26.06.2014 Views

Flibe Energy LFTR Development Strategy - Kirk Sorensen - Flibe Energy - ThEC13

Flibe Energy LFTR Development Strategy - Kirk Sorensen - Flibe Energy - ThEC13

Flibe Energy LFTR Development Strategy - Kirk Sorensen - Flibe Energy - ThEC13

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Liquid-Fluoride Thorium Reactor <strong>Development</strong> <strong>Strategy</strong><br />

<strong>Kirk</strong> <strong>Sorensen</strong><br />

<strong>Flibe</strong> <strong>Energy</strong><br />

Thorium <strong>Energy</strong> Conference 2013<br />

October 28, 2013


Impending Coal-Fired Plant Retirements<br />

Large numbers of coal-fired power plants are also<br />

facing retirement, particularly in the Ohio River Valley<br />

and in the Carolinas.


EPA regulations are helping drive coal retirement<br />

The implementation of these regulations makes smaller, older coal plants inefficient and uneconomical, resulting in<br />

the loss of over 27GW. The loss of power places an urgency on utilities to plan for new, clean power solutions ahead<br />

of 2017. The window to plan for new clean generation sources fi ts perfectly with SMR development and offers a<br />

market opportunity of over $30bn for coal replacement alone.


“Renewable” options are limited in these regions


New reactors are under construction in the US and across the world.


The US Nuclear Retirement “Cliff”<br />

Beginning in 2028, nuclear power plant retirements will increase dramatically.


DOE sees Industry Leading Future Nuclear<br />

“In the United States, it is the<br />

responsibility of industry to<br />

design, construct, and operate<br />

commercial nuclear power<br />

plants.” (pg 22)<br />

“It is ultimately industry’s<br />

decision which commercial<br />

technologies will be deployed.<br />

The federal role falls more<br />

squarely in the realm of R&D.”<br />

(pg 16)<br />

“The decision to deploy<br />

nuclear energy systems is<br />

made by industry and the<br />

private sector in market-based<br />

economies.” (pg 45)


Modular construction of nuclear reactors in a factory environment has become<br />

increasingly desirable to reduce uncertainties about costs and quality.<br />

Liquid-fluoride reactors, with their lowpressure<br />

reactor vessels, are<br />

particularly suitable to modular<br />

construction in a factory and delivery<br />

to a power generation site.


Image source: ORNL-4832: MSRP-SaPR-08/72, pg 6<br />

One-Fluid 1000-MWe MSBR


The Single Fluid Salt Processing Has Several<br />

Separation Steps<br />

Gaseous Fission<br />

Products/Nobel Metals<br />

Rare Earth<br />

Thorium Sep From<br />

Protactinium/Uranium<br />

Pa Decay/U<br />

Separation<br />

Rare Earth<br />

Separation<br />

Uranium<br />

Separation


ORNL-4191, sec 5<br />

ORNL-4528, sec 5<br />

Two-Fluid 250-MWe MSBR: August 1967


ORNL-4191, sec 5<br />

ORNL-4528, sec 5<br />

Two-Fluid 250-MWe MSBR: August 1967


How does a fluoride reactor use thorium?<br />

Uranium Absorption<br />

and Reduction<br />

UF 6<br />

UF 4<br />

UF 6<br />

Fluoride<br />

Volatility<br />

Fertile<br />

Salt<br />

Fluoride<br />

Volatility<br />

Fuel<br />

Salt<br />

Vacuum<br />

Distillation<br />

Fission<br />

Product<br />

Waste<br />

Recycle<br />

Fertile Salt<br />

Core<br />

Blanket<br />

Two-Fluid Reactor<br />

Recycle<br />

Fuel Salt


ORNL-4528, pg 20<br />

ORNL 1967 Two-Fluid 250-MWe Modular Reactors


1967 ORNL Modular MSBR, Modern Renderings


Two-Fluid MSBR Dual Module Isometric View


Two-Fluid MSBR Dual Module Front View


Two-Fluid MSBR Reactor Module and Core Cutaway


<strong>Flibe</strong> <strong>Energy</strong> was formed in order to further develop liquidfluoride<br />

reactor technology and to supply the world with<br />

affordable and sustainable energy, water and fuel.


