14.06.2014 Views

Patrick Simon Argelander-Institute for Astronomy, Bonn, Germany

Patrick Simon Argelander-Institute for Astronomy, Bonn, Germany

Patrick Simon Argelander-Institute for Astronomy, Bonn, Germany

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3-D mass mapping in<br />

STAGES<br />

using 3-D lensing<br />

<strong>Patrick</strong> <strong>Simon</strong><br />

<strong>Argelander</strong>-<strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong>, <strong>Bonn</strong>, <strong>Germany</strong><br />

Collaborators:<br />

C. Heymans, T. Schrabback, A. Taylor, M. Gray (PI STAGES), L. van<br />

Waerbeke, C. Wolf, D. Bacon, M. Balogh, F.D. Barazza, M. Barden, E.F.<br />

Bell, A. Boehm, J.A.R. Caldwell, B. Haeussler, K. Jahnke, S. Jogee, E. van<br />

Kampen K. Lane, D.H. McIntosh, K. Meisenheimer, C.Y. Peng, S.F.<br />

Sanchez, L. Wisotzki, X. Zheng


Outline<br />

Modified Wiener filtering of 3-D lensing data<br />

Radial debiasing and cleaning of map<br />

Data sample: STAGES<br />

A mass map vs. light map comparison<br />

Conclusions


Weak lensing on a grid<br />

Lensing convergence = projected matter fluctuations<br />

∫ ∞<br />

κ(θ) = 3H2 0 Ω m<br />

2c 2 dw W (w)f k(w)<br />

0 a(w)<br />

〈 〉<br />

fk (w s − w l )<br />

W (w l )=<br />

f k (w s )<br />

w s<br />

δ m (f k (w)θ, w)<br />

δ m<br />

(6)<br />

δ m<br />

(7)<br />

θ<br />

δ m<br />

(5)<br />

δ m<br />

(3)<br />

δ m<br />

(4)<br />

δ m<br />

(1)<br />

δ m<br />

(2)<br />

distance w<br />

us


Weak lensing on a grid<br />

Lensing convergence = projected matter fluctuations<br />

∫ ∞<br />

κ(θ) = 3H2 0 Ω m<br />

2c 2 dw W (w)f k(w)<br />

0 a(w)<br />

〈 〉<br />

fk (w s − w l )<br />

W (w l )=<br />

f k (w s )<br />

w s<br />

δ m (f k (w)θ, w)<br />

Chop 3-D volume into slices of constant matter density<br />

κ(θ) ≈<br />

N lp<br />

∑<br />

i=1<br />

Q i δ (i)<br />

m (θ) ,Q i = 3H2 0 Ω m<br />

2c 2<br />

∫ wi+1<br />

w i<br />

dw W (w)f k(w)<br />

a(w)


Weak lensing on a grid<br />

Lensing convergence = projected matter fluctuations<br />

∫ ∞<br />

κ(θ) = 3H2 0 Ω m<br />

2c 2 dw W (w)f k(w)<br />

0 a(w)<br />

〈 〉<br />

fk (w s − w l )<br />

W (w l )=<br />

f k (w s )<br />

w s<br />

δ m (f k (w)θ, w)<br />

Chop 3-D volume into slices of constant matter density<br />

κ(θ) ≈<br />

N lp<br />

∑<br />

i=1<br />

Q i δ (i)<br />

m (θ) ,Q i = 3H2 0 Ω m<br />

2c 2<br />

∫ wi+1<br />

w i<br />

dw W (w)f k(w)<br />

a(w)<br />

On a grid we may there<strong>for</strong>e write<br />

γ =P γκ κ =P γκ Q δ m


Wiener filter of 3-D lensing data<br />

Combine all “source redshift bins” into one vector<br />

(<br />

) (<br />

)<br />

γ ≡ γ (1) ,γ (2) , . . . =P γκ Q (1) , Q (2) , . . . δ m ≡ P γκ Qδ m<br />

different z-bins<br />

0.3 0.5 0.7 0.9 1.1 1.3 1.5


Wiener filter of 3-D lensing data<br />

Combine all “source redshift bins” into one vector<br />

(<br />

) (<br />

)<br />

γ ≡ γ (1) ,γ (2) , . . . =P γκ Q (1) , Q (2) , . . . δ m ≡ P γκ Qδ m<br />

Need to find solution <strong>for</strong> δ m <strong>for</strong> given cosmic shear:<br />

