09.06.2014 Views

Nonstructural Component Simulator University at Buffalo - MCEER ...

Nonstructural Component Simulator University at Buffalo - MCEER ...

Nonstructural Component Simulator University at Buffalo - MCEER ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

<strong>Nonstructural</strong> <strong>Component</strong> <strong>Simul<strong>at</strong>or</strong><br />

<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Preliminary Report Seismic Performance Assessment of a<br />

Full-Scale Hospital Emergency Room<br />

Introduction<br />

This preliminary report presents a description of the experimental tests performed to demonstr<strong>at</strong>e the<br />

actual testing capabilities of the <strong>Nonstructural</strong> <strong>Component</strong> <strong>Simul<strong>at</strong>or</strong> (UB-NCS), the l<strong>at</strong>est testing<br />

equipment upgrade <strong>at</strong> the Structural Engineering and Earthquake Simul<strong>at</strong>ion Labor<strong>at</strong>ory (SEESL) <strong>at</strong> the<br />

<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong>. A detailed description of the UB-NCS and its capabilities is out of scope of this<br />

report and it can be found in references [1] and [2].<br />

Section 1 of this report presents a general overview of the project, describing its main objectives and<br />

scopes. Section 2 presents a description of the testing specimen. Section 3 describes the testing protocol<br />

used for the seismic performance assessment of the emergency room. Section 4 summarizes the tests<br />

program conducted and Section 5 presents some preliminary experimental results. Finally, Section 6<br />

presents the preliminary conclusions of this research.<br />

1. Objectives and scopes<br />

The primary objectives of the test series are:<br />

• Evalu<strong>at</strong>e the actual capabilities and limit<strong>at</strong>ions of the UB-NCS in assessing the seismic performance<br />

of full scale nonstructural components and systems.<br />

• Evalu<strong>at</strong>e individual seismic performance and seismic interaction among nonstructural components<br />

and medical equipment typically found in a health care facility’s emergency room.<br />

• Assess the efficiency of a new testing protocol specifically developed to assess seismic interactions<br />

between acceler<strong>at</strong>ion and displacement sensitive nonstructural components and systems.<br />

Among the secondary objectives of the demonstr<strong>at</strong>ion project are:<br />

• Evalu<strong>at</strong>e the fidelity of the UB-NCS for imposing the desired full-scale floor motions on full-scale<br />

specimens.<br />

• Evalu<strong>at</strong>e the efficiency of the testing protocol in evalu<strong>at</strong>ing the seismic performance of nonstructural<br />

components, systems and contents th<strong>at</strong> may be sensitive to the acceler<strong>at</strong>ions and/or displacements<br />

imposed by the motion of buildings during strong earthquakes.<br />

The scopes of the present work include:<br />

• Taking into account th<strong>at</strong> one of the main objectives of this test series is to demonstr<strong>at</strong>e the actual<br />

testing capabilities of the UB-NCS, some constructive details have been disregarded. In particular,<br />

some details currently used in field for the seismic protection of several of the components included<br />

in this demonstr<strong>at</strong>ion project have been intentionally omitted.<br />

• The seismic performance of the testing specimen has been assessed considering the floor motions<br />

obtained from a suitable testing protocol and the simul<strong>at</strong>ed seismic response of a four story building.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 1 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Recorded building floor motions are not directly used in the test series but their properties are implicit<br />

in the properties of the testing protocol considered.<br />

2. General description of mock Emergency Room (ER)<br />

The test series considers the evalu<strong>at</strong>ion of the seismic performance of a full scale mock hospital’s<br />

emergency room replica under full scale floor motions. The room is enclosed by steel studded gypsum<br />

partition walls constructed following standard hospital construction techniques. The nonstructural<br />

partition wall model is based on a similar specimen tested by Restrepo and Lang [3, 4] <strong>at</strong> <strong>University</strong> of<br />

California-San Diego, using the pseudo-st<strong>at</strong>ic loading protocol developed by Krawinkler et al. [5]. Slight<br />

modific<strong>at</strong>ions were made to the original design in order to fit the specimen within the UB-NCS [6]. The<br />

walls were constructed between concrete slabs <strong>at</strong>tached to the UB-NCS as shown in Figure 1. The room is<br />

approxim<strong>at</strong>ely 4.4 m (14’-6”) in length, 3.2 m (10’-7”) in width, and 3.85 m (12’-6”) in height, Figure 2.<br />

Figure 3 shows the elev<strong>at</strong>ions with dimensions of the partition walls.<br />

14'-5 1 2 "<br />

6'-0 15 16 " 71 2 " 3'-8" 2'-1" 2'<br />

2'-4"<br />

4'-7 5 8 " 1'-4" 4'-7 5 8 "<br />

Utility Cutout<br />

(The top of the square<br />

utility cutout is 12' - 0" from<br />

the floor)<br />

5/8" Gypsum board<br />

2'-0 1 2 "<br />

1'-6" 3'-9 5 8 " 5'-35 8 "<br />

10'-7 1 4 "<br />

10'-11 1 2 " 1'-6" 2'<br />

Figure 1. Photograph of UB-NCS with<br />

concrete slabs<br />

Figure 2. Geometry of specimen for the UB-NCS<br />

demonstr<strong>at</strong>ion project<br />

Figure 4 and Figure 5 show isometric views of the steel stud framing system and the finished specimen,<br />

respectively. The simul<strong>at</strong>ed emergency room was furnished with medical equipment critical for<br />

inp<strong>at</strong>ients’ life support following a seismic event. Medical equipment found in other hospital’s critical<br />

services [7] was also considered for demonstr<strong>at</strong>ion purposes. The nonstructural components and systems,<br />

along with the medical equipment included in the demonstr<strong>at</strong>ion project, are summarized in Table 1.<br />

For fragility assessment purposes, the hospital room was subjected to increasing levels of shaking<br />

including design and maximum considered earthquake level motions. The floor displacement histories<br />

considered in testing were obtained from the simul<strong>at</strong>ed response of an existing medical facility loc<strong>at</strong>ed in<br />

the San Fernando Valley, in Southern California, and from a testing protocol specially developed to take<br />

full advantage of the UB-NCS testing capabilities and to impose the seismic demands expected <strong>at</strong> the<br />

upper levels of multistory buildings.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 2 of 33


8'<br />

<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

14'-6 1 8 " 14'-11 4 "<br />

12'-7 1 4 "<br />

12'-7 1 4 "<br />

Ceiling Level<br />

4 8 16 16 10'-3"<br />

11'-0 3 " 3'-53 " 2'-113 " 1'-87 "<br />

Exterior View North Wall<br />

Interior View North Wall<br />

Scale: -<br />

Scale: -<br />

14'-6 1 8 " 14'-61 8 "<br />

Ceiling Level<br />

12'-7 1 4 " 12'-71 4 "<br />

9'-4" 3'-3 1 4 " 9'-4" 3'-31 4 "<br />

4'-1 1 16 " 3'-8" 6'-91 8 "<br />

5'-8 11 16 " 79 16 " 3'-8" 1'-113 16 " 2'-113 16 "<br />

Exterior View South Wall<br />

Scale: -<br />

Interior View South Wall<br />

Scale: -<br />

7 1 4 "<br />

12'-7 1 4 " 12'-71 4 "<br />

1'-4"<br />

2'-11 1 4 " 1'-4" 6'-51 4 "<br />

Ceiling Level<br />

10'-8"<br />

10'-8 1 2 " 9'-103 4 "<br />

Exterior View East Wall<br />

Interior View East Wall<br />

Scale: -<br />

Scale: -<br />

10'-8 1 2 " 9'-103 4 "<br />

Ceiling Level<br />

12'-7 1 4 " 12'-71 4 "<br />

9'-4" 3'-3 1 4 " 9'-4" 3'-31 4 "<br />

1'-8 7 16 " 8'-95 8 " 4'-113 8 " 3'-53 8 " 1'-6"<br />

Exterior View West Wall<br />

Scale: -<br />

Interior View West Wall<br />

Scale: -<br />

Figure 3. Elev<strong>at</strong>ions partition walls<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 3 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Figure 4. Isometric view steel framing<br />

Figure 5. Isometric view finished specimen<br />

Table 1. <strong>Nonstructural</strong> components and medical equipment included in specimen<br />

<strong>Nonstructural</strong> components and equipment<br />

1 Steel stud framed gypsum partition walls<br />

2 Suspended ceiling and suspended light<br />

3 Flooring<br />

4 Sprinkler system<br />

5 Medical gas pipes with in-wall outlets<br />

6 Wall mounted p<strong>at</strong>ient monitors<br />

7 Freestanding poles with IV infusion pumps<br />

8 Ceiling mounted surgical lamp<br />

9 Oper<strong>at</strong>ing room video equipment rack on casters<br />

10 Gurney<br />

11 Cart on casters<br />

12 Dummy<br />

Detailed descriptions of the most important items listed in Table 1 are presented in following subsections.<br />

Figure 6 shows a general layout of the medical equipment included in the experiment.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 4 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

1'-6"<br />

4'<br />

13<br />

20<br />

Monitor 4<br />

13x16x7 in<br />

@ h=60 in<br />

1'-6 1 2 "<br />

15 15<br />

22<br />

Monitor 3<br />

15x18x18in<br />

@ h=52 in<br />

22<br />

Monitor 2<br />

15x18x18in<br />

@ h=52 in<br />

28<br />

78<br />

Gurney<br />

(h=40 in)<br />

Pole 2Ø26<br />

h=72in<br />

4'<br />

15<br />

28<br />

Pole 1<br />

h=72in<br />

Ø26<br />

22<br />

Monitor 1<br />

15x18x18in<br />

@ h=52 in<br />

Cabinet<br />

26x28x76<br />

26<br />

5'<br />

2.1. Partition walls<br />

Figure 6. General layout for equipment included in demonstr<strong>at</strong>ion project<br />

The steel studs used are model SSMA 362S125-43 (18 gauges in thickness) with a typical spacing of 40<br />

cm (16”) and the slotted tracks are model SSMA 362T125-43 (18 gauges in thickness). The tracks were<br />

connected to the pl<strong>at</strong>form slabs using standard power driven 25 mm (1”) fasteners, spaced <strong>at</strong> 30 cm (1’).<br />

Two fasteners were considered <strong>at</strong> the ends and intersections of walls. A gun Ramset model SA-270 and<br />

shots Ramset .27 caliber were used in construction. Studs were screwed to tracks and studs using standard<br />