We believe in the vision of a<br />

sustainable, prosperous future<br />

enabled by liquid-fluoride<br />

reactors producing electricity and<br />

desalinated water.


Located in Huntsville, Alabama


Water, Rail, and Air Freight Access to the World<br />

International Air Freight<br />

Extensive Rail Network<br />

Waterways to Gulf of Mexico and US Interior


Oak Ridge—birthplace of thorium/fluoride tech<br />

Graphite Reactor—first thorium/U233 property measurements<br />

Aircraft Reactor Experiment—first molten-salt reactor<br />

Molten-Salt Reactor Experiment—20,000+ hours operation


Proximity to Oak Ridge National Laboratory<br />

Accessible by the Tennessee River<br />

340km by road<br />

Some MSRP retirees still live in area


Combustion Gas Turbine Technology<br />

established technology<br />

low-risk<br />

modular


Liquid-fluoride reactor produce high-temperature thermal power, enabling the<br />

use of new power conversion system technologies that reduce size and cost.


Nuclear-Heated Gas Turbine Propulsion<br />

Liquid-Fluoride<br />

Reactor


How does a fluoride reactor make electricity?<br />

Hot fuel salt<br />

Hot coolant salt<br />

The turbine drives a<br />

generator creating<br />

electricity<br />

Hot gas<br />

Salt / Salt Heat<br />

Exchanger<br />

Salt / Gas Heat<br />

Exchanger<br />

Turbine<br />

Warm gas<br />

Warm fuel salt<br />

Reactor containment boundary<br />

Warm coolant<br />

salt<br />

Warm gas<br />

Compressor<br />

The gas is<br />

cooled and the<br />

waste heat is<br />

used to<br />

desalinate<br />

seawater


How does a fluoride reactor use thorium?<br />

238U<br />

Uranium Reduction<br />

Fluoride Volatility<br />

F 2<br />

UF 6<br />

H 2<br />

HF Electrolyzer<br />

Fertile Salt<br />

Recycle Fuel Salt<br />

Fuel Salt<br />

Recycle Fertile Salt<br />

HF<br />

Core<br />

Blanket<br />

External “batch”<br />

processing of core salt,<br />

done on a schedule<br />

Hexafluoride<br />

Distillation<br />

xF 6<br />

UF 6<br />

Fluoride<br />

Volatility<br />

Thorium<br />

tetrafluoride<br />

Uranium<br />

Absorption-<br />

Reduction<br />

Recycled<br />

7LiF-BeF2<br />

“Bare” Salt<br />

Vacuum<br />

Distillation<br />

MoF6, TcF6, SeF6,<br />

RuF5, TeF6, IF7,<br />

Other F6<br />

Fission<br />

Product<br />

Waste


Liquid fuels enable enhanced safety<br />

The reactor is equipped<br />

with a “freeze plug”—an<br />

open line where a frozen<br />

plug of salt is blocking<br />

the flow.<br />

The plug is kept frozen<br />

by an external cooling<br />

fan.<br />

Freeze Plug<br />

In the event of TOTAL loss of<br />

power, the freeze plug melts<br />

and the core salt drains into a<br />

passively cooled<br />

configuration where nuclear<br />

fission and meltdown are not<br />

possible.<br />

Drain Tank


Today’s Nuclear Approach<br />

Plutonium/TRU<br />

Uranium<br />

0.3% (depleted) 0.7% (natural) 3-5% (LEU) 93% (HEU)<br />

Thorium<br />

Weapons-Grade<br />

Plutonium<br />

Depleted<br />

Uranium<br />

Stockpiles<br />

HEU<br />

Downblending<br />

Facility<br />

Highly-Enriched<br />

Uranium<br />

Stockpiles<br />

