13.06.2014 Views

a trapped-atom quantum memory (PDF) - MIT

a trapped-atom quantum memory (PDF) - MIT

a trapped-atom quantum memory (PDF) - MIT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TELEPORTATION OF A QUANTUM STATE<br />

USING TRAPPED RUBIDIUM ATOMS:<br />

THE GORY DETAILS<br />

Selim Shahriar and Seth Lloyd<br />

<strong>MIT</strong><br />

Philip Hemmer<br />

AFRL


OUTLINE<br />

TELEPORTATION: WHAT<br />

TELEPORTATION VIA BELL STATE MEASUREMENT<br />

ESSENTIAL TOOLS FROM LASER CONTROLLED SPIN EXCITATION<br />

COHERENCE TRANSFER VIA CAVITY QED<br />

ENTANGLING RUBIDIUM ATOMS<br />

BELL STATE MEASUREMENTS VIA SEQUENTIAL ELIMINATION<br />

EXPERIMENTAL PLAN / STATUS<br />

CLOCK SYNCHRONIZATION


TELEPORTATION: WHAT<br />

|ψ> = α |↑> + β |↓><br />

BEFORE...<br />

|φ> = |↓><br />

EARTH<br />

AFTER...<br />

ALPHA-CENTAURI<br />

|ψ> = |↓><br />

|φ> = α |↑> + β |↓>


TELEPORTATION: VIA BELL STATE MEASUREMENT<br />

|Φ> = α |↑> + β |↓><br />

|Ψ> = ( |↑ ↓ > − | ↓ ↑ > ) /√2<br />

ALICE<br />

BOB<br />

| √2 |W> = α (|↑↑↓> − |↑↓↑>) + β (|↓↑↓> − |↓↓↑>)<br />

BELL STATES<br />

DECOMPOSITION<br />

|Β 1 > = ( |↑ ↓ > − | ↓ ↑ > ) /√2<br />

|Β 2 > = ( |↑ ↓ > + | ↓ ↑ > ) /√2<br />

|Β 3 > = ( |↑ ↑ > − | ↓ ↓ > ) /√2<br />

|Β 4 > = ( |↑ ↑ > + | ↓ ↓ > ) /√2<br />

|↑ ↑ > = (|Β 4 > + |Β 3 >) /√2<br />

|↓ ↓ > = (|Β 4 > − |Β 3 >) /√2<br />

|↑ ↓ > = (|Β 2 > + |Β 1 >) /√2<br />

|↓ ↑ > = (|Β 2 > − |Β 1 >) /√2


|Φ> = α |↑> + β |↓><br />

ALICE<br />

|Β><br />

|ξ><br />

BOB<br />

| 2 |W> = |Β 1 > |ξ 1 > + |Β 2 > |ξ 2 > + |Β 3 > |ξ 3 > + |Β 4 > |ξ 4 ><br />

WHERE<br />

| |ξ 1 > = − (α |↑> + β | ↓>) = − α β = − |Φ><br />

| |ξ 2 > =<br />

| |ξ 3 > =<br />

| |ξ 4 > =<br />

-1 0<br />

0 1<br />

0 1<br />

1 0<br />

0 -1<br />

1 0<br />

|Φ><br />

|Φ><br />

|Φ>


LASER-CONTROLLED SPIN EXCITATION<br />

OFF-RESONANT<br />

|E><br />

N B<br />

|B><br />

|A><br />

Time<br />

GOOD FOR SINGLE BIT OPERATION


LASER-CONTROLLED SPIN EXCITATION<br />

RESONANT<br />

|E><br />

|E><br />

|B><br />

|A><br />

|->=<br />

(|A> - |B>)<br />

|+>=(|A> + |B>)<br />

N L<br />

(SS)<br />

EXPT. IN Rb<br />

0<br />

TWO-PHOTON DETUNING


THE DARK STATE:: GENERAL CASE<br />

|e<br />

|e<br />

Ω 1<br />

|a<br />

Ω 2<br />

|b<br />

− =<br />

Ω<br />

− +<br />