ɛ =P γκ Q δ m + n<br />

shape noise<br />

Source ellipticities binned on grid


Wiener filter of 3-D lensing data<br />

Combine all “source redshift bins” into one vector<br />

(<br />

) (<br />

)<br />

γ ≡ γ (1) ,γ (2) , . . . =P γκ Q (1) , Q (2) , . . . δ m ≡ P γκ Qδ m<br />

Need to find solution <strong>for</strong> δ m <strong>for</strong> given cosmic shear:<br />

ɛ =P γκ Q δ m + n<br />

Minimum variance solution <strong>for</strong> δ<br />

δ mv<br />

m<br />

= SQ t P † γκ<br />

[<br />

N −1 P γκ QSQ t P † γκ + α1 ] −1<br />

N −1 ɛ<br />

S ≡〈δ m δ t m〉<br />

signal covariance<br />

N ≡〈nn † 〉 noise covariance<br />

<strong>Simon</strong>, P., Taylor, A.N., Hartlap, J., 2009, MNRAS, 399, 48


Wiener filter of 3-D lensing data<br />

Combine all “source redshift bins” into one vector<br />

(<br />

) (<br />

)<br />

γ ≡ γ (1) ,γ (2) , . . . =P γκ Q (1) , Q (2) , . . . δ m ≡ P γκ Qδ m<br />

Need to find solution <strong>for</strong> δ m <strong>for</strong> given cosmic shear:<br />

ɛ =P γκ Q δ m + n<br />

Minimum variance solution <strong>for</strong> δ<br />

δ mv<br />

m<br />

= SQ t P † γκ<br />

[<br />

N −1 P γκ QSQ t P † γκ + α1 ] −1<br />

N −1 ɛ<br />

S ≡〈δ m δ t m〉<br />

signal covariance<br />

N ≡〈nn † 〉 noise covariance<br />

α=1: full Wiener filtering (less noise, biased)<br />

α=0: no prior (plenty noise, unbiased)


Limitations of technique<br />

Mock data<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

on sky<br />

radially<br />

z


Limitations of technique<br />

STAGES<br />

Mock data<br />

re c o nstru c t e d re dshift<br />

0.3<br />

0.5<br />

0.2<br />

0.4<br />

0.1<br />

tru e re dshift<br />

on sky<br />

radially<br />

z


Data sample: STAGES<br />

A901a<br />

about 30 arcmin<br />

α<br />

A901b<br />

21 photo-z slices, z=0...1.3,<br />

with 13 sources/arcmin 2<br />

(matched with COMBO-17 survey)<br />

Three deep mag-bins, m R =[23,27.45]<br />

mag, with 52 sources/arcmin 2<br />

22 lens planes, z=0...1.2<br />

A902<br />

SW<br />

mag bins (GOODS-MUSIC)<br />

STAGES: Gray et al. (2009)<br />

photo-z’s<br />

COMBO-17: Wolf et al. (2004)


Significance of map<br />

about 30 arcmin<br />

3-D mass map (projected onto sky)<br />

A901a<br />

α<br />

A901b<br />

A902<br />

SW<br />

Heymans, C. et al. (2008)<br />

projected S/N surfaces: S/N=2.5,3,3.5...6.0<br />

based on 1000 noise realisations of data


Cleaned and debiased map<br />

A902/SW group region<br />

re dshift<br />

A901 a<br />

A901b<br />

On-sky projection<br />

!<br />

DE C<br />

R.A.<br />

A901a/A901b region<br />

re dshift<br />

C BI<br />

SW<br />

<strong>Simon</strong>, P., Heymans, C., Schrabback,T.,<br />

2010, submitted<br />

A902<br />

SW /1<br />

SW /2<br />

DE C<br />

R.A.