Phillips self-drilling #8 screws. Gypsum wallboard panels (4’x8’) with a thickness of 15 mm (5/8”) were<br />

screwed to the studs and finished with metal corner beads (1-1/4”), drywall paper joint tape (2-1/16” in<br />

width), mud and w<strong>at</strong>er-based semi-gloss paint. The construction of the steel stud framing followed<br />

specific<strong>at</strong>ions in the Steel Stud Manufacturers Associ<strong>at</strong>ion manual [8]. Gypsum panels were <strong>at</strong>tached to<br />

the steel stud framing using standard Phillips self-drilling #6 screws. Typical spacing for screws were 12<br />

and 8 inches for internal and perimeter screws, respectively. Drywall panel joints were offset on opposite<br />

faces of partition walls. A gap of approxim<strong>at</strong>ely 1/8” is left in the connection between top ends of studs<br />

and top tracks. Figure 7 shows typical stud arrangements <strong>at</strong> wall intersections.<br />

Figure 8 and Figure 9 show pictures of the typical connection of studs to tracks and studs to studs <strong>at</strong> wall<br />

intersections. Figure 10 shows a general view of the frame around the door fenestr<strong>at</strong>ion. Figure 11 shows<br />

the detail of the door frame connection to the main steel stud frame. Figure 12 shows the detail of the<br />

connection of the top track to the concrete slab. In Figure 12 it is seen the typical distribution of fasteners<br />

along the track. Figure 13 shows a general view of the final steel stud framing system. Figure 14 and<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 5 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Figure 15 show general views for the installed gypsum drywall panels in south, and east and north walls,<br />

respectively.<br />

Self Drill Screw #6<br />

<strong>at</strong> 12 in o.c. (Typ)<br />

Self Drill Screw #8<br />

<strong>at</strong> 18 in o.c. (Typ)<br />

Steel Stud SSMA<br />

362S125-43 (Typ)<br />

Self Drill Screw #6<br />

<strong>at</strong> 12 in o.c. (Typ)<br />

5/8" Gypsum Board (Typ)<br />

Figure 7. Stud arrangement <strong>at</strong> wall intersections<br />

Figure 8. Detail wall intersection<br />

Figure 9. Detail stud to track connection<br />

Figure 10. General view door opening frame<br />

Figure 11. Detail door opening frame<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 6 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Figure 12. Detail top track connection<br />

Figure 13. General view steel stud framing<br />

Figure 14. General view gypsum drywall panels in<br />

south wall<br />

Figure 15. General view gypsum drywall panels in<br />

east and north walls<br />

2.2. Suspended ceiling<br />

A suspended ceiling system was considered for finishing the interior of the hospital emergency room. The<br />

ceiling was placed <strong>at</strong> a height 9’ over the level of the finished floor. The main beams and cross tees are<br />

Armstrong model Prelude XL 15/16” Fire Resistant, exposed tee. The wall moldings used are 2”x2” angle<br />

sections. The main runners were installed in the east-west direction <strong>at</strong> spacing of 4’ on center. 4’ cross<br />

runners were installed in the north-south direction <strong>at</strong> spacing of 2’ on center, whereas 2’ cross runners<br />

were installed in the east-west direction <strong>at</strong> spacing of 2’ on center. The tiles used were 24"x24" Fine<br />

Fissured with Angled Tegular edge profile.<br />

Figure 16 shows the layout of the ceiling grid installed. Steel hanger wires #12 in gage were used to<br />

support the main beams <strong>at</strong> the points indic<strong>at</strong>ed in Figure 16. The spacing between wire hangers is 4’ in<br />

both directions. A light was installed directly supported on the ceiling grid, Figure 16.<br />

Figure 17 shows a detail of the connection between main beams and 4’ cross tees. Figure 17 also shows a<br />

detail of the wire used to suspend the ceiling grid and partially the light <strong>at</strong>tached to the grid. Figure 18<br />

shows a detail of the wall molding angle profiles. Figure 19 shows a general view of the installed ceiling<br />

while Figure 20 shows the detail of the ceiling around one of the UB-NCS columns.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 7 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

1'-10 1 8 " 2' 2' 2' 2' 1'-10 7 8 "<br />

11 3 8 " 2' 2' 2' 2' 11 3 8 "<br />

Main beam<br />

4' Cross runner (Typ)<br />

4' Cross runner<br />

Opening for light<br />

2x2" angles <strong>at</strong>tached to<br />

gypsum partition walls (Typ)<br />

Main beam<br />

2' Cross runner (Typ)<br />

#12 Suspension<br />

wire (Typ)<br />

Figure 16. Layout ceiling grid<br />

Figure 17. Detail main runner and grid hanger<br />

Figure 18. Detail ceiling grid and wall molding<br />

Figure 19. General view ceiling<br />

Figure 20. Detail ceiling around UB-NCS column<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 8 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

2.3. Sprinkler system<br />

A fire extinguishing system, composed of vertical and horizontal schedule 40 pipe runs, ½” in diameter,<br />

was considered for the specimen test. Figure 21 and Figure 22 present a plan view and an elev<strong>at</strong>ion<br />

showing the layout of the pipe runs. The rising portion of the pipe runs was <strong>at</strong>tached to the UB-NCS<br />

concrete slabs using a combin<strong>at</strong>ion of flanges and pipe clamps. The horizontal sprinkler pipe run was<br />

<strong>at</strong>tached to the partition walls using a combin<strong>at</strong>ion of flanges and pipe clamps as shown in Figure 23 and<br />

Figure 24, and to the top UB-NCS concrete slab using, additionally, 3/8” all threaded rod hangers 7” in<br />

length (Figure 25). Figure 26 show a general view of the fire suppression pipe run. A Standard Spray<br />

Pendant sprinkler head model Rasco F1 with glass bulb type LPC-VdS (r<strong>at</strong>ed for response <strong>at</strong> 155°F) was<br />

considered to interact with the suspended ceiling system (Figure 27). During testing the fire extinguishing<br />

system was connected to a hydrant providing typical working pressure.<br />

2'-2"<br />

10" 1'-4"<br />

Sprinkler head<br />

4'-10"<br />

4'-9"<br />

9" 3' 1'<br />

2"<br />

9"<br />

Vertical rod hanger<br />

Horizontal Run. D=1/2"<br />

5'-7"<br />

2'-1"<br />

Clamp to gypsum partition wall<br />

Vertical Rise. D=1/2"<br />

Figure 21. Plan view sprinkler pipe runs<br />

2.4. Medical gas<br />

A medical gas system was considered in the testing specimen. The piping layout is shown in Figure 28.<br />

The copper pipes used were ½” in diameter. The vertical portion of the pipes was <strong>at</strong>tached to the UB-NCS<br />

concrete slab, as shown in Figure 23. The horizontal portion of the runs were hanged from the top slab<br />

using trapezoidal hangers whose all threaded 3/8” in diameter rods (L=35 in) were inserted into the top<br />

concrete slab using standard drop-in devices. Figure 29 shows a general view of the trapezoidal hanger.<br />

Figure 30 and Figure 31 show details of the clamp used to connect the medical pipe to the trapeze and<br />

details of the drop-in device used to <strong>at</strong>tach the threaded rod to the concrete slab, respectively. Figure 32<br />

shows a general view of the medical pipes within the partition walls and the corresponding in-wall<br />

mounted outlets. The outlets were installed using standard hospital construction techniques (Figure 33).<br />

Bracing systems were not considered for the trapezoidal hanger. In order to reproduce normal ER<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 9 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

oper<strong>at</strong>ion conditions, the medical pipes were pressurized for testing. The free space between the<br />

horizontal medical gas run and the sprinkler vertical run is 6 inches (Figure 29).<br />

2'-1" 2'-7" 2'-2"<br />

2'-8 1 2 " 71 2 "<br />

Horizontal Run. D=1/2"<br />

Ceiling Level<br />

Sprinkler head<br />

9'-4"<br />

Vertical Rise. D=1/2"<br />

Attachment to concrete slab<br />

7'-10"<br />

Connection to w<strong>at</strong>erline<br />

4'-10"<br />

Figure 22. Elev<strong>at</strong>ion sprinkler pipe runs<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 10 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Figure 23. Detail <strong>at</strong>tachment vertical pipe to UB-<br />

NCS concrete slab<br />

Figure 24. Detail sprinkler run crossing partition<br />

wall<br />

Figure 25. Detail vertical rod hanger<br />

Figure 26. General view of<br />

sprinkler pipe runs<br />

Figure 27. Detail sprinkler<br />

head<br />

Trapezoidal hanger<br />

Horizontal Run. D=1/2"<br />

4'-31 8 "<br />

Trapezoidal hanger<br />

105 16 "<br />

2'-015 16 "<br />

2'-8 3 8 "<br />

4'-1 7 8 "<br />

Vertical Rise. D=1/2"<br />

Figure 28. Layout medical gas pipes<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 11 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Figure 29. Medical pipe run trapezoidal hanger<br />

Figure 30. Detail clamp connecting pipe to hanger<br />

Figure 31. Connection hanger to<br />

top concrete slab<br />

Figure 32. In-wall outlets and gas<br />

pipes<br />

Figure 33. Detail in-wall outlets<br />

mounting<br />

Additional components (Figure 34 through Figure 36) included in the testing specimen will be further<br />

described in the final report.<br />

Figure 34. Dummy sitting on gurney,<br />

poles with IV pumps, video rack, cart<br />

and monitor.<br />

Figure 35. Medical gas<br />

piping, outlets and<br />

monitor.<br />

Figure 36. Video rack.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 12 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

3. Description testing protocol<br />

Testing protocols currently used for the seismic performance assessment of nonstructural components and<br />

equipment (FEMA 2006, ICC-ES 2007) focus either on displacement or acceler<strong>at</strong>ion sensitive<br />

components, through racking or shake table protocols. However, some nonstructural systems may be<br />

sensitive to both displacement and acceler<strong>at</strong>ions. Further, nonstructural systems typically found in<br />

buildings may be composed of components th<strong>at</strong> individually may be either acceler<strong>at</strong>ion or displacement<br />

sensitive, but when combined with other systems may become sensitive to both acceler<strong>at</strong>ions and<br />

interstory drifts. In hospitals, for example, acceler<strong>at</strong>ion sensitive p<strong>at</strong>ient monitors are typically <strong>at</strong>tached to<br />

displacement sensitive partition walls. The seismic performance of individual nonstructural components<br />

and the assessment of interactions between components can be evalu<strong>at</strong>ed through a testing protocol taking<br />

full advantage of the UB-NCS capabilities. To this end, an innov<strong>at</strong>ive dynamic testing protocol applicable<br />

for both experimental seismic fragility assessment and seismic qualific<strong>at</strong>ion of acceler<strong>at</strong>ion and/or<br />

displacement sensitive nonstructural systems is proposed. The testing protocol was mainly developed for<br />

use with the UB-NCS; nevertheless, the methodology can be used for experimental seismic fragility<br />

research on acceler<strong>at</strong>ion sensitive components performed using conventional shake table simul<strong>at</strong>ors.<br />