( − )<br />

Ω a Ω b / Ω<br />

2 1<br />

2<br />

Ω= Ω + Ω<br />

1<br />

2<br />

2


2<br />

− = ( Ω a − Ω b )/ Ω + Ω<br />

2 1 1<br />

2<br />

2<br />

|e<br />

|e<br />

|e<br />

|e<br />

|e<br />

Ω 1<br />

Ω 1<br />

Ω 2<br />

3 1<br />

Ω 1<br />

Ω 2<br />

1 1<br />

Ω 1<br />

Ω 2<br />

1 3<br />

Ω 2<br />

|a<br />

− ∝ b<br />

|b<br />

|a<br />

|b<br />

1<br />

3 a − b<br />

|a<br />

a<br />

|b<br />

|a<br />

|b<br />

− b a − 1 3 b<br />

|a<br />

a<br />

|b


ADIABATIC TRANSFER VIA THE DARK STATE<br />

|e<br />

|e<br />

Ω 1<br />

Ω 2<br />

Ω<br />

|b |- |+<br />

|a<br />

AMPLITUDE<br />

1<br />

0<br />

Ω 1<br />

Ω 2<br />

TIME<br />

|-> = (Ω 2 |a> - Ω 1 |b>)/Ω<br />

|+> = (Ω 1 |a> + Ω 2 |b>)/Ω<br />

|a> - |e><br />

|+> - |e><br />

|b> - |e><br />

EQUIVALENT TO A π-PULSE<br />

|->=|b><br />

|->=|a><br />

TOPOLGICALLY ROBUST<br />

|a> + |e><br />

|+> + |e><br />

|b> + |e>


COHERENCE TRANSFER VIA CAVITY QED<br />

ATOM<br />

A<br />

ATOM<br />

B<br />

Ω 1 Ω 2<br />

g<br />

g<br />

g<br />

Ω 2<br />

α<br />

0<br />

Ω 1<br />

A B<br />

0<br />

α<br />

β<br />

1<br />

1<br />

β<br />

A<br />

B


TRANSFERRING TWO BITS INTO A SINGLE ATOM VIA CAVITY QED<br />

1<br />

ATOM A<br />

α 1<br />

ATOM B<br />

1<br />

1<br />

ATOM A<br />

0<br />

ATOM B<br />

0<br />

β 1<br />

α 2<br />

0<br />

β 2<br />

0<br />

1<br />

α 1<br />

0<br />

β 1<br />

0<br />

g<br />

g<br />

Ω 1 Ω 2<br />

α 2<br />

β 2<br />

e n<br />

0<br />

0<br />

Ω 1 Ω 2<br />

0<br />

0<br />

g<br />

g<br />

1<br />

0<br />

e n<br />

α 1 α 2<br />

α 1 β 2<br />

β 1 β 2


ADIABATIC COHERENCE TRANSFER VIA CAVITY-QED DARK STATE<br />

1 2<br />

Ω 1 Ω 2<br />

g<br />

INTENSITY<br />

1<br />

0<br />

Ω 2<br />

Ω 1<br />

TIME<br />

ATOM 1 ATOM 2<br />

|e 1 > |e 2 ><br />

Ω 1<br />

g<br />

Ω 2<br />

|a 1 > |b 1 > |a 2 > |b 2 ><br />

α β 0 1<br />

g<br />

NO CAVITY<br />

PHOTONS<br />

|b 1 b 2 0><br />

β<br />

ONE CAVITY PHOTON<br />

|e 1 b 2 0> |b 1 e 2 0><br />

g g<br />

Ω 1<br />

Ω 2<br />

|a 1 b 2 0> |b 1 b 2 1> |b 1 a 2 0><br />

Ω 2 g −Ω 1 Ω 2 Ω 1 g<br />

α<br />

|ψ> = (α |a 1 > + β |b 1 >) ⊗ |b 2 > ⊗ |0> |ψ> = (α |b 1 a 2 0> + β |b 1 b 2 0>) = |b 1 > ⊗ (α |a 2 > + β |b 2 >) ⊗ |0>


