24.06.2014 Views

Interaction Between Two Closed Shell Atoms - Sociedade Brasileira ...

Interaction Between Two Closed Shell Atoms - Sociedade Brasileira ...

Interaction Between Two Closed Shell Atoms - Sociedade Brasileira ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Revista <strong>Brasileira</strong> de Física, Vol. 17, n9 2, 1987<br />

<strong>Interaction</strong> <strong>Between</strong> <strong>Two</strong> <strong>Closed</strong> <strong>Shell</strong> <strong>Atoms</strong><br />

IRINEU LUIZ DE CARVALHO<br />

Departamento de F~síca e Química, CEG, Universidade Federal do Espírito Santo, 29CK)O, Vitória,<br />

ES, Brasil<br />

and<br />

FERNANDO S. DA PAIXÃO<br />

Instituto de Fhica, Universidade Estadual de Campinas, Caixa Postal 1170, Campinas, 131a0, SP, Brasil<br />

Recebido em 16 de junho de 1986<br />

Abstract We use the theory of Boehm-Yaris and Jacobi-Csanak to calculate<br />

the di pele-d i pole, dipole-quadrupole, quadrupole-di pole and quadrupol e-<br />

-quadrupole contributions to the dispersion energy between two different<br />

closed shell atoms. To this energy we add one of the Born-Meyer type wrresponding<br />

to valence effects. In this way we find a finite total interaction<br />

energy for any interatomic distance, whose asymptotic behavior<br />

reproduces the usual dispersion energy. The results are compared to experimental<br />

data and to some theoretical values found in the literature.<br />

The interaction potential between atoms and/or molecules is of<br />

fundamental importante to understand several static and dynamic pro-<br />

prieties in gases, liquíds and solidsl.<br />

Since the pioneer work of Slater in 1928~, a number of s impl i-<br />

f ied potent ials have been suc~~ested~'~~, mai nl y based on asymptot ic sol-<br />

ut ions of the Schrod i nger equat ion.<br />

I n more recent papers one has tr ied to obta i n rel iabl e wliversal<br />

formulae for the intermolecular potential in certain gas types,<br />

mostly<br />

by means of ab initio calculations. Particularly 8arkanZ6 suggested re-<br />

cently that the Kiara potential, wirh careful ly calculated<br />

yields a self-consistent description of several macroscopic<br />

of inert gases.<br />

parameters,<br />

proper t i es<br />

Even though it is artificial, it is convenient to divide the in-<br />

teraction potentia 11 into two types: short range potential (also cal led<br />

This work was part ia1 ly supported by CAPES (Brazi l ian government agency).<br />

273


Revista <strong>Brasileira</strong> de Física, Vol. 17, no 2, 1987<br />

valence or chemical potential) and long range potential (or Van der<br />

Waals potential).<br />

For two closed shell atoms separated by a distance R, the<br />

valence potential can be expressed by the ul tra-simpl if ied form (Born-<br />

-Meyer type)<br />

where A and b are characteristic parameters of the a tom i c pa i r under<br />

study.<br />

The long range interaction between two non-polar sys tems in<br />

their respective ground states (as in the case of this paper) is characterized<br />

by a dispersion (sometimes cal led ~ondon) potential . This potential<br />

is due to the correlation between electrons in distinct atoms. Here<br />

the expansion of the inverse internuclear distance (R-') forms a problematic<br />

detai 1 . Second order perturbat ion theory, by means of a mul ti polar<br />

expansion, gives for the dispersion potential between two atoms the expans<br />

ionZ7<br />

where the coefficient C6 represents the dipole-dipole interaction, C,<br />

the dipol e-quadrupole interaction and C1 o<br />

drupole and dipole-octupol e interactions.<br />

refers to the quadrupole-qua-<br />

From eq. (2) i t fol lows that V(R) -t -- when R -+ O. Nevertheless,<br />

it is generally desirable to obtain damped potentials for<br />

intermediate<br />

and small values of R. Severa1 authors have already treated the damping<br />

of interaction dispersion for decreasing values of<br />

R. Bucki ngham and<br />

corner7 were the first to work in this direction multiplying the dis-<br />

persion terms by a damping function dependent on R. Later, Musher and<br />

mos", introduci ng terms formed by mul tipl y ing pol ynomial s by exponen-<br />