Previous research developed by Wilcoski et al. (1997) and Krawinkler et al. (2000) constitutes the basis<br />

for the development of this testing protocol.<br />

3.1 Structural model<br />

The protocol used in this experiment consists of a pair of displacement histories for the bottom and top<br />

levels of the UB-NCS th<strong>at</strong> simultaneously m<strong>at</strong>ch: (i) a target mean 84 th % Floor Response Spectrum<br />

(FRS), and (ii) a target mean 84 th % Generalized Interstory Drift (GID), both specified <strong>at</strong> a given<br />

normalized building height h/H, where h is the height above grade where the nonstructural component is<br />

loc<strong>at</strong>ed, and H is the total height of the building.<br />

The continuous beam model shown in Figure 37 was considered to model a generic multistory building<br />

and to describe the seismic load p<strong>at</strong>h traveling from the ground to nonstructural components. The building<br />

model consists of a continuous elastic cantilever beam combining a flexural and a shear beams connected<br />

throughout an infinite number of axially rigid links distributed along height. The shear and flexural beams<br />

undergo the same deform<strong>at</strong>ions, allowing for modeling of generic buildings whose seismic resistant<br />

systems are composed by either shear walls, moment resistant frames or a combin<strong>at</strong>ion of both. This<br />

model has been extensively studied by other researchers (e.g. Iwan 1997, Chopra and Chintanapakdee<br />

2001, Kim and Collins 2002, Miranda and Akkar 2006), and has shown promising results in simul<strong>at</strong>ing<br />

the seismic responses observed in multistory buildings during real ground motions (e.g. Reinoso and<br />

Miranda 2005, Taghavi and Miranda 2006). The parameterα accounts for the rel<strong>at</strong>ive stiffness of shear<br />

and flexural beams. A limiting value α = 0 allows for replic<strong>at</strong>ing the deform<strong>at</strong>ion p<strong>at</strong>tern associ<strong>at</strong>ed to<br />

theoretical pure flexural buildings, while α = ∞ represents a pure shear system.<br />

The input ground motion for the building is characterized by a power spectral density function<br />

PSDF, Su g<br />

( ω)<br />

, which is a frequency domain represent<strong>at</strong>ion of the ground motion energy content. The<br />

PSDF can be obtained for: (i) a Deterministic Local Seismic Hazard (DLSH) using the specific barrier<br />

model (Papageorgiou and Aki 1983, Halldorsson 2005) or (ii) a Probabilistic Local Seismic Hazard<br />

(PLSH) comp<strong>at</strong>ible PSDF (Gupta and Trifunac 1998). Input/output PSDF rel<strong>at</strong>ions for the combined<br />

primary/secondary system were derived using principles of stochastic processes (Soong and Grigoriu<br />

S T x,ω , the<br />

1993). The PSDF for the absolute acceler<strong>at</strong>ions along the height of the building model, ( )<br />

u<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 13 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

absolute acceler<strong>at</strong>ion of a SDOF secondary system loc<strong>at</strong>ed <strong>at</strong> a height h, S T ( h, ω , ωs<br />

)<br />

us<br />

interstory drifts, S ( x, ω ), are expressed as follows:<br />

θ<br />

, and the generalized<br />

Nm<br />

⎧<br />

2<br />

⎪Su ( ω) 2S ( ) ( ) ( )( )<br />

g<br />

u<br />

ω γ<br />

g<br />

nϕn x ⎡1 Hn ω ωn 2iζnωω<br />

⎤<br />

<br />

−<br />

∑ ⎣<br />

+ +<br />

n ⎦<br />

+ <br />

n=<br />

1<br />

⎪<br />

Nm<br />

Nm<br />

⎪<br />

2<br />

S T ( x, ω)<br />

=<br />

u ( ) ( ) ( ) (<br />

u ⎨S ω γ )( )<br />

g<br />

nγmϕn x ϕm x ⎡1 2Hn ω ωn 2iζnωω<br />

⎤<br />

∑∑<br />

⎣<br />

− +<br />

n ⎦<br />

+ <br />

<br />

⎪<br />

n= 1 m=<br />

1<br />

⎪ Nm<br />

Nm<br />

⎪∑∑γ nγmϕn ϕm ωnωm ⎣ωnωm ζζ<br />

n m<br />

ωωζ<br />

m n<br />

ωnζ m ⎦ u<br />

ω<br />

g n<br />

ω<br />

m<br />

ω<br />

⎪⎩ n= 1 m=<br />

1<br />

T<br />

us<br />

*<br />

( x) ( x) ⎡ + 4 + 2i ( − ) ⎤S<br />

( ) H ( ) H ( )<br />

2 2 2 4 *<br />

( ω ω ) = T ( ω)( ζ ωω + ω ) ( ω) ( ω)<br />

S h, , S h, 4 H H<br />

s u<br />

s s s s s<br />

N N<br />

dϕ<br />

dϕ<br />

Sθ<br />

x, S x x H H<br />

dx dx<br />

m m<br />

n<br />

m<br />

*<br />

( ω) =<br />

u<br />

( ω) ( ) ( ) ( ) ( )<br />

g<br />

∑∑γnγm n<br />

ω<br />

m<br />

ω<br />

n= 1 m=<br />

1<br />

(1)<br />

(2)<br />

(3)<br />

x<br />

GA<br />

EI<br />

ζ p , T p, ζ s , T s<br />

1 GA<br />

α =<br />

H EI<br />

H<br />

k<br />

c<br />

s<br />

s<br />

m<br />

s<br />

u (h,t) s<br />

h<br />

u(x,t)<br />

..<br />

u g(t)<br />

Figure 37. Building model<br />

2 2<br />

In Equ<strong>at</strong>ions 1, 2 and 3, ( ) ( ) 1<br />

H<br />

ω = ω − ω + 2iζ ωω −<br />

, ωs<br />

and<br />

s s s s<br />

ζ<br />

s<br />

denote frequency response function,<br />

2 2<br />

H ω = ω − ω + 2iζ ωω −<br />

,<br />

n<strong>at</strong>ural frequency and damping r<strong>at</strong>io for the secondary system, respectively; ( ) ( ) 1<br />

n n n n<br />

ω<br />

n<br />

, ζ<br />

n<br />

, γ<br />

n<br />

, and ϕ n<br />

denote frequency response function, n<strong>at</strong>ural frequency, damping r<strong>at</strong>io, modal<br />

particip<strong>at</strong>ion factor and modal shape for the n th vibr<strong>at</strong>ion mode of the primary system, respectively.<br />

i= − 1 denotes the imaginary unit and N m is the number of significant modes considered in the analysis.<br />

Principles of random vibr<strong>at</strong>ion theory were used to estim<strong>at</strong>e the mean peak seismic demands expected on<br />

nonstructural components (Cartwright and Longuet-Higgins 1956).<br />

3.2 Estim<strong>at</strong>ion of seismic demands on nonstructural components<br />

In developing and calibr<strong>at</strong>ing the testing protocol, a PLSH with a probability of exceedance of 10% in 50<br />

years for a region of high seismicity such as Northridge, California, was considered. The corresponding<br />

uniform hazard spectrum, obtained from USGS, is shown in Figure 38. In order to compute a PLSH<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 14 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

comp<strong>at</strong>ible PSDF to serve as input for the continuous beam model, the ground response spectrum was<br />

fitted using:<br />

S<br />

a<br />

( T)<br />

A<br />

o<br />

=<br />

T<br />

1 +<br />

0.1T<br />

⎛ T ⎞<br />

1+ 4.5⎜ ⎟<br />

⎝ T<br />

o ⎠<br />

q<br />

⎛ T ⎞<br />

T 1 + ⎜ ⎟<br />

T<br />

R<br />

o<br />

+ ⎝ o ⎠<br />

p<br />

(4)<br />

where the constants p, q and R are estim<strong>at</strong>ed using best fit techniques. A o denotes the peak ground<br />

acceler<strong>at</strong>ion <strong>at</strong> the site and T o =0.2 s. The best fit curve is also shown in Figure 38. The ground response<br />

spectrum comp<strong>at</strong>ible PSDF, Su g<br />

( ω)<br />

, is then obtained as shown in Figure 39, where T d corresponds to the<br />

dur<strong>at</strong>ion of the stochastic process, estim<strong>at</strong>ed according to Papageorgiou and Aki (1983).<br />

In computing the demands to be imposed by the protocol, buildings with deform<strong>at</strong>ion p<strong>at</strong>terns defined by<br />

parameters α = 0, 5 and 10 were considered. Primary systems with fundamental periods T p in the range<br />

0.1 to 5 sec, and secondary systems with n<strong>at</strong>ural periods T s in the range 0 to 5 sec, were considered. The<br />

damping r<strong>at</strong>io for primary (all modes) and secondary systems is assumed equal to 5%. N m =10 modes are<br />

considered in the analysis. Figure 40 shows a three dimensional FRS, obtained using Equ<strong>at</strong>ions 1 and 2<br />

for the case α = 5 <strong>at</strong> building roof level. Similar 3D FRS’s are obtained for the other building heights and<br />

α values. The d<strong>at</strong>a in Figure 40 and th<strong>at</strong> obtained for other α’s have been st<strong>at</strong>istically processed to obtain<br />

the expected floor demands th<strong>at</strong> will be applied by the general testing protocol, independent of building<br />

deform<strong>at</strong>ion p<strong>at</strong>tern α and primary system fundamental period T p . In order to do so, the mean (over α)<br />

84 th % (over T p ) FRS’s were computed as functions of normalized building height. The results of this<br />

st<strong>at</strong>istical analysis are shown in Figure 41a. In order to smooth the mean 84 th % FRS’s shown in Figure<br />

41a, a function FRSFactor<br />

( h H ) is used to extrapol<strong>at</strong>e the ground response spectrum shown in Figure 38 to<br />

FRS h H is calcul<strong>at</strong>ed as the quotient between<br />

obtain the FRS’s along building height. The function ( )<br />

the peak value of the FRS’s along the height of the building and the peak spectral amplitude of the ground<br />