TRANSFER PHOTON ENTANGLEMENT TO ATOMIC ENTANGLEMENT<br />

Ref 1: quant-ph/003147<br />

Ref 2: J. Opt. B: Quantum Semiclass. Opt. 2 (2000) L1-L4


EXPLICIT SCHEME IN 87 RB<br />

C<br />

B<br />

D<br />

A


ATOMS 2 AND 3 ARE NOW ENTANGLED<br />

ΑΤΟΜ 2 ΑΤΟΜ 3<br />

a<br />

b<br />

a<br />

b<br />

c<br />

d<br />

c<br />

d<br />

|ψ 23 >={ |a> 2 |b> 3 - |b> 2 |a> 3 }/√2


ATOM 1 IN ARBITRARY STATE: TO BE TELEPORTED<br />

2<br />

3<br />

a<br />

c<br />

b<br />

d<br />

a<br />

c<br />

b<br />

d<br />

|ψ 23 >={|a> 2 |b> 3 - |b> 2 |a> 3 }/√2<br />

a<br />

c<br />

b<br />

d<br />

|ϕ 1 > ={α|c> 1 +β|a> 1 }<br />

1


TRANSFERRING TWO BITS INTO A SINGLE ATOM VIA CAVITY QED<br />

1<br />

ATOM A<br />

α 1<br />

ATOM B<br />

1<br />

1<br />

ATOM A<br />

0<br />

ATOM B<br />

0<br />

β 1<br />

α 2<br />

0<br />

β 2<br />

0<br />

1<br />

α 1<br />

0<br />

β 1<br />

0<br />

g<br />

g<br />

Ω 1 Ω 2<br />

α 2<br />

β 2<br />

e n<br />

0<br />

0<br />

Ω 1 Ω 2<br />

0<br />

0<br />

g<br />

g<br />

1<br />

0<br />

e n<br />

α 1 α 2<br />

α 1 β 2<br />

β 1 β 2


TRANSFER STATES OF 1 AND 2 INTO 2 ONLY


QUANTUM STATE AFTER THE TRANSFER<br />

BEFORE TRANSFER<br />

|ψ 23 >={|a> 2 |b> 3 - |b> 2 |a> 3 }/√2<br />

|ϕ 1 > ={α|c> 1 +β|a> 1 }<br />

2<br />

3<br />

AFTER TRANSFER<br />

a<br />

c<br />

b<br />

d<br />

a<br />

c<br />

b<br />

d<br />

|ψ 1 > = |c> 1<br />

|φ 23 >={|A + >(α|b 3 >+β|a 3 >) +<br />

|A - >(α|b 3 >-β|a 3 >) +<br />

|B + >(β|b 3 >+α|a 3 >)+<br />

| B - >(-β|b 3 >+α|a 3 >)}/2<br />

a<br />

b<br />

BELL STATES<br />

c<br />

d<br />

|A ± >={|c 2 >±|b 2 >}/√2,<br />

|B ± >={|d 2 >±|a 2 >}/√2.<br />

1


ROTATE SUPERPOSITION-BASIS BELL STATES INTO PURE-BASIS BELL STATES<br />

π/2 pulses<br />

a<br />

b<br />

a<br />

b<br />

c<br />

d<br />

c<br />

d<br />

2<br />

2<br />

OLD BELL STATES<br />

|A + >=|c 2 >+|b 2 ><br />

|A - >=|c 2 >-|b 2 ><br />

|B + >=|d 2 >+|a 2 ><br />

|B - >=|d 2 >-|a 2 >.<br />

NEW BELL STATES<br />

|a + >=|c 2 ><br />

|a - >=|b 2 ><br />

|b + >=|d 2 ><br />

|b - >=|a 2 >.


MEASURING BELL STATES VIA SEQUENTIAL ELIMINATION


LOADING ATOMS INTO A FORT USING A FOUNTAIN<br />

ALL DIODE LASERS POSSIBLE<br />

CAN BE VERY COMPACT (5 CM 3 )


WAVELENGTH SCALE CONFINEMENT


PHOTOGRAPH OF THE TRAP


TIME-OF-FLIGHT TEMPERATURE DATA FROM OUR TRAP


POSSIBLE REALIZATION OF BASIC TEST FOR CLOCK SYNCHRONIZATION<br />

OPA1<br />

I 1<br />

I 2<br />

I 1<br />

=I 2<br />

Ω<br />

I 1<br />

I 2<br />

Ω’<br />

I 1<br />

≠I<br />

2<br />

ALICE’s CLOCKS<br />

OPA2<br />

BOB’s CLOCKS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!