huang, Inorg. Chem. 2008, 47, 9256.<br />

[253] Q. Zhao, S. J. Liu, M. Shi, F. Y. Li, H. J<strong>in</strong>g, T. Yi, H. C. Huang,<br />

Organometallics 2007, 26, 5922.<br />

[254] W. Goodall, J. A. G. Williams, J. Chem. Soc, Dalton Trans. 2000, 2893.<br />

[255] H. L. Chen, Q. Zhao, F. Y. Li, Y. B. Wu, H. Yang, T. Yi, C. H. Huang, Inorg.<br />

Chem. 2007, 46, 11075.<br />

[256] M. L. Ho, F. M. Hwang, P. N. Chen, Y. H. Hu, Y. M. Chen, K. S. Chen, G. H.<br />

Lee, Y. Chi, P. T. Chou, Org. Biomol. Chem. 2006, 4, 98.<br />

[257] Q. Zhao, S. J. Liu, F. Y. Li, T. Yi, C. H. Huang, Dalton Trans. 2008, 3836.<br />

[258] Q. Zhao, T. Y. Cao, F. Y. Li, X. H. Li, H. J<strong>in</strong>g, T. Yi, C. H. Huang,<br />

Organometallics 2007, 26, 2077.<br />

[259] M. L. Ho, Y. M. Cheng, L. C. Wu, P. T. Chou, G. H. Lee, F. C. Hsu, Y. Chi,<br />

Polyhedron 2007, 26, 4886.<br />

[260] K. K.-W. Lo, C. K. Chung, N. Zhu, Chem. Eur. J. 2003, 9, 475.<br />

[261] K. K.-W. Lo, C.-K. Chung, N. Zhu, Chem. Eur. J. 2006, 12, 1500.<br />

[262] K. K.-W. Lo, K. Y. Zhang, C.-K. Chung, K. Y. Kwok, Chem. Eur. J. 2007, 13,<br />

7110.<br />

[263] K. K.-W. Lo, J. S.-Y. Lau, Inorg. Chem. 2007, 46, 700.<br />

[264] K. K.-W. Lo, J. S.-W. Chan, L.-H. Lui, C.-K. Chung, Organometallics 2004,<br />

23, 3108.<br />

[265] K. K.-W. Lo, K. Y. Zhang, S.-K. Leung, M.-C. Tang, Angew. Chem. Int. Ed.<br />

2008, 47, 2213.<br />

[266] D.-L. Ma, W.-L. Wong, W.-H. Chung, F.-Y. Chan, P.-K. So, T.-S. Lai, Z.-Y.<br />

Zhou, Y.-C. Leung, K.-Y. Wong, Angew. Chem. Int. Ed. 2008, 47, 3735.<br />

[267] K. K.-W. Lo, C.-K. Chung, T. K.-M. Lee, L.-H. Lui, K. H.-K. Tsang, N. Zhu,<br />

Inorg. Chem. 2003, 42, 6886.<br />

[268] M. Yu, Q. Zhao, L. Shi, F. Li, Z. Zhou, H. Yang, T. Yi, C. Huang, Chem.<br />

Commun. 2008, 2115.<br />

[269] N. D. McDaniel, F. J. Coughl<strong>in</strong>, L. L. T<strong>in</strong>ker, S. Bernhard, J. Am. Chem. Soc.<br />

2008, 130, 210.<br />

[270] J. H. Alstrum-Acevedo, M. K. Brenneman, T. J. Meyer, Inorg. Chem. 2005,<br />

44, 6802.<br />

[271] E. Aymouyal, <strong>in</strong> Homogenenous Photocatalysis, Vol. 2 (Ed: M. Chanon),<br />

Wiley & Son, Chichester 1997, p. 263.<br />

[272] M. Grätzel, Nature 2001, 414, 338.<br />

[273] M. Kirch, J.-M. Lehn, J.-P. Sauvage, Helv. Chim. Acta 1979, 62, 1345.<br />

[274] K. Kalyanasundaram, J. Kiwi, M. Grätzel, Helv. Chim. Acta 1978, 61,<br />

2720.<br />

[275] M. Elv<strong>in</strong>gton, J. Brown, A. M. Arachchige, K. J. Brewer, J. Am. Chem. Soc.<br />

2007, 129, 10644.<br />

[276] S. Rau, B. Schäfer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich, H.<br />

Görls, W. Henry, J. G. Vos, Angew. Chem. Int. Ed. 2006, 45, 6215.<br />

[277] P. Du, J. Schneider, P. Jarosz, R. Eisenberg, J. Am. Chem. Soc. 2006, 128,<br />

7726.<br />

[278] R. Z. Zong, R. P. Thummel, J. Am. Chem. Soc. 2005, 127, 12802.<br />

[279] J. I. Goldsmith, W. R. Hudson, M. S. Lowry, T. H. Anderson, S. Bernhard,<br />

J. Am. Chem. Soc. 2005, 127, 7502.<br />

[280] L. L. T<strong>in</strong>ker, N. D. McDaniel, P. N. Curt<strong>in</strong>, C. K. Smith, M. J. Ireland, S.<br />

Bernhard, Chem. Eur. J. 2007, 13, 8726.<br />

[281] P. J. Hay, J. Phys. Chem. A 2002, 106, 1634.<br />

[282] M. Polson, S. Fracasso, V. Bertolasi, M. Ravaglia, F. Scandola, Inorg.<br />

Chem. 2004, 43, 1950.<br />

[283] F. De Angelis, S. Fantacci, N. Evans, C. Kle<strong>in</strong>, S. M. Zakeerudd<strong>in</strong>, J.-E.<br />

Moser, K. Kalyanasundaram, H. J. Bol<strong>in</strong>k, M. Grätzel, M. K. Nazeerudd<strong>in</strong>,<br />

Inorg. Chem. 2007, 46, 5989.<br />

[284] D. Di Censo, S. Fantacci, F. De Angelis, C. Kle<strong>in</strong>, N. Evans, K. Kalyanasundaram,H.J.Bol<strong>in</strong>k,M.Grätzel,<br />

M. K. Nazeerudd<strong>in</strong>, Inorg. Chem. 2008, 47, 980.<br />

[285] A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, M. E.<br />

Thompson, Inorg. Chem. 2005, 44, 8723.<br />

[286] Y. You, J. Seo, S. H. Kim, K. S. Klm, T. K. Ahn, D. Klm, S. Y. Park, Inorg.<br />

Chem. 2008, 47, 1476.<br />

[287] C.-J. Chang, C.-H. Yang, K. Chen, Y. Chi, C.-F. Shu, M.-L. Ho, Y.-S. Yeh,<br />

P.-T. Chou, Daton Trans. 2007, 1881.<br />

[288] D. Nie, Z. Liu, Z. Bian, C. Huang, Theochem 2008, 861, 97.<br />

PROGRESS REPORT<br />

Adv. Mater. 2009, 21, 4418–4441 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 4441

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!