FRS h H .<br />

response spectrum (Figure 41b). Figure 41b also shows the best fit curve (Equ<strong>at</strong>ion 5) for ( )<br />

Factor<br />

Finally, the extrapol<strong>at</strong>ed mean 84 th % FRS to be m<strong>at</strong>ched by the testing protocol, shown in Figure 41c, is<br />

calcul<strong>at</strong>ed using Equ<strong>at</strong>ion 6.<br />

Factor<br />

Spectral Acceler<strong>at</strong>ion S a (g)<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

USGS Hazard Consistent Ground Response Spectrum<br />

USGS D<strong>at</strong>a<br />

Best Fit USGS D<strong>at</strong>a<br />

Interpol<strong>at</strong>ing Function<br />

p<br />

⎛<br />

T<br />

⎞<br />

1 + 4.5 ⎜ ⎟<br />

A<br />

o<br />

T<br />

o<br />

S<br />

a ( T<br />

)<br />

=<br />

⎝ ⎠<br />

q<br />

T<br />

1<br />

+<br />

⎛<br />

T<br />

⎞<br />

T<br />

1<br />

+ ⎜ ⎟<br />

0.1T<br />

o<br />

+ ⎝T<br />

o<br />

⎠<br />

R<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

Period T (sec)<br />

Figure 38. Design level ground<br />

response spectrum<br />

PSD (cm 2 /s 3 )<br />

250<br />

200<br />

150<br />

100<br />

50<br />

USGS Hazard Consistent PSD Ground Acceler<strong>at</strong>ion<br />

⎛<br />

⎞<br />

2 ⎜<br />

⎟<br />

6ζSa<br />

( ω)<br />

Tdω γ<br />

S u ( ωζ , )<br />

⎜ ⎛ ⎞<br />

2ln<br />

⎟<br />

=<br />

g<br />

2 2 4 ⎜<br />

πω ( 12ζ π ζ 3)<br />

π<br />

⎟+<br />

+ + ⎜ ⎝ ⎠ Tdω<br />

⎟<br />

⎛ ⎞<br />

⎜<br />

2ln⎜<br />

π<br />

⎟<br />

⎝ ⎠<br />

⎟<br />

⎝<br />

⎠<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Frequency f (Hz)<br />

Figure 39. Ground response<br />

spectrum comp<strong>at</strong>ible PSDF<br />

−2<br />

Absolute Acceler<strong>at</strong>ion (g)<br />

15<br />

10<br />

5<br />

0<br />

5<br />

4<br />

3<br />

T p<br />

(s)<br />

3-D Floor Response Spectra <strong>at</strong> Roof Level, α=5<br />

2<br />

1<br />

0<br />

0<br />

1<br />

2<br />

T s<br />

(s)<br />

Figure 40. Example of 3D-FRS<br />

for α =5, roof level (h/H=1)<br />

3<br />

4<br />

5<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Using Equ<strong>at</strong>ion 3, the PSDF for generalized interstory drifts (GID) were calcul<strong>at</strong>ed. Principles of<br />

stochastic processes were used to compute the Generalized Drift Spectra (GDS) shown in Figure 42. To<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 15 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

make the testing protocol independent of deform<strong>at</strong>ion p<strong>at</strong>terns and dynamic properties of primary system,<br />

the mean (over α ) 84 th % (over T p ) GID along building height were determined. Figure 43 shows the<br />

mean 84 th % GID and its best fit along building height (Equ<strong>at</strong>ion 7).<br />

2 3<br />

⎛ h ⎞ h ⎛ h ⎞ ⎛ h ⎞<br />

FRSFactor<br />

⎜ 1 10 19.4 12.4<br />

H<br />

⎟= + − +<br />

H<br />

⎜<br />

H<br />

⎟ ⎜<br />

H<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

⎛ h ⎞ ⎛ h ⎞<br />

FRS ⎜T s<br />

, ⎟=<br />

FRSFactor ⎜ ⎟Sa ( Ts<br />

)<br />

⎝ H ⎠ ⎝ H ⎠<br />

2 0.55<br />

δ ⎛ h 1 h 6 h h<br />

⎜ ⎞ sin 7 1.9 %<br />

H<br />

⎟= ⎛ 4<br />

⎜ ⎞ − ⎛ ⎞ +<br />

⎛ ⎞<br />

H<br />

⎟<br />

5<br />

⎜<br />

H<br />

⎟ ⎜<br />

H<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

(5)<br />

(6)<br />

(7)<br />

FRS (g)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Mean 84 th Percentile FRSs along Building Height<br />

Ground<br />

h=0.1H<br />

h=0.2H<br />

h=0.3H<br />

h=0.4H<br />

h=0.5H<br />

h=0.6H<br />

h=0.7H<br />

h=0.8H<br />

h=0.9H<br />

Roof<br />

h/H<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Vari<strong>at</strong>ion of Peak FRS / Peak S a<br />

R<strong>at</strong>es along Building Height<br />

FRS (g)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

Extrapol<strong>at</strong>ed Mean 84 th Percentile FRSs along Building Height<br />

Ground<br />

h=0.1H<br />

h=0.2H<br />

h=0.3H<br />

h=0.4H<br />

h=0.5H<br />

h=0.6H<br />

h=0.7H<br />

h=0.8H<br />

h=0.9H<br />

Roof<br />

1<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Period Secondary System T s<br />

(sec)<br />

0.2<br />

0.1<br />

D<strong>at</strong>a<br />

Best Fit<br />

0<br />

1 1.5 2 2.5 3 3.5 4 4.5<br />

Peak FRS / Peak S a<br />

R<strong>at</strong>e<br />

1<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Period Secondary System T s<br />

(sec)<br />

(a) (b) (c)<br />

Figure 41. (a) Mean 84 th percentile FRS along building height; (b) Floor response spectra<br />

extrapol<strong>at</strong>ion factor; and (c) Extrapol<strong>at</strong>ed (smoothened) mean 84 th percentile FRS along building<br />

height<br />

Drift δ (%)<br />

Drift δ (%)<br />

Drift δ (%)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2.5<br />

1.5<br />

0.5<br />

Generalized Drift Spectrum α=0<br />

0<br />

0 1 2 3 4 5 6<br />

Period Primary System T p<br />

(sec)<br />

2<br />

1<br />

2.5<br />

1.5<br />

0.5<br />

Generalized Drift Spectrum α=5<br />

0<br />

0 1 2 3 4 5 6<br />

Period Primary System T p<br />

(sec)<br />

2<br />

1<br />

Generalized Drift Spectrum α=10<br />

h=0.1H h=0.2H h=0.3H h=0.4H h=0.5H h=0.6H h=0.7H h=0.8H h=0.9H Roof<br />

0<br />

0 1 2 3 4 5 6<br />

Period Primary System T p<br />

(sec)<br />

Figure 42. GDS <strong>at</strong> several building heights<br />

Normalized Building Height h/H<br />

1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Vari<strong>at</strong>ion of Mean 84 th % Generalized Drift along Building Height<br />

2 0.55<br />

0.9<br />

δ ⎛ h 1 h 6 h h<br />

⎜ ⎞ ⎟= sin ⎛ ⎜7 ⎞ ⎟− ⎛ ⎜ ⎞ ⎟ + 1.9<br />

⎛ ⎜ ⎞<br />

⎟<br />

⎝ H ⎠ 4 ⎝ H ⎠ 5⎝ H ⎠ ⎝ H ⎠<br />

0.8<br />

Mean 84 th %<br />

Best Fit<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

Generalized Drift δ (%)<br />

Figure 43. Mean 84 th % GID<br />

3.3 Gener<strong>at</strong>ion of hazard consistent floor displacement protocol histories<br />

After computing the demands to be imposed by the testing protocol through the mean 84 th % FRS and the<br />

mean 84 th % GID, displacement histories for the bottom and top levels of the UB-NCS are gener<strong>at</strong>ed. The<br />

key parameters for the protocol histories are the loc<strong>at</strong>ion of the component along the normalized building<br />

height and the target ground response spectrum. The frequency content targeted for the testing protocol<br />

covers the range between f min<br />

=0.2 and f max<br />

=5 Hz, which corresponds to the UB-NCS oper<strong>at</strong>ing frequency<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 16 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

range and the frequency content expected in the responses of multistory buildings. The instantaneous<br />

frequency f () t considered in the testing protocol is given by:<br />

()<br />

f t<br />

t−td<br />

⎛<br />

td<br />

f ⎞<br />

min<br />

= fmax<br />

⎜ ⎟<br />

fmax<br />

⎝<br />

⎠<br />

−1<br />

(8)<br />

The dur<strong>at</strong>ion of the testing protocol is<br />

reached and is given by:<br />

2t , where<br />

d<br />

t d<br />

is the time <strong>at</strong> which the minimum testing frequency is<br />

t<br />

1<br />

f<br />

= max<br />

d<br />

log<br />

(9)<br />

2<br />

Sr<br />

fmin<br />

where S denotes a constant sweep r<strong>at</strong>e calibr<strong>at</strong>ed to induce the same number of “Rainflow” cycles<br />

r<br />

(ASTM 1997) on acceler<strong>at</strong>ion sensitive nonstructural components as it would be experienced during real<br />

floor motions. Equ<strong>at</strong>ion 8 corresponds to an instantaneous testing frequency transitioning from high to<br />

low frequencies, then back to high frequencies. The final high frequency sweep is intended to capture the<br />

behavior of components th<strong>at</strong> might be damaged initially by drifts and become sensitive to acceler<strong>at</strong>ions<br />

(e.g. partition walls acting as a cantilever after failure of top slab connection). The displacement protocol<br />

proposed for the UB-NCS bottom level, x Bottom<br />

, m<strong>at</strong>ches the mean 84 th % FRS expected <strong>at</strong> a given<br />

normalized height. The closed-form equ<strong>at</strong>ion for the bottom level protocol is:<br />

h<br />

h<br />

x ⎛ β<br />

Bottom ⎜t, ⎞ ⎟=<br />

α f () t cos( ϕ()<br />

t ) w()<br />

t FRS<br />

⎛ ⎞<br />

Factor ⎜ ⎟<br />

⎝ H ⎠ ⎝ H ⎠<br />

(10)<br />

where α =0.75 and β = -1.35 are calibr<strong>at</strong>ion factors used to minimize the error in m<strong>at</strong>ching the ground<br />

wt is a<br />

response spectrum in the range of frequencies of interest; ( t)<br />

ϕ is the instantaneous phase; and ( )<br />

sinusoidal windowing function used to smooth the ramp-up and ramp-down portions of the protocol. The<br />

interstory drift protocol is calibr<strong>at</strong>ed to impose a controlled number of rainflow cycles. The peak<br />

interstory drift reached during testing m<strong>at</strong>ches the mean 84 th % GID expected <strong>at</strong> a given normalized<br />

building height. The closed-form equ<strong>at</strong>ion for the interstory drift protocol, Δ , is given by:<br />