Thorium<br />

Stockpiles<br />

Uranium<br />

Enrichment<br />

Facility<br />

LEUO2 Fuel<br />

Fabrication<br />

Facility<br />

Existing U233<br />

Inventory<br />

Reactor-Grade<br />

Plutonium<br />

NUO2 to NUF6<br />

Conversion<br />

Facility<br />

LEUO2-Fueled<br />

Light-Water<br />

Reactor<br />

Uranium Mill<br />

NUO2 = Natural Uranium Dioxide<br />

NUF6 = Natural Uranium Hexafluoride<br />

LEUO2 = Low-Enrichment Uranium Dioxide<br />

Uranium<br />

Mine<br />

Yucca<br />

Mountain<br />

Facility


Conventionally-Proposed Nuclear Approach<br />

Plutonium/TRU<br />

Uranium<br />

0.3% (depleted) 0.7% (natural) 3-5% (LEU) 93% (HEU)<br />

Thorium<br />

Weapons-Grade<br />

Plutonium<br />

Depleted<br />

Uranium<br />

Stockpiles<br />

HEU<br />

Downblending<br />

Facility<br />

Highly-Enriched<br />

Uranium<br />

Stockpiles<br />

Thorium<br />

Stockpiles<br />

MOX Fuel<br />

Fabrication<br />

Facility<br />

Uranium<br />

Enrichment<br />

Facility<br />

LEUO2 Fuel<br />

Fabrication<br />

Facility<br />

MOX-Fueled<br />

Light-Water<br />

Reactor<br />

NUO2 to NUF6<br />

Conversion<br />

Facility<br />

LEUO2-Fueled<br />

Light-Water<br />

Reactor<br />

Existing U233<br />

Inventory<br />

Uranium Mill<br />

Aqueous<br />

Reprocessing<br />

Plant<br />

NUO2 = Natural Uranium Dioxide<br />

NUF6 = Natural Uranium Hexafluoride<br />

LEUO2 = Low-Enrichment Uranium Dioxide<br />

Uranium<br />

Mine<br />

Yucca<br />

Mountain<br />

Facility<br />

Dispose in<br />

WIPP<br />

MOX = Mixed Oxide Fuel (contain plutonium)


Plutonium/TRU<br />

Transition to Thorium Proposed Nuclear<br />

Approach<br />

Uranium<br />

0.3% (depleted) 0.7% (natural) 3-5% (LEU) 93% (HEU)<br />

Thorium<br />

Weapons-Grade<br />

Plutonium<br />

Stockpiles<br />

Depleted<br />

Uranium<br />

Stockpiles<br />

Uranium<br />

Reserves and<br />

Imports<br />

LEUO2-Fueled<br />

Light-Water<br />

Reactors<br />

Highly-Enriched<br />

Uranium<br />

Stockpiles<br />

Thorium<br />

Stockpiles &<br />

Rare Earth<br />

Mining<br />

Reactor-Grade<br />

Plutonium<br />

DUF6<br />

TRU<br />

XUO2<br />

Fluorination<br />

Facility<br />

Liquid-Fluoride<br />

Thorium<br />

Reactors<br />

(HEU start)<br />

U233<br />

TRU-Fueled<br />

Liquid-Chloride<br />

Reactors<br />

U233<br />

U233<br />

Inventory<br />

DUF6 to DUO2<br />

Conversion<br />

Facility<br />

DUO2<br />

Underground<br />

Burial<br />

F2<br />

F2<br />

F2<br />

LEUO2 = Low-Enrichment Uranium Dioxide<br />

XUO2 = Exposed Uranium Dioxide Fuel<br />

TRU = Transuranics (Pu, Am, Cm, Np)<br />

DUF6 = Depleted Uranium Hexafluoride<br />

DUO2 = Depleted Uranium Dioxide<br />

F2 = Gaseous Fluorine<br />

Liquid-Fluoride<br />

Thorium<br />

Reactors<br />

(U233 start)


“During my life I have witnessed extraordinary feats of human<br />

ingenuity. I believe that this struggling ingenuity will be equal<br />

to the task of creating the Second Nuclear Era.”<br />

“My only regret is that I will not<br />

be here to witness its success.”<br />

—Alvin Weinberg (1915-2006)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!