tial functions, obtained convergent dispersion series.<br />

More recentl y, analytical fosrmulae were proposed for the damp-<br />

ing of the London potential in ground state atoms. The first of them<br />

suppl ies expl icitly the principal term of the dispersion potential be-<br />

tween two identical atoms and was publ ished by Jacobi and csanak2'. The<br />

technique introduced by those authors is of basic importance<br />

for the


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

present paper and wi 11 be discussed in the fol lowing section. ~ichardson~'<br />

proposed a completely different technique supplying analytical<br />

results<br />

for the d i pol e-di pol e, di pol e-quadrupol e and quadrupol e-quadrupol e con-<br />

tributions to the dispersion interaction between two atoms. This is<br />

semi-classical formulation where every atom is treated as a harmonic<br />

oscillator. ~oide~l, too, introduced a method supplying a convergent<br />

series for the dispersion energy. In this method physical properties of<br />

every atom appear separately. Koide stud'ied particularly the H2 system,<br />

obtaining analyt ical formulae for the dipole-dipole'and dipol e- quadru-<br />

pole contributions, in the interaction dispersion. The Koide<br />

is valid only for spherically symmetrical systems and is nearly<br />

a<br />

expansion<br />

equiv-<br />

alent to that of Jacobi-Csanak. Finally, Battezzati and ~a~nasco~~,also,<br />

developed an analytical formula for the dispersion energy<br />

by a method<br />

inspired in works by ~ o n ~ u e t - ~ i and ~ ~ ~ i nc s ~ ~ e~<br />

e n For ~ ~ the ~ . dipole<br />

-dipole contribution the results obtained in references 32 and 29 are<br />

coincident.<br />

2. THE JACOBICSANAK TECHNIQUE<br />

This technique represents essentially an improvement introduced<br />

by these authors to that part of the second quantization<br />

Boehm and yaris3' treating the dispersion energy. This<br />

formalism of<br />

forma 1 i sm de-<br />

scribes the interaction between two systems by a linear response theory<br />

based on themany body Green's function techniques of Martin and<br />

~chwin~er~~. Instead of using a multipolar expansion leading to eq. (21,<br />

Jacobi and Csanak adopted the strategy of introducing in the<br />

formalism<br />

of Boehm and Yaris the analytical representation of the Born ampl i tudes<br />

obtained by Csanak and ~a~lor~'.<br />

The basic equation of the work by Jacobi-Csanak can be written<br />

where (RlR2L;000) are Clebsch-Gordan coeff icients,


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

(vnR = exci tation energy)<br />

and<br />

In eq. (5) FBR(q) is the radial part of a Born ampl i tude which,<br />

atomic system, can be factorized in the form3'<br />

for an<br />

with Y<br />

h<br />

(c) denoting a spherical harmonic of order R and<br />

I n eq. (7) Ji- and $; are, respect ivel y, the wave funct ions of<br />

n<br />

the exci ted and ground states of an atom wi th N electrons and q the mo-<br />

mentum absorbed by i t during the exci tation process. By x = (xl ,r2,.<br />

. ,x ) we are denoting the set of coordinates of the N electrons.<br />

"j'" + N<br />

r = (r.,~.) refers to the four coordinates of the j-th electron, three<br />

i 3 3<br />

spatial (r.) and one of spin (w .) . i and o indicate the set of quantum<br />

3 3<br />

numbers respectively defining the excited and ground states.<br />

. . ,<br />

The inte-<br />

gration ranges over a1 1 the atomic coordinates (including summing over<br />

the spin coordinates) and d~ is the volume element.<br />

We wi 11 adopt the Jacobi-Csanak a~proximation~~, replacing the<br />

exact Born ampl i tudes [eq. (7)] by simpl if ied forms of the corresponding<br />

series of ~sanak-~aylor~~. We refer to the expressions (in atomic uni-<br />

ties):


Rwista <strong>Brasileira</strong> de Física, Vol. 17, n9 2, 1987<br />

and<br />

where<br />

In eq. (12) I is the ionization energy and Fi one exci tation energy.<br />

Equation (3) was applied by its authors only in the calculation<br />

of the principal term (Ri=R2=1) of the Van der Waals potential between<br />

two helium atoms, separated by intermediate and largekelative to the<br />

atomic diameter) distances. It was used alço by J.C.<br />

to calculate<br />

the dipole-quadrupole term of the dispersion potential between<br />

two helium atoms.<br />

3. DISPERSION INTERACTION BETWEEN TWO DIFFERENT CLOSEDSHELL ATOMS<br />

a) Introductory cons iderat ions<br />

We wi l l use equations (3), (8) and (9) to obtain anal ytical express<br />

ions for the dipole-dipole, dipol e-quadrupole, quadrupole- d i po 1 e<br />

and quadrupole-quadrupole terms of the dispersion potential between two<br />

different closed shell atoms. In particular we will numerically calculate<br />

the interact ion between an hel ium atom and neon one. We think that<br />

this work is a fair generalization of the calculation made by Jacobi-<br />

-csanakZ9 and J.C. Antonio 3 ', mainly because our study of the interaction<br />