2<br />

⎛t−t h<br />

d ⎞<br />

⎛ ⎞<br />

−⎜ ⎟<br />

σ h<br />

⎝ ⎠ ⎛ ⎞<br />

⎜ ⎟=<br />

NCS ⎜ ⎟<br />

( ()) ()<br />

Δ t, h e δ cos ϕ t w t<br />

⎝ H ⎠ ⎝ H ⎠<br />

(11)<br />

where δ ( hH)<br />

is given in Equ<strong>at</strong>ion 7; h NCS<br />

is the free interstory height of the UB-NCS; and<br />

−( ( t−t ) ) 2<br />

d σ<br />

e is a<br />

Gaussian-shaped modul<strong>at</strong>ing function in which σ is calibr<strong>at</strong>ed to control the amplitude of Rainflow<br />

cycles imposed by the interstory drift protocol. The closed-form equ<strong>at</strong>ion for the top level displacement<br />

protocol, x<br />

Top<br />

, is given by:<br />

⎛ h ⎞ ⎛<br />

x h ⎞ ⎛ h ⎞<br />

Top ⎜t, ⎟= xBottom<br />

⎜t, ⎟+<br />

Δ⎜t,<br />

⎟<br />

⎝ H ⎠ ⎝ H ⎠ ⎝ H ⎠<br />

(12)<br />

Figure 44 shows the proposed protocol histories for the bottom and top UB-NCS levels for a normalized<br />

building height h/H =1, corresponding to a generic building roof level.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 17 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

3.4 Calibr<strong>at</strong>ion of induced/imposed vibr<strong>at</strong>ion cycles<br />

In order to valid<strong>at</strong>e the proposed testing protocol and its main parameters including instantaneous<br />

frequency f ( t ) , the sweep r<strong>at</strong>e S r<br />

, and the parameter σ controlling the interstory drift protocol’s<br />

enveloping shape, the number of cycles induced/imposed by the proposed floor motions has been<br />

assessed. The protocol is compared to floor motions recorded during past earthquakes <strong>at</strong> the upper levels<br />

of 6 instrumented buildings selected from the California Strong Motion Instrument<strong>at</strong>ion Program<br />

(CSMIP) d<strong>at</strong>abase. The buildings considered are listed in Table 2. Buildings with different number of<br />

stories, seismic resistant systems and n<strong>at</strong>ural periods, designed and built between 1960 and 1990 and<br />

affected by earthquakes with epicenters loc<strong>at</strong>ed <strong>at</strong> less than 15 km were considered.<br />

20<br />

Bottom Displacement History<br />

20<br />

Top Displacement History<br />

Disp (in)<br />

0<br />

Disp (in)<br />

0<br />

Veloc (in/s)<br />

-20<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Bottom Velocity History<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Bottom Acceler<strong>at</strong>ion History<br />

1<br />

Veloc (in/s)<br />

-20<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Top Velocity History<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Top Acceler<strong>at</strong>ion History<br />

1<br />

Acc (g)<br />

0<br />

Acc (g)<br />

0<br />

Inst Freq (Hz)<br />

-1<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Instant Frequency<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

(a)<br />

Inst Freq (Hz)<br />

-1<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Instant Frequency<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Figure 44. Testing protocol <strong>at</strong> hH=1 for (a) Bottom UB-NCS level; and (b) Top UB-NCS level<br />

(b)<br />

Table 2. CSMIP Instrumented buildings selected for cycle counting analysis and protocol calibr<strong>at</strong>ion<br />

CSMIP<br />

St<strong>at</strong>ion<br />

ID<br />

City<br />

24464 North<br />

Hollywood<br />

Building<br />

Structural System<br />

Reinforced<br />

concrete columns<br />

and beams<br />

24514 Sylmar Concrete slab,<br />

metal deck, steel<br />

frames<br />

24629 Los<br />

Angeles<br />

Concrete slabs,<br />

steel frames and<br />

deck<br />

47459 W<strong>at</strong>sonville Concrete slabs<br />

and shear walls<br />

24322 Sherman Concrete slabs,<br />

Oaks beams, and<br />

columns<br />

24386 Van Nuys Concrete slabs,<br />

columns,<br />

spandrel beams<br />

Number<br />

of<br />

Stories<br />

Building<br />

Period<br />

(s)<br />

Type<br />

Design<br />

D<strong>at</strong>e<br />

Site Geology<br />

20 2.56 Hotel 1967 Sandstone,<br />

shale<br />

Recorded<br />

Earthquakes<br />

in St<strong>at</strong>ion<br />

Whittier<br />

Northridge<br />

6 0.40 Hospital 1976 Alluvium Whittier<br />

Northridge<br />

Min.<br />

Distance<br />

to Source<br />

(km)<br />

Max.<br />

PGA<br />

(g)<br />

Max.<br />

PFA<br />

(g)<br />

15 0.30 0.65<br />

13 0.80 1.50<br />

54 6.20 Office 1988 Alluvium<br />

over<br />

sedimentary<br />

rock<br />

Northridge 32 0.13 0.18<br />

4 0.37 Commercial - Fill over Loma Prieta 17 0.58 1.20<br />

alluvium<br />

13 0.84 Commercial 1964 Alluvium Whittier 13 0.75 0.42<br />

Landers<br />

Northridge<br />

7 1.58 Hotel 1965 Alluvium Landers 7 0.45 0.58<br />

Big Bear<br />

Northridge<br />

In order to compute the number of cycles induced on acceler<strong>at</strong>ion sensitive nonstructural components,<br />

linear elastic analyses of SDOF systems were performed considering the bin of recorded floor<br />

acceler<strong>at</strong>ions and the proposed testing protocol for a normalized building height h/H=1. The “Rainflow”<br />

counting algorithm was used to simplify the response excursion amplitudes. A parameter<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 18 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Nλ<br />

= NCycles ACycle ≥ λ A , corresponding to the number of rainflow cycles<br />

Max<br />

N Cycles<br />

with amplitude A Cycle<br />

gre<strong>at</strong>er than λ % of the maximum rainflow amplitude A Max<br />

observed in the oscill<strong>at</strong>or’s response, is<br />

considered to calibr<strong>at</strong>e the testing protocol sweeping r<strong>at</strong>e. In particular, two st<strong>at</strong>istical parameters are<br />

calcul<strong>at</strong>ed for acceler<strong>at</strong>ion sensitive components, N 10 and N 50 , represent<strong>at</strong>ive of the total number of<br />

damaging excursions and the proportion of large excursions observed in the SDOF’s response,<br />

respectively. Figure 45 shows a comparison between the number of rainflow cycles induced by the testing<br />

protocol ( S r<br />

=12 oct/min) and the mean and 84 th % number of rainflow cycles induced by the set of<br />

recorded floor acceler<strong>at</strong>ions on SDOF with frequencies in the range considered. In Figure 45 it can be<br />

seen th<strong>at</strong> for systems with frequencies lower than 1.5 Hz, the proposed testing protocol closely m<strong>at</strong>ches<br />

the mean number of large cycles N 50 induced by real floor motions. For SDOF’s with frequencies gre<strong>at</strong>er<br />

than 1.5 Hz, the testing protocol closely m<strong>at</strong>ches the 84 th % number of large cycles induced by real floor<br />

motions. Similarly, it is observed th<strong>at</strong> the testing protocol closely m<strong>at</strong>ches the mean total number of<br />

damaging excursions N 10 for oscill<strong>at</strong>ors with n<strong>at</strong>ural frequencies lower than 3 Hz. For systems with<br />

frequencies gre<strong>at</strong>er than 3 Hz, the testing protocol slightly underestim<strong>at</strong>es the mean total number of<br />

damaging excursions induced by real floor acceler<strong>at</strong>ions.<br />

The rainflow counting algorithm was also used to compute the number of cycles N λ<br />

observed in the<br />

interstory drift histories calcul<strong>at</strong>ed from the displacement histories obtained after integr<strong>at</strong>ion and baseline<br />

correction of the recorded floor acceler<strong>at</strong>ion histories. Rainflow algorithm was also applied on the<br />

proposed interstory drift protocol, considering several values for the parameterσ . Figure 46 shows the<br />

results of the calibr<strong>at</strong>ion process for the testing protocol proposed for h/H=1. Dots in Figure 46 denote<br />

individually processed d<strong>at</strong>a. The optimal value for the parameterσ is 9.8 sec. In Figure 46 it is seen th<strong>at</strong><br />

the number of rainflow cycles imposed by the interstory drift protocol closely m<strong>at</strong>ches the 84 th % number<br />

of rainflow cycles imposed by real building interstory drift histories. It is highlighted th<strong>at</strong> the combined<br />

use of the calibr<strong>at</strong>ed Gaussian window and the proposed instantaneous frequency function allows for<br />

closely m<strong>at</strong>ching the 84 th % number of cycles in the whole profile of rainflow cycle amplitudes, for<br />

which λ varies between 10 and 90.<br />

N 50<br />

Number of Rainflow Cycles Induced on Acceler<strong>at</strong>ion Sensitive <strong>Component</strong>s<br />

30<br />

60<br />

Number of Cycles Imposed on Displacement Sensitive <strong>Component</strong>s<br />

N 50<br />

20<br />

Mean<br />

10<br />

84 th<br />

Protocol<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency Secondary System<br />

N 10<br />

Number of Rainflow Cycles Induced on Acceler<strong>at</strong>ion Sensitive <strong>Component</strong>s<br />

150<br />

N λ<br />

50<br />

40<br />

30<br />

20<br />

Protocol<br />

h/H=1<br />

Mean Floor<br />

Motions<br />

84 th % Floor<br />

Motions<br />

100<br />

N 10<br />

50<br />

10<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency Secondary System<br />

Figure 45. N 10 and N 50 number of rainflow cycles<br />

induced on acceler<strong>at</strong>ion sensitive components<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

λ<br />

Figure 46. Number of rainflow cycles imposed<br />

on displacement sensitive components<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 19 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

