25.06.2014 Views

Thermal management at Schaeffler: How much water does an ...

Thermal management at Schaeffler: How much water does an ...

Thermal management at Schaeffler: How much water does an ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

22 <strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

22 <strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

<strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

22<br />

<strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong> <strong>at</strong> <strong>Schaeffler</strong><br />

<strong>How</strong> <strong>much</strong> w<strong>at</strong>er <strong>does</strong> <strong>an</strong> engine need?<br />

Elmar Mause<br />

Eduard Golov<strong>at</strong>ai-Schmidt<br />

Markus Popp<br />

Sebasti<strong>an</strong> Hurst<br />

22<br />

302<br />

<strong>Schaeffler</strong> SYMPOSIUM 2010<br />

<strong>Schaeffler</strong> SYMPOSIUM 2010<br />

303


22 <strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

<strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

22<br />

<strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong> is <strong>an</strong> import<strong>an</strong>t factor for<br />

reducing CO 2<br />

emissions. This article presents<br />

the reasons for the use of a thermal <strong>m<strong>an</strong>agement</strong><br />

system, <strong>an</strong> <strong>an</strong>alysis of the requirements<br />

<strong>an</strong>d <strong>an</strong> approach for implementing such a system.<br />

<strong>Thermal</strong><br />

<strong>m<strong>an</strong>agement</strong><br />

The term “thermal <strong>m<strong>an</strong>agement</strong>” describes the<br />

efficient control of thermal energy flows in the<br />

vehicle in accord<strong>an</strong>ce with the specific requirements<br />

<strong>an</strong>d the prevailing oper<strong>at</strong>ing <strong>an</strong>d load<br />

conditions. As a result, vehicle emissions c<strong>an</strong> be<br />

reduced, <strong>an</strong>d the thermodynamic <strong>an</strong>d mech<strong>an</strong>ical<br />

engine efficiency c<strong>an</strong> be improved. This leads<br />

to lower fuel consumption, a longer engine life<br />

<strong>an</strong>d improved thermal comfort.<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

Load L in %<br />

70<br />

80<br />

90<br />

100<br />

6000<br />

5000<br />

4000<br />

Low load <strong>an</strong>d low speed: high cool<strong>an</strong>t temper<strong>at</strong>ure<br />

High load: low cool<strong>an</strong>t temper<strong>at</strong>ure<br />

High speed: low cool<strong>an</strong>t temper<strong>at</strong>ure<br />

The cool<strong>an</strong>t temper<strong>at</strong>ure should ideally be adjusted<br />

depending on the oper<strong>at</strong>ing condition of the<br />

engine (Figure 1).<br />

During cold start, the combustion engine should<br />

he<strong>at</strong> up rapidly in order to achieve a signific<strong>an</strong>t reduction<br />

in friction. Rapid he<strong>at</strong>ing of the engine oil<br />

<strong>an</strong>d the resulting decrease in oil viscosity are the<br />

decisive factors. The he<strong>at</strong> gener<strong>at</strong>ed by the engine<br />

must therefore not be dissip<strong>at</strong>ed by the cool<strong>an</strong>t<br />

but used for he<strong>at</strong>ing the engine oil.<br />

At low <strong>an</strong>d medium loads, high cool<strong>an</strong>t temper<strong>at</strong>ures<br />

(approx. 110 °C) are desirable for further reducing<br />

the engine friction.<br />

In addition to the above adv<strong>an</strong>tages, the acoustics<br />

of diesel engines c<strong>an</strong> be improved by reducing the<br />

ignition delay time. Intelligent thermal <strong>m<strong>an</strong>agement</strong><br />

c<strong>an</strong> influence the evapor<strong>at</strong>ion r<strong>at</strong>e <strong>an</strong>d thus<br />

the ignition delay.<br />

To prevent knocking of the gasoline engine <strong>an</strong>d<br />

reduce the enrichment of the mixture, the<br />

cool<strong>an</strong>t temper<strong>at</strong>ure<br />

should preferably be<br />

reduced (to approx.<br />

80 °C) <strong>at</strong> high loads<br />

<strong>an</strong>d high speeds.<br />

Intermedi<strong>at</strong>e stages<br />

110 must be defined between<br />

the two limit<br />

100<br />

values for the cool<strong>an</strong>t<br />

90 temper<strong>at</strong>ure. These<br />

80 vary depending on the<br />

70 combustion engine<br />

<strong>an</strong>d c<strong>an</strong> serve diverse<br />

60<br />

goals (reduced friction,<br />

optimized com-<br />

50<br />

40 bustion, lower raw<br />

30 emissions, increased<br />

comfort etc.).<br />

20<br />

1000 The ideal thermal <strong>m<strong>an</strong>agement</strong><br />

system should<br />

2000<br />

3000<br />

be able to adjust the<br />

relev<strong>an</strong>t cool<strong>an</strong>t temper<strong>at</strong>ure<br />