between two distinct atoms demanded an analytical calculation,with<br />

very 1 ittle aid of tables, of quite complex integral5 (see Appendix).<br />

We express the dispersion energy In the form


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

and calculate each of these four contributions separately<br />

b) Dipole-dipole contribution<br />

Taking in eq. (3) Ri = R2 = 1 and considering that the Clebsch<br />

-Gordan coeff icients (R1R2~;000) are different f rom zero only if the<br />

conditions IRi-R2( á L S (R1+!&) and (R1+R2+1;) = even number are simul-<br />

taneous fullfilled, we will have<br />

vd,d(R)<br />

(0,O) (2,2)<br />

r gn1l,n2l kn,l,n2~ (R) + 2 1 nll ,n21(R)] (14)<br />

2n5 n, ,nZ<br />

'-L<br />

Assuming the approximationfl indicated in eqs. (8) and (9)<br />

where, for each one of the systemç@and@, the parameter a defined by<br />

(12) is independent of the principal quantum number n, introducing (8)<br />

in (5) (withL =L' = O and L =Lf = 2) and substituting the results<br />

into eq. (]h), we obtain<br />

where<br />

(in a.u.)<br />

On the other hand, defining the oscillator strength in an atom<br />

as<br />

ii O<br />

and compar ing wi th eq. (1 O) , we have


Revista <strong>Brasileira</strong> de Física, Vol. 17, n9 2, 1987<br />

So, from eqs. (4) and (18) it follows that<br />

Thereforqdef ining the dynamic polar izabi 1 i ties in an atom as4'<br />

and the dispersion coefficients C as 2 '<br />

R13 R2<br />

eq.<br />

(1 5) takes the form<br />

where C is obtained through eq. (20).<br />

c) Dipole-quadrupol e contr ibution<br />

Taking in eq. (3) R1 = 1 and R2 = 2 and considering that (1 2. L;<br />

O O O) is different from zero only for L = 1 and L = 3 we obtain<br />

Now, introducing eqs. (8) and (9)ineq(5) (with L -- L' = 1 and L =L1=3)<br />

and substi tuting the resul ts into eq. (22) we have


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

where the fS(li) are funct ions to be obta ined from eq. (16).<br />

m<br />

On the other hand from eqs. (1 I ) and (1 7) we obtain<br />

Further, f rom eqs. (41, (18) and (24) i t fol lows that<br />

C<br />

C<br />

Final ly, using relations (19) and (20) successively in (25) and<br />

ducing the resul t thus obtained in (231, we have<br />

intro-<br />

d) Quadrupole-dipole contribution<br />

Taking in eq.(3) R1 = 2 and R2 = 1 and performing the same<br />

stages as we did in the preceding sub-section, we find<br />

where the coeff icient C is calculated through eq. (20) and the par-<br />

231<br />

ameters cik (k = 1,2) are obtained through equation (12). The functions<br />

z13(R) and z~~(R) resul t from two of the integrations indicated in eq.<br />

4 3 4 3<br />

(16).<br />

e) Quadrupol e-quadrupole cont r ibution<br />

Taking in eq. (3) R, = Ri = 2 and using the procedures and<br />

f ini tions of sub-sections b) and c), we obtain<br />

de-


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

f) Resul ts<br />

Introducing eq.(A18) in eqs. (211, (261, (27) and (28) and substituting<br />

the results thus obtained into eq.(13), the usual dispers ion<br />

energy W(K) is reproduced<br />

On the other side, adding the valence energy given by eq.(l) to<br />

our d ispers ion energy [eq. (1311 we obtain the total interact ion energy<br />

For a nurnerical appl ication we choose the He-Ne system, for which A =<br />

= 57.00 a.u. and b = 2.43 a.u. As dispersion coefficients we use<br />

those of reference 27, that is, C = 3.13 a.u., C = 17.5 a.u.,C,<br />

l, ,<br />

= 15.2 a.u and C = 15.7 a.u..<br />

2Y2<br />

In figures 1 and 2 we show a surnrnary of our results, together<br />

wíth equivalent resuls obtained by other authors. As for the heliumatorn<br />

we first take a1 = 1.67508 a.u. (corresponding with the I'S + 3 ' tran- ~<br />

si tion) and subsequentely al = 2.48535 a.u. (corresponding wi th the<br />

auerage energy ezcitatZon calculated by Victor et a2. I). As for the<br />

neon atorn we remain with the transitions (lsI2 ( 2 ~ (2p)6 ) ~ (Is ) -+ 3s'<br />

1 o<br />

o<br />

(2)1 ('P~), corresponding to a, = 1.84720 a.u..<br />

4. ANALYSIS OF THE RESULTS<br />

Our equations and graphs show that:<br />

a) In the asymptotic region (R > 4.0 8) our resul ts reproduce the usual<br />

dispersion energy, being therefore practically independent from the<br />

parameters a, and a,.<br />

o<br />

b) In the interrnediate region (2.0 A < R 6 4.0 2) our curves decrease<br />

quite more slowly than in the corresponding usua 1 dispersion energy<br />

graph. In this way the dependence of our results<br />

a, does not rernain negligible any longer. The sh<br />

nounced as R becomes smaller. (See in fig. 1<br />

the<br />

relative to a, and<br />

if t becomes more proregion<br />

R < 4.0 a).