4. Testing program<br />

4.1. Qualific<strong>at</strong>ion protocol<br />

The testing specimen was subjected to the qualific<strong>at</strong>ion protocol described in section 3 for a normalized<br />

building height h/H=1 (roof level). The non scaled floor motion histories used are shown in Figure 44.<br />

20<br />

Bottom Displacement History<br />

10<br />

Disp (in)<br />

0<br />

-10<br />

Velo (in/sec)<br />

-20<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Bottom Velocity History<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Bottom Acceler<strong>at</strong>ion History<br />

1<br />

0.5<br />

Acc (g)<br />

0<br />

-0.5<br />

-1<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Top Displacement History<br />

20<br />

10<br />

Disp (in)<br />

0<br />

-10<br />

Velo (in/sec)<br />

-20<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Top Velocity History<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Top Acceler<strong>at</strong>ion History<br />

1<br />

0.5<br />

Acc (g)<br />

0<br />

-0.5<br />

Inst Freq (Hz)<br />

-1<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Instant Frequency<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Time (sec)<br />

Figure 47. Testing protocol floor motion histories (scaled 100%)<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 20 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Figure 48a shows a comparison between bottom and top pl<strong>at</strong>form displacement histories while Figure 48b<br />

shows the interstory drift protocol history. Table 3 lists the tests series performed and the corresponding<br />

expected peak pl<strong>at</strong>form motion values.<br />

20<br />

15<br />

Displacement Protocol SH 10%/50yr<br />

Bottom level<br />

Top level<br />

1.5<br />

1<br />

Interstory Drift History<br />

10<br />

Displacement (in)<br />

5<br />

0<br />

-5<br />

-10<br />

Interstory Drift (in)<br />

0.5<br />

0<br />

-0.5<br />

-15<br />

h<br />

β<br />

h<br />

xp⎜ ⎛ t, f () t cos( () t ) w()<br />

t FRSFactor<br />

H<br />

⎟ ⎞ = α ϕ<br />

⎛ ⎜ ⎞<br />

H<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

-20<br />

0 5 10 15 20 25 30 35 40 45<br />

Time (sec)<br />

-1<br />

⎛t−t d ⎞<br />

⎛ h ⎞<br />

−⎜ ⎟ h<br />

⎝ σ ⎠<br />

⎛ ⎞<br />

Δ⎜t, hNCSe cos( () t ) w()<br />

t<br />

H<br />

⎟=<br />

δ⎜ ϕ<br />

H<br />

⎟<br />

⎝ ⎠ ⎝ ⎠<br />

-1.5<br />

0 5 10 15 20 25 30 35 40 45<br />

Time (sec)<br />

Figure 48. 100% Testing Protocol Roof Level: (a) Comparison floor displacements histories; and<br />

(b) Interstory drift protocol history.<br />

Table 3. List of tests performed and envelope of peak floor motion. Protocol histories.<br />

Test<br />

D<strong>at</strong>e Scaling Peak Displacements Peak Interstory Drift Peak Velocities Peak Acceler<strong>at</strong>ions<br />

Test Factor D Max Bot (in) D Max Top (in) d Max (in) δ Max (%) V Max Bot (in/s) V Max Top (in/s) A Max Bot (g) A Max Top (g)<br />

1 09-oct 10% 1,63 1,76 0,13 0,09% 3,1 3,3 0,07 0,08<br />

2 10-oct 25% 4,08 4,4 0,33 0,22% 7,6 8,2 0,18 0,19<br />

3 10-oct 50% 8,15 8,80 0,66 0,43% 15,3 16,3 0,37 0,39<br />

4 12-oct 100% 16,3 17,6 1,31 0,87% 30,5 32,6 0,73 0,77<br />

5 12-oct 150% 24,5 26,4 1,97 1,30% 45,8 48,9 1,10 1,16<br />

In Table 3, the 100% scaled protocol history is associ<strong>at</strong>ed to a seismic hazard (SH) with a probability of<br />

exceedence (PE) of 10% in 50 years (design earthquake level), while the 150% scaled protocol histories<br />

impose demands associ<strong>at</strong>ed to an earthquake with a PF of 2% in 50 years (maximum considered<br />

earthquake).<br />

4.2. Simul<strong>at</strong>ed building floor motions<br />

In order to valid<strong>at</strong>e the suitability of the testing protocol to impose earthquake comp<strong>at</strong>ible damage levels,<br />

the specimen was subjected to the floor motions obtained, for the same SH levels, from the simul<strong>at</strong>ed<br />

response of an existing four story steel framed medical facility loc<strong>at</strong>ed in the San Fernando Valley,<br />

California (Wanitkorkul and Fili<strong>at</strong>rault 2005).<br />

Figure 49 shows the testing histories for the simul<strong>at</strong>ed building response for a SH with a PE of 10% in 50<br />

years. Figure 49a illustr<strong>at</strong>es the floor displacement histories while Figure 49b shows the interstory drift<br />

history. Figure 49c and Figure 49d show the floor velocity and acceler<strong>at</strong>ion histories, respectively. Figure<br />

49e presents a comparison of the Fourier transforms (FFT’s) for the simul<strong>at</strong>ed building floor motions and<br />

for the testing protocol (100%). Figure 49f shows a comparison of the floor response spectra (FRS’s) for<br />

the simul<strong>at</strong>ed building floor motions and for the testing protocol (100%). Figure 49g and Figure 49h show<br />

2<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 21 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

comparisons of the number of “Rainflow” cycles induced and imposed on acceler<strong>at</strong>ion and displacement<br />

sensitive nonstructural components, respectively.<br />

10<br />

8<br />

6<br />

Floor Displacement Histories for SH with PE 10%/50yr<br />

Bottom<br />

Top<br />

1.5<br />

1<br />

Interstory Drift History for SH with PE 10%/50yr<br />

Floor Displacement (in)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

Interstory Drift (in)<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-10<br />

0 5 10 15 20 25<br />

Time (sec)<br />

60<br />

40<br />

(a)<br />

Floor Velocity Histories for SH with PE 10%/50yr<br />

Bottom<br />

Top<br />

-1.5<br />

0 5 10 15 20 25<br />

Time (sec)<br />

1.5<br />

1<br />

(b)<br />

Floor Acceler<strong>at</strong>ion Histories for SH with PE 10%/50yr<br />

Bottom<br />

Top<br />

Floor Velocity (in/sec)<br />

20<br />

0<br />

-20<br />

Floor Acceler<strong>at</strong>ion (g)<br />

0.5<br />

0<br />

-0.5<br />

-40<br />

-1<br />

FFT<br />

FFT<br />

-60<br />

0 5 10 15 20 25<br />

Time (sec)<br />

2<br />

1<br />

(c)<br />

3 x 105 Comparison FFT UB-NCS Top Level. SH with PE 10%/50yr<br />

Protocol<br />

Hospital FM<br />

0<br />

0 1 2 3 4 5 6<br />

Frequency (Hz)<br />

3 x 105 Comparison FFT UB-NCS Bottom Level. SH with PE 10%/50yr<br />

2<br />

1<br />

Protocol<br />

Hospital FM<br />

0<br />

0 1 2 3 4 5 6<br />

Frequency (Hz)<br />

(e)<br />

FRS (g)<br />

FRS (g)<br />

-1.5<br />

0 5 10 15 20 25<br />

Time (sec)<br />

8<br />

6<br />

4<br />

2<br />

(d)<br />

Comparison FRS UB-NCS Top Level. SH with PE 10%/50yr<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency (Hz)<br />

Comparison FRS UB-NCS Bottom Level. SH with PE 10%/50yr<br />

8<br />

Protocol<br />

6<br />

Hospital FM<br />

4<br />

2<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency (Hz)<br />

(f)<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 22 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

N 10<br />

N o Cycles with A>0.1A Max<br />

Induced on Acc Sensitive <strong>Component</strong>s. SH 10%/50yr<br />

80<br />

60<br />

40<br />

20<br />

0<br />

30<br />

Protocol<br />

Bottom Hospital FM<br />

Top Hospital FM<br />

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency Secondary System (Hz)<br />

N o Cycles with A>0.5A Max<br />

Induced on Acc Sensitive <strong>Component</strong>s. SH 10%/50yr<br />

40<br />

N λ<br />

60<br />

50<br />

40<br />

30<br />

20<br />

N o Cycles Imposed on Disp Sensitive <strong>Component</strong>s. SH 10%/50yr<br />

Protocol<br />

Hospital FM<br />

N 50<br />

20<br />

10<br />

10<br />

0<br />

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency Secondary System (Hz)<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

λ<br />

(g)<br />

(h)<br />

Figure 49. Simul<strong>at</strong>ed building floor motions for an earthquake event with a PE of 10% in 50 yr:<br />

(a) Floor displacement histories; (b) Interstory drift history; (c) Floor velocity histories; (d) Floor<br />

acceler<strong>at</strong>ion histories; (e) Comparison FFT’s; (f) Comparison FRS’s; (g) Comparison of number<br />

of cycles induced on acceler<strong>at</strong>ion sensitive nonstructural components; and (h) Comparison of<br />

number of cycles imposed on displacement sensitive nonstructural components.<br />

Figure 50 shows the testing histories for the simul<strong>at</strong>ed building response for a SH with a PE of 2% in 50<br />

years. Figure 50a illustr<strong>at</strong>es the floor displacement histories while Figure 50b shows the interstory drift<br />

history. Figure 50c and Figure 50d show the floor velocity and acceler<strong>at</strong>ion histories, respectively. Figure<br />

50e presents a comparison of the Fourier transforms (FFT’s) for the simul<strong>at</strong>ed building floor motions and<br />

for the testing protocol (150%). Figure 50f shows a comparison of the floor response spectra (FRS’s) for<br />

the simul<strong>at</strong>ed building floor motions and for the testing protocol (150%). Figure 50g and Figure 50h show<br />

comparisons of the number of “Rainflow” cycles induced and imposed on acceler<strong>at</strong>ion and displacement<br />

sensitive nonstructural components, respectively.<br />

15<br />

10<br />

Floor Displacement Histories for SH with PE 2%/50yr<br />

Bottom<br />

Top<br />

2<br />

1.5<br />

Interstory Drift History for SH with PE 2%/50yr<br />

1<br />

Floor Displacement (in)<br />

5<br />

0<br />

-5<br />

Interstory Drift (in)<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-10<br />