in accord<strong>an</strong>ce<br />

with the above requirements.<br />

<strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

measures c<strong>an</strong> achieve<br />

fuel savings of up to<br />

4 % in the NEDC (Fig-<br />

eng<br />

Speed n in 1/min<br />

Figure 1 Required cool<strong>an</strong>t temper<strong>at</strong>ure depending on load <strong>an</strong>d speed from [1]<br />

Cool<strong>an</strong>t temper<strong>at</strong>ure T in °C<br />

ure 2). The blue curve<br />

shows the accumul<strong>at</strong>ed<br />

consumption of a<br />

reference engine, the<br />

red curve th<strong>at</strong> of <strong>an</strong><br />

engine with a thermal<br />

<strong>m<strong>an</strong>agement</strong> system.<br />

The green curve indic<strong>at</strong>es<br />

the savings in<br />

percentage terms th<strong>at</strong><br />

c<strong>an</strong> be achieved in the<br />

NEDC with the thermal<br />

<strong>m<strong>an</strong>agement</strong> system.<br />

Signific<strong>an</strong>t savings potentials<br />

of more th<strong>an</strong><br />

4 % c<strong>an</strong> be expected<br />

particularly in shortdist<strong>an</strong>ce<br />

driving oper<strong>at</strong>ion.<br />

This is mainly<br />

due to a more rapid<br />

he<strong>at</strong>-up of the engine<br />

<strong>an</strong>d the corresponding<br />

reduction in friction.<br />

Figure 3 gives <strong>an</strong> impression<br />

of the possible<br />

reduction in engine<br />

friction. If the oil<br />

temper<strong>at</strong>ure increases<br />

from 20 °C to 80 °C,<br />

the total frictional<br />

torque of the engine<br />

Cumulave consumpon C in kg<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

Friconal torque M total in %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Speed<br />

v in km/h<br />

-40<br />

-10<br />

20<br />

50<br />

80<br />

110<br />

140<br />

Oil temper<strong>at</strong>ure T in °C<br />

oil<br />

0<br />

0<br />

120<br />

60<br />

No<br />

cooling<br />

Cooling<br />

in accord<strong>an</strong>ce with requirements<br />

0<br />

0 120 240 360 480 600 720 840 960 1080 1180<br />

Time t in s<br />

Cumulave consumpon without thermal <strong>m<strong>an</strong>agement</strong><br />

Cumulave consumpon with thermal <strong>m<strong>an</strong>agement</strong><br />

Savings with thermal <strong>m<strong>an</strong>agement</strong><br />

0 120 240 360 480 600 720 840 960 1080 1180<br />

Time t in s<br />

NEDC<br />

Figure 2 Savings due to thermal <strong>m<strong>an</strong>agement</strong> from [2]<br />

5000<br />

3000<br />

1000<br />

eng<br />

Engine speed n in 1/min<br />

Figure 3 Reduction in engine friction from [3]<br />

decreases by 75 %. At <strong>an</strong> oil temper<strong>at</strong>ure of<br />

110 °C, it decreases by as <strong>much</strong> as 85 %. This<br />

shows th<strong>at</strong> rapid he<strong>at</strong>ing of the engine oil <strong>an</strong>d oper<strong>at</strong>ing<br />

the engine <strong>at</strong> the highest possible temper<strong>at</strong>ure<br />

make a signific<strong>an</strong>t contribution to reducing<br />

friction <strong>an</strong>d therefore fuel consumption.<br />

Friconal torque M<br />

total<br />

in %<br />

40<br />

30<br />

20<br />

10<br />

3500 1/min<br />

0<br />

-10 20 50 80<br />

Oil temper<strong>at</strong>ure T in °C<br />

oil<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

75 % 85 %<br />

Reducon in consumpon C in %<br />

red<br />

110<br />

22<br />

304 <strong>Schaeffler</strong> SYMPOSIUM 2010<br />

<strong>Schaeffler</strong> SYMPOSIUM 2010 305


22 <strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

<strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

22<br />

Components for<br />

thermal <strong>m<strong>an</strong>agement</strong><br />

All components in the cooling circuit as shown in<br />

Figure 4 – radi<strong>at</strong>or, f<strong>an</strong>, louvers, thermost<strong>at</strong>, engine<br />

control unit, <strong>an</strong>d w<strong>at</strong>er pump – must in principle be<br />

included in the thermal <strong>m<strong>an</strong>agement</strong> system.<br />