Revista <strong>Brasileira</strong> de Física, Vol. 17, r)? 2, 1987<br />

Fig.1 - (a) our dispersion<br />

energy for a1 = 1.67508 a.u.<br />

and a2 = 1 .84720 a.u. ; (b)<br />

our dispers ion energy for a,<br />

= 2.48535 a.u. and a;! =<br />

= 1.84720 a.u.; (c) usual<br />

dispersion energy [eq. (2911.<br />

Fig.2 - (d) total interaction<br />

energy for A = 57.0 a.u,<br />

b = 2.43 a.u., a, = 1.67508<br />

a.u. and a2 = 1.84720 a.u.<br />

(ao = 0.529 8) ;(e) the same as<br />

in (d) for ai = 2.48535 a.u.<br />

and a2 = 1.84720 a.u.; (f)<br />

total interaction energy calculated<br />

for ~ a; (g) e exper- ~ ~<br />

imental results of by Chen<br />

et UZ.'~


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

c) Our total interaction energy, given in eq. (30), shows a good agree-<br />

ment with the theoretical work of ~ a e and ' ~ with the experimental re-<br />

sults of Chen et a~~~ (see fig.2).<br />

It is interesting to see that in<br />

the problematic region of the Van der Waals minimum our calculations<br />

show a better agreement wi th the experimental data than Rae's resul ts.<br />

Further, it is simple to obtain still better results choos ing ad-<br />

equate values for the parameters ai and ae.<br />

d) Our resul ts, differentely from the usual dispersion energy, do not<br />

diverge for small<br />

R-values. Is this way, they may be useful in the<br />

study of problems such as atom-atom scattering.<br />

The au thors wish to thank Raquel<br />

for assistance in the execution of numerica 1 calculations and Dr. Karel<br />

Frans Van den Bergen for his generous help<br />

wor k .<br />

Regis Azevedo de<br />

Carvalho<br />

in the last stage of this<br />

To illustrate the analytical technique used in calculating the<br />

integrals fS def ined by eq. (16) let us take<br />

mn<br />

In eq.(A3)<br />

the integrand is an even function; so


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

The integral (A41 can be calculated with the help of residue<br />

theory. To do that let us define the functions f(z) of a complex vari-<br />

able z as follows.<br />

Consider the functions<br />

and use the contour shown in fig. AI.<br />

Fig.AI - Contour to be used in the calculation of integral (A4).<br />

Accord ing to the res idue theory<br />

where Ri and RI are the residues of the poles of f(z)<br />

ly i'ng within the<br />

integration contour (see f ig. AI). We know that those residues are given<br />

by


Revista <strong>Brasileira</strong> de Física, Vol. 17, nQ 2, 1987<br />

where m is the<br />

pole's order. In the 1 imi t R + rn, J f (z) dz + O and so<br />

c2<br />

I(R) =$f(q)dq =2iR1 +2iR2 . (A81<br />

-m<br />

From eqs.<br />

(As) and (A7) if follows (for rn = 3) that<br />

and<br />

Applying these two resul ts in eq. (A8) and executing the operations shown<br />

in eq. (~2) we obtain:<br />