-1.5<br />

-15<br />

0 5 10 15 20 25 30<br />

Time (sec)<br />

(a)<br />

-2<br />

0 5 10 15 20 25 30<br />

Time (sec)<br />

(b)<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 23 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

60<br />

40<br />

Floor Velocity Histories for SH with PE 2%/50yr<br />

Bottom<br />

Top<br />

1.5<br />

1<br />

Floor Acceler<strong>at</strong>ion Histories for SH with PE 2%/50yr<br />

Bottom<br />

Top<br />

Floor Velocity (in/sec)<br />

20<br />

0<br />

-20<br />

Floor Acceler<strong>at</strong>ion (g)<br />

0.5<br />

0<br />

-0.5<br />

-40<br />

-1<br />

FFT<br />

FFT<br />

N 10<br />

-60<br />

0 5 10 15 20 25 30<br />

Time (sec)<br />

3<br />

2<br />

1<br />

(c)<br />

4 x 105 Comparison FFT UB-NCS Top Level. SH with PE 2%/50yr<br />

Protocol<br />

Hospital FM<br />

0<br />

0 1 2 3 4 5 6<br />

Frequency (Hz)<br />

4 x 105 Comparison FFT UB-NCS Bottom Level. SH with PE 2%/50yr<br />

3<br />

2<br />

1<br />

Protocol<br />

Hospital FM<br />

0<br />

0 1 2 3 4 5 6<br />

Frequency (Hz)<br />

(e)<br />

N o Cycles with A>0.1A Max<br />

Induced on Acc Sensitive <strong>Component</strong>s. SH 2%/50yr<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Protocol<br />

Bottom Hospital FM<br />

Top Hospital FM<br />

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency Secondary System (Hz)<br />

N o Cycles with A>0.5A Max<br />

Induced on Acc Sensitive <strong>Component</strong>s. SH 2%/50yr<br />

40<br />

30<br />

FRS (g)<br />

FRS (g)<br />

N λ<br />

-1.5<br />

0 5 10 15 20 25 30<br />

Time (sec)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

(d)<br />

Comparison FRS UB-NCS Top Level. SH with PE 2%/50yr<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency (Hz)<br />

Comparison FRS UB-NCS Bottom Level. SH with PE 2%/50yr<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Protocol<br />

Hospital FM<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency (Hz)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

(f)<br />

N o Cycles Imposed on Disp Sensitive <strong>Component</strong>s. SH 2%/50yr<br />

Protocol<br />

Hospital FM<br />

N 50<br />

20<br />

10<br />

10<br />

0<br />

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency Secondary System (Hz)<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

λ<br />

(g)<br />

(h)<br />

Figure 50. Simul<strong>at</strong>ed building floor motions for a SH with a PE of 2% in 50 yr: (a)<br />

Displacements; (b) Interstory drift; (c) Velocities; (d) Acceler<strong>at</strong>ions; (e) Comparison FFT’s; (f)<br />

Comparison FRS’s; (g) Comparison number of cycles induced on acceler<strong>at</strong>ion sensitive comp.;<br />

and (h) Comparison of number of cycles imposed on displacement sensitive components.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 24 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Table 4 summarizes the peak demand parameters expected during testing<br />

Table 4. List of additional tests performed and envelope of peak floor motion.<br />

Simul<strong>at</strong>ed building floor motions.<br />

Test<br />

Test<br />

Scaling Peak Displacements Peak Interstory Drift Peak Velocities Peak Acceler<strong>at</strong>ions<br />

Description Factor D Max Bot (in) D Max Top (in) d Max (in) δ Max (%) V Max Bot (in/s) V Max Top (in/s) A Max Bot (g) A Max Top (g)<br />

6 Floor Motion PE 10%/50yr 50% 4,45 4,83 0,53 0,35% 20,5 25,5 0,35 0,53<br />

7 Floor Motion PE 10%/50yr 100% 8,90 9,66 1,05 0,70% 41,0 50,9 0,69 1,06<br />

8 Floor Motion PE 2%/50yr 50% 5,55 5,70 0,84 0,55% 22,2 27,4 0,39 0,72<br />

9 Floor Motion PE 2%/50yr 100% 11,1 11,4 1,67 1,11% 44,4 54,8 0,77 1,44<br />

4.3. Quasi-st<strong>at</strong>ic tests<br />

In order to assess the seismic performance of displacement sensitive components <strong>at</strong> larger drift levels, the<br />

interstory drift protocol history shown in Figure 48b was applied quasi-st<strong>at</strong>ically. Figure 51 shows the<br />

quasi-st<strong>at</strong>ic testing protocol.<br />

1.5<br />

Interstory Drift Protocol Roof Level 100%<br />

1<br />

Interstory Drift (in)<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

0 50 100 150 200 250 300 350 400 450<br />

Time (sec)<br />

Figure 51. Quasi-st<strong>at</strong>ic interstory drift protocol (100%).<br />

The protocol shown in Figure 51 was applied by keeping in rest the bottom UB-NCS level actu<strong>at</strong>ors and<br />

imposing the protocol through the motion of the top UB-NCS level actu<strong>at</strong>ors. Table 5 summarizes the<br />

peak demand parameters expected during testing.<br />

Table 5. List of additional tests performed and envelope of peak floor motion. Quasi-st<strong>at</strong>ic tests.<br />

Test<br />

Test<br />

Scaling Peak Displacements Peak Interstory Drift Peak Velocities Peak Acceler<strong>at</strong>ions<br />

Description Factor D Max Bot (in) D Max Top (in) d Max (in) δ Max (%) V Max Bot (in/s) V Max Top (in/s) A Max Bot (g) A Max Top (g)<br />

10 Drift Protocol 200% 2,62 1,74%<br />

11 Drift Protocol 250% 3,28 2,17%<br />

12 Drift Protocol 300% 3,93 2,60%<br />

13 Drift Protocol 350% 4,59 3,04%<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 25 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

4.4 Instrument<strong>at</strong>ion setup<br />

Extensive instrument<strong>at</strong>ion was considered for the pl<strong>at</strong>form, monitors and partition walls, as shown in<br />

Figure 52 through Figure 54 and Table 6.<br />

NEWVTE<br />

NEWVTEi<br />

NEWVTW<br />

NEWVTWi<br />

NWWVTE<br />

NWWVTEi<br />

NWWVTW<br />

NWWVTWi<br />

NEWLT<br />

NWWLT<br />

NEWD2<br />

NWWD2<br />

NEWD1<br />

NWWD1<br />

NEWLB<br />

NWWLB<br />

NEWVBE<br />

NEWVBEi<br />

SWWVTW<br />

SWWVTWi<br />

Exterior View North Wall<br />

NEWVBW<br />

NEWVBWi<br />

NWWVBE<br />

NWWVBEi<br />

NWWVBW<br />

NWWVBWi<br />

SEWVTE<br />

SEWVTEi<br />

SCWD1<br />

SCWLT<br />

SWWD1<br />

SCWD2<br />

SEWD1<br />

SWWD2<br />

SEWD2<br />

SWWLB<br />

SEWLB<br />

SWWVBW<br />

SWWVBWi<br />

SWWVBE<br />

SWWVBEi<br />

SEWVBW<br />

SEWVBWi<br />

Exterior View South Wall<br />

Figure 52. Instrument<strong>at</strong>ion partition walls.<br />

SEWVBE<br />

SEWVBEi<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 26 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

ACBLSE<br />

(ACTLSE)<br />

ACBTSE<br />

(ACTTSE)<br />

ACBTSW<br />

(ACTTSW)<br />

Reaction Wall<br />

ACBV<br />

(ACTV)<br />

ACBLNE<br />

(ACTLNE)<br />

Accelerometers in Pl<strong>at</strong>form<br />

Figure 53. Instrument<strong>at</strong>ion pl<strong>at</strong>form.<br />

MXAVb<br />

MXANSb<br />

MXAEWb<br />

MXAVCh<br />

MXANSCh<br />

MXAEWCh<br />

Accelerometers in Monitor X<br />

Scale: -<br />

Figure 54. Instrument<strong>at</strong>ion monitors.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 27 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Table 6. Instrument<strong>at</strong>ion list<br />