These components are currently characterized by a<br />

limited variability.<br />

For example, there are thermost<strong>at</strong>s th<strong>at</strong> are controlled<br />

by me<strong>an</strong>s of wax elements. Switchable or<br />

electrically-driven w<strong>at</strong>er pumps are also being<br />

used. The cooling air flow c<strong>an</strong> be limited by splitting<br />

the radi<strong>at</strong>or into several parts or covering it<br />

with louvers. Solutions have been developed for<br />

the f<strong>an</strong> th<strong>at</strong> are similar to those for the w<strong>at</strong>er<br />

pump (electrically-driven f<strong>an</strong>, viscous coupling<br />

etc.).<br />

<strong>How</strong>ever, almost all vehicles today still use uncontrolled,<br />

mech<strong>an</strong>ically-driven w<strong>at</strong>er pumps.<br />

These are perm<strong>an</strong>ently linked with the engine<br />

speed via the belt drive <strong>an</strong>d therefore allow no<br />

variability. Presented below is a controllable w<strong>at</strong>er<br />

pump th<strong>at</strong> possesses the required variability.<br />

The variably adjustable flow r<strong>at</strong>e enables <strong>an</strong> additional<br />

degree of freedom for the cooling system.<br />

Controllable cool<strong>an</strong>t pump<br />

Engine control unit (ECU)<br />

Thermost<strong>at</strong><br />

W<strong>at</strong>er pump<br />

Figure 4 Components of thermal <strong>m<strong>an</strong>agement</strong> from [1]<br />

Pump open<br />

Solenoid<br />

(schemac)<br />

Pump closed<br />

Figure 5<br />

Pulley<br />

Shroud<br />

Impeller<br />

Cover<br />

pl<strong>at</strong>e<br />

Push rod<br />

Sealing Flo<strong>an</strong>g ring seal<br />

W<strong>at</strong>er pump bearing<br />

Return spring<br />

Design of a controllable w<strong>at</strong>er pump<br />

The controllable cool<strong>an</strong>t pump is a centrifugal<br />

pump with a shroud th<strong>at</strong> is integr<strong>at</strong>ed in the rotor<br />

as shown in Figure 5. A defined width of the<br />

rotor is exposed when the shroud is moved axially.<br />

This enables adjustment of the volume<br />

flow.<br />

If the shroud is in the left position (Figure 5, top<br />

diagram), the rotor width is completely exposed<br />

<strong>an</strong>d the gener<strong>at</strong>ed<br />

volume flow achieves<br />

Radi<strong>at</strong>or<br />

a maximum. The solenoid,<br />

which is loc<strong>at</strong>ed<br />

on the left side <strong>an</strong>d<br />

serves as <strong>an</strong> actu<strong>at</strong>or,<br />

Louvers is not fed with current.<br />

If the volume<br />

flow is to be reduced,<br />

the solenoid is fed<br />

with a defined amount<br />

of current. The arm<strong>at</strong>ure<br />

is correspondingly<br />

moved to the right,<br />

F<strong>an</strong><br />

presses against the<br />

push rod <strong>an</strong>d thus<br />

moves the shroud to<br />

the right. This reduces<br />

the effective width of the flow ch<strong>an</strong>nel <strong>an</strong>d cuts<br />

the flow (Figure 5, bottom diagram).<br />

To ensure the fail-safe function in case of a failure<br />

of the solenoid, a compression spring retains<br />

the shroud in the completely opened<br />

pump position. The compression spring is designed<br />

so as to ensure th<strong>at</strong> the w<strong>at</strong>er pump is<br />

completely opened when the flow forces reach<br />

a maximum.<br />

Flow r<strong>at</strong>e Q in %<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Figure 6<br />

0 20 40 60 80 100<br />

Closing rao S in %<br />

1500 1/min<br />

3000 1/min<br />

4500 1/min<br />

Flow r<strong>at</strong>e in rel<strong>at</strong>ion to pump closing r<strong>at</strong>io<br />