where<br />

P~(R) = + E,~]R , P ~(R) = El12 + ElI3R and P (R) =<br />

6<br />

3 (a: -0.2 ) 'R<br />

9<br />

wi th


Revista <strong>Brasileira</strong> de Física, Vol. 17. nP 2, 1987<br />

By an direct generalisation of this method we obtain the following<br />

results for the remaining integrals pointed out in eqs. (21),(26),<br />

(27) and (28). We have<br />

2 2<br />

1<br />

Z (R) = -{L<br />

3 3 ala2<br />

-a2R<br />

+ [P,, (R) - P, (R)] e P, (R) + P, (R)) e<br />

},<br />

with<br />

and


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

We have<br />

where<br />

We have<br />

where<br />

wi th<br />

p1 (R) = (IW~R)R~/(~~-~:) ' and P*, (R) = (~+a~~)~~/(a~-a~)' ,


Revista <strong>Brasileira</strong> de Fisica, Vol. 17, n? 2, 1987<br />

We have<br />

We have


Revista <strong>Brasileira</strong> de Fisica, Vol. 17, n? 2, 1987<br />

where<br />

1 1<br />

Pl (R) = E21 5(1 +alR +- 2 a2R2<br />

1 ió<br />

a;R3) + E,, ,R4 + E,~,R~ + E,, ,R6 ,<br />

PZo<br />

1 1<br />

(R) = E,, ,(1 + a2R + a ' ~ + ~ a2R3) + E,] o ~ + 4 E2 i ,<br />

2<br />

P2<br />

(1 + ~,R)R~ (1 + a2~.)R2<br />

(R) =<br />

(a: - a:)<br />

(R) = and PZ2<br />

= -[ a a I - +<br />

a: (ai-a:) '<br />

+<br />

+ a: (a:-a:) a: (a:-ai><br />

We have<br />

(A1 5)<br />

where


Revista <strong>Brasileira</strong> de Fhica, Vol. 17, nP 2, 1987<br />

and<br />

- 1<br />

- and E =<br />

E224 - - 1 6a2 ($-a:) (a:-a:) 22 48aZ (a:-a:) *<br />

1<br />

We have<br />

where<br />

and<br />

1<br />

P (R) = E2210(l + a R +-a:R2) + E R3 + E R' + E R'<br />

2 7 2 2 2211 2212 2213


Revista <strong>Brasileira</strong> de Física, Vol. 17, nQ 2, 1987<br />

Finally we have<br />

where<br />

(A1 7)<br />

and


Revista <strong>Brasileira</strong> de F isica, Vol. 17, no 2, 1987<br />

It is interesting to note that the functions (A9) - (A171 are<br />

analytical and that, for large values of R, we have the following behavior<br />

15 1<br />

, 240: + O , zZ4 + O and + ---- - .<br />

233 +- -<br />

105 1<br />

43 a8a6 ~4 rr 4<br />

1 2<br />

44 (ala2)' R5<br />

(A181<br />

REFERENCES<br />

1. J.O.Hirschfelder, C.F.Curtiss and R.B.Bird, Mokcular Theory of Gases<br />

and Liquids, Wiley, New York (1954).<br />

2. J.C.Slater, Phys. Rev. 32, 349 (1928).


Revista <strong>Brasileira</strong> de Física, Vol. 17, n? 2, 1987<br />

3. J.C.Slater and J.G.Kirkwood, Phy,s. Rev. 37, 682 (1931).<br />

4. R.A.Buckingham, Proc. R.Soc.London Ser. A 168, 264 (1938).<br />

5. H.Margenau, Phys. Rev. 56, 1000 (1939).<br />

6. R.Heller, J.Chem.Phys. 9, 154 (1941).<br />

7. R.A.Buckingham and J.Corner, Proc. R. Soc. London Ser. AL89, 118<br />

(1947).<br />

8. F.C.Brooks, Phys. Rev. 86, 92 (1952).<br />

9. A.A.Frost and J .H.Woodson, J .Am. Chem.Soc. 80, 261 5 (I 958).<br />

10. D.Y.Kim, Z.Phys. 166, 359 (1962).<br />

11. R.B.Bernstein and F.A.Morse, J.Chem.Phys. 40, 917 (1964).<br />