Mass vs. light comparison<br />

Bin galaxy M star -masses (mass in stars) on grid and crosscorrelate<br />

with lensing mass map:<br />

∑<br />

δ (i)<br />

lum (θ) = j∈M i (θ) M ∗,j<br />

M ∗<br />

− 1 ; CCM(θ) = δ lum(θ)δ m (θ)<br />

σ lum σ m<br />

M star light map<br />

Correlation map<br />

A901a<br />

A901b<br />

A902<br />

SW group<br />

z=0.0-0.36


Mass vs. light comparison<br />

Bin galaxy Mass S/N M star -masses (mass in stars) on grid and crosscorrelate<br />

cleaned with lensing mass map:<br />

map redshift<br />

δ (i)<br />

lum (θ) = ∑<br />

j∈M i (θ) M ∗,j<br />

M ∗<br />

M star light map<br />

− 1 ; CCM(θ) = δ lum(θ)δ m (θ)<br />

σ lum σ m<br />

A901a<br />

red galaxies<br />

A901b<br />

CCM<br />

A902<br />

M star mass<br />

SW group<br />

blue galaxies<br />

z=0.0-0.36


Mass vs. light comparison by eye<br />

A901a<br />

A901b<br />

A902<br />

SW group<br />

Radial spread of A901a noise artefact?


Mass vs. light comparison by eye<br />

A901a<br />

A901b<br />

A902<br />

SW group<br />

Radial spread of A901a noise artefact?<br />

Light confirms structure behind A901b (z=0.70-0.80)


Mass vs. light comparison by eye<br />

A901a<br />

A901b<br />

A902<br />

SW group<br />

Radial spread of A901a noise artefact?<br />

Light confirms structure behind A901b (z=0.70-0.80)<br />

Light confirms structure behind SW group (z=0.43?,0.80)


Mass vs. light comparison by eye<br />

A901a<br />

CB1<br />

A901b<br />

A902<br />

A902<br />

SW group<br />

Radial spread of A901a noise artefact?<br />

Light confirms structure behind A901b (z=0.70-0.80)<br />

Light confirms structure behind SW group (z=0.43?,0.80)<br />

CB1 reconfirmed (COMBO-17; Taylor et al. 2004: z=0.46)


Light-mass cross-correlation coefficient<br />

10//<br />

:;


Conclusions<br />

This work is an application of a new lensing 3-D mass mapping<br />

algorithm to real data<br />

The modified Wiener filter produces a biased image of the<br />

true distribution; z-shift bias can be corrected <strong>for</strong><br />

Annoyance of radial cigar-effect inside maps can be partly<br />

removed with heuristic cleaning algorithm presented<br />

3-D map reveals structure behind A901b and SW-group;<br />

may be important <strong>for</strong> lensing mass modelling<br />

Good light-mass match at z


Quality control


Quality control<br />

Frequency statistics of noise peaks<br />

noise<br />

B-mode<br />

E-mode<br />

Peaks: pixel larger than all neighbour<br />

pixels in transverse&radial direction<br />

Troughs: negative peaks<br />

Noise realisations vs. E/B-mode maps


Quality control<br />

Frequency statistics of noise peaks<br />

noise<br />

B-mode<br />

E-mode<br />

Peaks: pixel larger than all neighbour<br />

pixels in transverse&radial direction<br />

Troughs: negative peaks<br />

Noise realisations vs. E/B-mode maps<br />

tan. shear<br />

Z-scaling of tan. shear inside<br />

apertures (≈1-2 arcmin radius)<br />

mag<br />

rad. shear<br />

γ t (θ c ,z s )=− ∑<br />

i∈M s (z s )<br />

θi ∗ − θ∗ c<br />

ɛ i<br />

θ i − θ c<br />

ε i<br />

θ i<br />

θ c<br />

targets: A901a/b/α, SW and A902


A902 region/less smoothing<br />

CBI<br />

A902<br />

re dshift<br />

C BI<br />

SW<br />

A902<br />

SW /1<br />

SW /2<br />

R.A.


Degradation of correlations<br />

Cross-correlation coefficient between maps:<br />

r = 〈CCM(θ)〉 = 〈δ (θ)δ (θ)〉<br />

σ σ <br />

; − 1 ≤ r ≤ +1


Degradation of correlations<br />

Cross-correlation coefficient between maps:<br />

r = 〈CCM(θ)〉 = 〈δ (θ)δ (θ)〉<br />

σ σ <br />

; − 1 ≤ r ≤ +1<br />

Noise degrades the correlation but can be corrected if<br />

signal and noise power are known:<br />

r true = r ×<br />

√ (<br />

1+ 〈noise2 lum〉<br />

〈signal 2 lum〉<br />

)(<br />

)<br />

1+ 〈noise2 m〉<br />

〈signal 2 m〉<br />

Noise and signal variances are estimated from noise<br />

realisations of mass and light maps;<br />

Map pixel variance = noise variance + signal variance!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!