<strong>an</strong>d speeds<br />

Figure 6 shows the flow behavior of the pump <strong>at</strong><br />

different closing r<strong>at</strong>ios <strong>an</strong>d speeds. A closing r<strong>at</strong>io<br />

of 0 % corresponds to a completely opened<br />

pump. The pump is<br />

closed <strong>at</strong> a closing r<strong>at</strong>io<br />

of 100 %. The diagram<br />

indic<strong>at</strong>es th<strong>at</strong><br />

the flow r<strong>at</strong>e decreases<br />

signific<strong>an</strong>tly with<br />

increasing closing r<strong>at</strong>ios.<br />

The flow r<strong>at</strong>e c<strong>an</strong> Nominal speed<br />

therefore be adjusted<br />

by the position of the<br />

shroud.<br />

Figure 7 shows the<br />

pump efficiency in<br />

rel<strong>at</strong>ion to the flow<br />

r<strong>at</strong>e <strong>at</strong> a speed of<br />

2500 1/min. The diagram<br />

indic<strong>at</strong>es th<strong>at</strong><br />

Low speeds<br />

the maximum efficiency<br />

<strong>at</strong> this speed is<br />

achieved when the<br />

pump is approx. 50 %<br />

open. This c<strong>an</strong> be Figure 8<br />

Efficiency η in %<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Figure 7<br />

2500 1/min<br />

0 10 20 30 40 50 60 70 80<br />

Flow r<strong>at</strong>e Q in l/min<br />

0 % closed<br />

25 % closed<br />

50 % closed<br />

75 % closed<br />

Pump efficiency in rel<strong>at</strong>ion to flow r<strong>at</strong>e <strong>an</strong>d<br />

closing r<strong>at</strong>io<br />

<strong>at</strong>tributed to backflows <strong>an</strong>d turbulences th<strong>at</strong><br />

sometimes occur outside the design point (Figure<br />

8).<br />

At nominal speed, the complete rotor width is<br />

used for pumping the medium. At low speeds,<br />

backflows occur in the conventional pump (Figure<br />

8, left column) <strong>an</strong>d reduce the efficiency.<br />

When using a shroud, the rotor width c<strong>an</strong> always<br />

be adjusted to the required volume flow (Figure<br />

8, right column). This prevents energy loss<br />

caused by backflows <strong>an</strong>d therefore increases the<br />

efficiency of the pump.<br />

Convenonal pump<br />

Controllable pump<br />

Comparison of conventional <strong>an</strong>d controllable w<strong>at</strong>er pumps<br />

22<br />

306 <strong>Schaeffler</strong> SYMPOSIUM 2010<br />

<strong>Schaeffler</strong> SYMPOSIUM 2010 307


22 <strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

<strong>Thermal</strong> <strong>m<strong>an</strong>agement</strong><br />

22<br />

Force on shroud F shroud<br />

in N<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Closing rao S in %<br />

Figure 9<br />

Actu<strong>at</strong>or<br />

4000 1/min<br />

3500 1/min<br />

3000 1/min<br />

2500 1/min<br />

Forces on the shroud in rel<strong>at</strong>ion to closing<br />

r<strong>at</strong>io <strong>an</strong>d speeds<br />

Figure 9 shows the axial forces acting on the shroud<br />

in rel<strong>at</strong>ion to the pump closing r<strong>at</strong>io <strong>at</strong> different<br />

speeds. The neg<strong>at</strong>ive axial forces resulting from the<br />

flow move the shroud towards “closed”, whereas<br />

the positive axial forces move it towards “open”<br />

(Figure 5).<br />

The diagram in Figure 9 indic<strong>at</strong>es th<strong>at</strong> the force on<br />

the shroud ch<strong>an</strong>ges its direction <strong>at</strong> different speeds<br />

<strong>an</strong>d different closing r<strong>at</strong>ios. This point represents<br />

the optimum rotor width <strong>at</strong> a specific speed. The<br />

volume flow c<strong>an</strong> be reduced <strong>at</strong> widths lower th<strong>an</strong><br />

the optimum width.<br />

Due to its physical functional principle, the forces<br />

of the electromagnetic actu<strong>at</strong>or act only in one direction<br />

(push solenoid). A compression spring is<br />

used for compens<strong>at</strong>ion to ensure a const<strong>an</strong>tly positive<br />

force level. This way, the shroud is retained in<br />

the “open” position in all oper<strong>at</strong>ing conditions <strong>an</strong>d<br />