12. V.P.Trubitsyn, Fiz.Tverd.Tela 8, 862 (1966) [~ov.~h~s.Solid State 8,<br />

688 (1966)J.<br />

13. L.W.Bruch and I .J.McGee, J.Chem.Phys. 46, 2959 (1967).<br />

14. R.K.Nesbet, J.Chem.Phys. 48, 1419 (1968).<br />

15. D.D.Konowalow, J.Chem.Phys. 50, 12 (1969).<br />

16. D.D.Konowalow and D.S.Zakheim, J.Chem.Phys. 57, 4375 (1972).<br />

17. J.P.Toennies, Chem. Phys. Lett. 20, 238 (1973).<br />

18. A. F.Wagner, G. Das and A.C.Wah1 , J. Chem. Phys. 60, 1885 (1 974).<br />

19. J.Hepburn, G.Scoles and R.Penco, Chem.Phys.Lett. 36, 451 (1975).<br />

20. R.Ahlrichs, R.Penco and G.Scoles, Chem.Phys. 19, 119 (1977).<br />

21. K.T.Tang and J.P.Toennies, J.Chem.Phys. 66, 1496 (1977).<br />

22. K.T.Tang and J.P.Toennies, J.Chem.Phys. 68, 5501 (1978).<br />

23. K.Ng, W.J.Meath and A.R.Al lnat, Chem.Phys. 32, 175 (1978).<br />

24. K.Ng, W.J.Meath and A.R.Al lnat, Mo1 .Phys. 37, 237 (1979).<br />

25. R.Fe1 tgen, J.Chem. Phys. 74(2), 1186 (1 981 ) .<br />

26. E.S.Barkan, Sov.Teach.Phys. 29(6), 644 (1984).<br />

27. K.T.Tang, J .M. Norbeck and P. R.Certa in, J .Chem.Phys. 64, 3063 (1 976) .<br />

28. J. I .Musher and A.T.Amos, Phys .Rev. 164, 31 (1 967).<br />

29. N. Jacobi and Gy.Csanak, Chem.Phys .Lett. 30, 367 (1975).<br />

30. D.D.Richardson, J.Phys. A8, 1828 (1975).<br />

31. A.Koide, J.Phys. B9, 3137 (1976).<br />

32. M.Battezzati and V.Magnasco, J.Chem.Phys. 67, 2924 (1977).<br />

33. H. C. Longuet-H igg ins, Proc. R. Soc. London Ser. A235, 537 (1 956) .<br />

34. R.McWeeny, Rev.Mod.Phys. 32, 335 (1960).<br />

35. R.Boehm and R.Yaris, J.Chem.Phys. 55, 2620 (1971).


Revista <strong>Brasileira</strong> de Física, Vol. 17, n9 2, 1987<br />

36. P.C.Martin and J.S.Schwinger, Phys.Rev. 115, 1342 (1959).<br />

37. Gy. Csanak and H.S.Taylor, Phys.Rev. A6, 1843 (1972).<br />

38. E.N.Lassetre, J.Chem.Phys.43, 4479 (1965).<br />

39. José Carlos Antonio, Tese de Mestrado (instituto de Física e Química<br />

da USP, São Carlos, SP (1.981)).<br />

40. W.Meyer, Chem. Phys. 17, 27 (1976).<br />

41. G.A.Victor, A.Dalgarno and A.J.Taylor, J.Phys. BI, 13 (1968).<br />

42. A. I.M.Rae, Molecular Physics 29, 467 (1975).<br />

43. C.H.Chen, P.N.Siska and Y.T.Lee, J.Chem.Phys. 59, 601 (1973).<br />

Resumo<br />

O formal ismo de Bohem-Yaris e Jacobi-Csanak 6 usado no cálculo<br />

dos termos dipolo-dipolo, dipolo-quadrupolo, quadrupolo-dipolo e quadrw<br />

polo-quadrupolo da energia de dispersão entre dois diferentes átomos de<br />

camadas fechadas. A esta energia foi adicionada uma energia de valência<br />

do tipo Born-Meyer. Assim foi obtida uma energia total de integração f i-<br />

nita para todas as distâncias inter-atômicas, cuja forma assintõtica reproduz<br />

a energia de dispersão usual. Os resultados foram comparados com<br />

dados experimentais e outros valores teõr icos disponíveis na l i teratura.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!