moved towards “closed” by the push solenoid.<br />

Adjusting the rotor width <strong>an</strong>d thus the volume flow<br />

depending on the speed requires <strong>an</strong> actu<strong>at</strong>or th<strong>at</strong><br />

allows the setting of defined forces. The simplest<br />

solution for this is a pull solenoid with a modul<strong>at</strong>ed<br />

pulse width for influencing the electromagnetic<br />

force characteristic curves. Defined currents th<strong>at</strong><br />

gener<strong>at</strong>e the required forces c<strong>an</strong> be set by me<strong>an</strong>s<br />

of pulse width modul<strong>at</strong>ion of the voltage. Figure 10<br />

shows the solenoid of the controllable w<strong>at</strong>er pump<br />

in full section view.<br />

Figure 11 shows the forces exerted by the solenoid<br />

depending on the magnetomotive force (current)<br />

<strong>an</strong>d the stroke of the solenoid as well as the axial<br />

forces on the shroud. The diagram indic<strong>at</strong>es th<strong>at</strong><br />

the magnetic force ch<strong>an</strong>ges with different currents<br />

or magnetomotive forces <strong>an</strong>d the force equilibrium<br />

is achieved in different positions of the shroud.<br />

Thus, the position of the shroud c<strong>an</strong> be set in a targeted<br />

m<strong>an</strong>ner <strong>an</strong>d the volume flow c<strong>an</strong> be reduced<br />

to zero. As the forces on the shroud ch<strong>an</strong>ge with<br />

both speed <strong>an</strong>d position of the shroud, each oper<strong>at</strong>ing<br />

condition requires a suitable current th<strong>at</strong> c<strong>an</strong><br />

be set by me<strong>an</strong>s of pulse width modul<strong>at</strong>ion.<br />

Summary <strong>an</strong>d<br />

outlook<br />

This article presented a variable cool<strong>an</strong>t pump<br />

for controlling the engine temper<strong>at</strong>ure in accord<strong>an</strong>ce<br />

with the specific requirements. Signific<strong>an</strong>t<br />

development objectives of thermal <strong>m<strong>an</strong>agement</strong><br />

are reductions in fuel consumption, longer<br />

engine life <strong>an</strong>d increased comfort. Due to the<br />

presented controllable w<strong>at</strong>er pump, the cool<strong>an</strong>t<br />

volume flow c<strong>an</strong> be controlled depending on the<br />

current oper<strong>at</strong>ing condition of the engine, <strong>an</strong>d<br />

efficiency c<strong>an</strong> be increased depending on the<br />

driving situ<strong>at</strong>ion by adjusting the rotor width.<br />

The development objective in this case was<br />

achieved by intelligently modifying <strong>an</strong>d combining<br />

existing components.<br />

The integr<strong>at</strong>ion of this controllable w<strong>at</strong>er pump<br />

<strong>an</strong>d other variable components in a thermal <strong>m<strong>an</strong>agement</strong><br />

system is <strong>an</strong>other very promising approach<br />

for the future.<br />

Liter<strong>at</strong>ure<br />

[1] Behr Thermot-tronik GmbH: Kennfeldthermost<strong>at</strong>e<br />

– Höchstleistung für den<br />

Kühlkreislauf, http://www.behrthermottronik.de/produkte/automobil/kennfeldthermost<strong>at</strong>.pdf,<br />

November 2009<br />

[2] [Maassen, F.-J.; Dohmen, J.; Pischinger, S.;<br />

Schwaderlapp, M.: Engine Friction Reduction<br />

– Design Measures for Reduced Fuel<br />

Consumption, MTZ July 2005<br />

[3] Brinker, M.: Thermo<strong>m<strong>an</strong>agement</strong> und Motorkühlung<br />

aus Sicht von Opel/GMPT, CTI<br />

Forum: Thermo<strong>m<strong>an</strong>agement</strong> im Automobil,<br />

February 2008<br />

Force F in N<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Speed 4000 1/min<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Closing rao S in %<br />

Magnetomove force<br />

100 %<br />

90 %<br />

80 %<br />

60 %<br />

50 %<br />

40 %<br />

70 %<br />

22<br />

Figure 10 Solenoid<br />

Axial force on shroud<br />

Figure 11 Magnetic forces <strong>an</strong>d flow forces in rel<strong>at</strong>ion<br />

to closing r<strong>at</strong>io S <strong>an</strong>d magnetomotive force<br />

308 <strong>Schaeffler</strong> SYMPOSIUM 2010<br />

<strong>Schaeffler</strong> SYMPOSIUM 2010 309

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!