Channel ID Instrument<br />

Response Min Oper<strong>at</strong>ion<br />

quantity Limits<br />

Orient<strong>at</strong>ion<br />

Loc<strong>at</strong>ion and comment<br />

D<strong>at</strong>a acquired from Actu<strong>at</strong>ors<br />

1 Time Time<br />

2 ComActA Actu<strong>at</strong>or Disp ±40in Actu<strong>at</strong>or A command<br />

3 ComActB Actu<strong>at</strong>or Disp ±40in Actu<strong>at</strong>or B command<br />

4 ComActC Actu<strong>at</strong>or Disp ±40in Actu<strong>at</strong>or C command<br />

5 ComActD Actu<strong>at</strong>or Disp ±40in Actu<strong>at</strong>or D command<br />

6 DispActA Actu<strong>at</strong>or Disp ±40in Actu<strong>at</strong>or A displacement<br />

7 DispActB Actu<strong>at</strong>or Disp ±40in Actu<strong>at</strong>or B displacement<br />

8 DispActC Actu<strong>at</strong>or Disp ±40in Actu<strong>at</strong>or C displacement<br />

9 DispActD Actu<strong>at</strong>or Disp ±40in Actu<strong>at</strong>or D displacement<br />

10 ForceA Actu<strong>at</strong>or Force ±50kip Actu<strong>at</strong>or A<br />

11 ForceB Actu<strong>at</strong>or Force ±50kip Actu<strong>at</strong>or B<br />

12 ForceC Actu<strong>at</strong>or Force ±50kip Actu<strong>at</strong>or C<br />

13 ForceD Actu<strong>at</strong>or Force ±50kip Actu<strong>at</strong>or D<br />

Accelerometers in Pl<strong>at</strong>forms<br />

14 ACBLNE Accelerometer Acceler<strong>at</strong>ion ±10g EW Bottom Pl<strong>at</strong>form<br />

15 ACBLSE Accelerometer Acceler<strong>at</strong>ion ±10g EW Bottom Pl<strong>at</strong>form<br />

16 ACBTSW Accelerometer Acceler<strong>at</strong>ion ±10g NS Bottom Pl<strong>at</strong>form<br />

17 ACBTSE Accelerometer Acceler<strong>at</strong>ion ±10g NS Bottom Pl<strong>at</strong>form<br />

18 ACBV Accelerometer Acceler<strong>at</strong>ion ±10g V Bottom Pl<strong>at</strong>form<br />

19 ACTLNE Accelerometer Acceler<strong>at</strong>ion ±10g EW Top Pl<strong>at</strong>form<br />

20 ACTLSE Accelerometer Acceler<strong>at</strong>ion ±10g EW Top Pl<strong>at</strong>form<br />

21 ACTTSW Accelerometer Acceler<strong>at</strong>ion ±10g NS Top Pl<strong>at</strong>form<br />

22 ACTTSE Accelerometer Acceler<strong>at</strong>ion ±10g NS Top Pl<strong>at</strong>form<br />

23 ACTV Accelerometer Acceler<strong>at</strong>ion ±10g V Top Pl<strong>at</strong>form<br />

Instrument<strong>at</strong>ion North East Wall<br />

24 NEWD1 String Pot Displacement ±6 in Diagonal Diagonal north east wall<br />

25 NEWD2 String Pot Displacement ±6 in Diagonal Diagonal north east wall<br />

26 NEWVTE Potentiometer Disp uplift ±1 in V North east wall top east end (stud to concrete)<br />

27 NEWVTEi Potentiometer Disp uplift ±1 in V North east wall top east end (stud to track)<br />

28 NEWVTW Potentiometer Disp uplift ±1 in V North east wall top west end (stud to concrete)<br />

29 NEWVTWi Potentiometer Disp uplift ±1 in V North east wall top west end (stud to track)<br />

30 NEWVBE Potentiometer Disp uplift ±1 in V North east wall bottom east end (stud to concrete)<br />

31 NEWVBEi Potentiometer Disp uplift ±1 in V North east wall bottom east end (stud to track)<br />

32 NEWVBW Potentiometer Disp uplift ±1 in V North east wall bottom west end (stud to concrete)<br />

33 NEWVBWi Potentiometer Disp uplift ±1 in V North east wall bottom west end (stud to track)<br />

34 NEWLT String Pot Displacement ±6 in EW North east wall rel<strong>at</strong>ive motion top track<br />

35 NEWLB String Pot Displacement ±6 in EW North east wall rel<strong>at</strong>ive motion bottom track<br />

Instrument<strong>at</strong>ion North West Wall<br />

36 NWWD1 String Pot Displacement ±6 in Diagonal Diagonal north west wall<br />

37 NWWD2 String Pot Displacement ±6 in Diagonal Diagonal north west wall<br />

38 NWWVTE Potentiometer Disp uplift ±1 in V North west wall top east end (stud to concrete)<br />

39 NWWVTEi Potentiometer Disp uplift ±1 in V North west wall top east end (stud to track)<br />

40 NWWVTW Potentiometer Disp uplift ±1 in V North west wall top west end (stud to concrete)<br />

41 NWWVTWi Potentiometer Disp uplift ±1 in V North west wall top west end (stud to track)<br />

42 NWWVBE Potentiometer Disp uplift ±1 in V North west wall bottom east end (stud to concrete)<br />

43 NWWVBEi Potentiometer Disp uplift ±1 in V North west wall bottom east end (stud to track)<br />

44 NWWVBW Potentiometer Disp uplift ±1 in V North west wall bottom west end (stud to concrete)<br />

45 NWWVBWi Potentiometer Disp uplift ±1 in V North west wall bottom west end (stud to track)<br />

46 NWWLT String Pot Displacement ±6 in EW North west wall rel<strong>at</strong>ive motion top track<br />

47 NWWLB String Pot Displacement ±6 in EW North west wall rel<strong>at</strong>ive motion bottom track<br />

Instrument<strong>at</strong>ion South West Wall<br />

48 SWWD1 String Pot Displacement ±6 in Diagonal Diagonal south west wall<br />

49 SWWD2 String Pot Displacement ±6 in Diagonal Diagonal south west wall<br />

50 SWWVTW Potentiometer Disp uplift ±1 in V South west wall top west end (stud to concrete)<br />

51 SWWVTWi Potentiometer Disp uplift ±1 in V South west wall top west end (stud to track)<br />

52 SWWVBW Potentiometer Disp uplift ±1 in V South west wall bottom west end (stud to concrete)<br />

53 SWWVBWi Potentiometer Disp uplift ±1 in V South west wall bottom west end (stud to track)<br />

54 SWWVBE Potentiometer Disp uplift ±1 in V South west wall bottom east end (stud to concrete)<br />

55 SWWVBEi Potentiometer Disp uplift ±1 in V South west wall bottom east end (stud to track)<br />

56 SWWLB String Pot Displacement ±6 in EW South west wall rel<strong>at</strong>ive motion bottom track<br />

Instrument<strong>at</strong>ion South East Wall<br />

57 SEWD1 String Pot Displacement ±6 in Diagonal Diagonal south east wall<br />

58 SEWD2 String Pot Displacement ±6 in Diagonal Diagonal south east wall<br />

59 SEWVTE Potentiometer Disp uplift ±1 in V South east wall top east end (stud to concrete)<br />

60 SEWVTEi Potentiometer Disp uplift ±1 in V South east wall top east end (stud to track)<br />

61 SEWVBW Potentiometer Disp uplift ±1 in V South east wall bottom west end (stud to concrete)<br />

62 SEWVBWi Potentiometer Disp uplift ±1 in V South east wall bottom west end (stud to track)<br />

63 SEWVBE Potentiometer Disp uplift ±1 in V South east wall bottom east end (stud to concrete)<br />

64 SEWVBEi Potentiometer Disp uplift ±1 in V South east wall bottom east end (stud to track)<br />

65 SEWLB String Pot Displacement ±6 in EW South east wall rel<strong>at</strong>ive motion bottom track<br />

Instrument<strong>at</strong>ion South Central Wall<br />

66 SCWD1 String Pot Displacement ±6 in Diagonal Diagonal south central wall<br />

67 SCWD2 String Pot Displacement ±6 in Diagonal Diagonal south central wall<br />

68 SCWLT String Pot Displacement ±6 in EW Sputh central wall rel<strong>at</strong>ive motion top track<br />

Instrument<strong>at</strong>ion Monitor X<br />

69 MXAVCh Accelerometer Acceler<strong>at</strong>ion ±10g V Chanel instrument<strong>at</strong>ion<br />

70 MXANSCh Accelerometer Acceler<strong>at</strong>ion ±10g NS Chanel instrument<strong>at</strong>ion<br />

71 MXAEWCh Accelerometer Acceler<strong>at</strong>ion ±10g EW Chanel instrument<strong>at</strong>ion<br />

72 MXAVb Accelerometer Acceler<strong>at</strong>ion ±10g V Bottom equipment instrument<strong>at</strong>ion<br />

73 MXANSb Accelerometer Acceler<strong>at</strong>ion ±10g NS Bottom equipment instrument<strong>at</strong>ion<br />

74 MXAEWb Accelerometer Acceler<strong>at</strong>ion ±10g EW Bottom equipment instrument<strong>at</strong>ion<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 28 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

5. Preliminary results<br />

5.1 UB-NCS performance evalu<strong>at</strong>ion and basic results<br />

This section presents preliminary results and observ<strong>at</strong>ions obtained from the tests performed using the<br />

testing protocol scaled to 100% (design earthquake level). In the figures it can be observed the fidelity of<br />

the testing equipment to impose the desired floor motions.<br />

20<br />

15<br />

Desired Versus Observed Displacement <strong>at</strong> Bottom Level<br />

Observed<br />

Desired<br />

20<br />

15<br />

Desired Versus Observed Displacement <strong>at</strong> Top Level<br />

Observed<br />

Desired<br />

10<br />

10<br />

Displacement (in)<br />

5<br />

0<br />

-5<br />

Displacement (in)<br />

5<br />

0<br />

-5<br />

-10<br />

-10<br />

-15<br />

-15<br />

-20<br />

0 5 10 15 20 25 30 35 40 45<br />

Time (sec)<br />

Figure 55. Comparison desired and observed floor<br />

displacements for bottom UB-NCS level.<br />

1.5<br />

1<br />

0.5<br />

Comparison Desired and Observed Interstory Drift<br />

Desired<br />

Observed<br />

-20<br />

0 5 10 15 20 25 30 35 40 45<br />

Time (sec)<br />

Figure 56. Comparison desired and observed floor<br />

displacements for top UB-NCS level.<br />

Displacement (in)<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

Rel<strong>at</strong>ive Displacement Actu<strong>at</strong>ors Top Level<br />

Drift (in)<br />

0<br />

-0.2<br />

0 5 10 15 20 25 30 35 40 45<br />

Time (sec)<br />

Rel<strong>at</strong>ive Displacement Actu<strong>at</strong>ors Bottom Level<br />

0.2<br />

-0.5<br />

-1<br />

-1.5<br />

0 5 10 15 20 25 30 35 40 45<br />

Time (sec)<br />

Figure 57. Comparison desired and observed<br />

interstory drift.<br />

Displacement (in)<br />

0.1<br />

0<br />

-0.1<br />

-0.2<br />

0 5 10 15 20 25 30 35 40 45<br />

Time (sec)<br />

Figure 58. Rel<strong>at</strong>ive displacement between<br />

actu<strong>at</strong>ors loc<strong>at</strong>ed <strong>at</strong> a same pl<strong>at</strong>form level.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 29 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

Acceler<strong>at</strong>ion (g)<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

Acceler<strong>at</strong>ion Histories Bottom Level<br />

-1.5<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Time (sec)<br />

Acceler<strong>at</strong>ion Histories Top Level<br />

2<br />

Force (kips)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

Forces in Actu<strong>at</strong>ors<br />

Actu<strong>at</strong>or A<br />

Actu<strong>at</strong>or B<br />

Actu<strong>at</strong>or C<br />

Actu<strong>at</strong>or D<br />

Acceler<strong>at</strong>ion (g)<br />

1<br />

0<br />

-1<br />

-10<br />

-15<br />

-2<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Time (sec)<br />

Figure 59. Comparison desired and observed floor<br />

acceler<strong>at</strong>ions.<br />

FRS (g)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Comparison DRS and ORS Bottom Level<br />

Desired<br />

Observed<br />

Observed<br />

Limit<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency (Hz)<br />

Figure 61. Comparison desired (DRS) and<br />

observed (ORS) floor response spectra for bottom<br />

UB-NCS level<br />

-20<br />

0 5 10 15 20 25 30 35 40 45<br />

Time (sec)<br />

Figure 60. Comparison force histories in actu<strong>at</strong>ors.<br />

FRS (g)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Comparison DRS and ORS Top Level<br />

Desired<br />

Observed<br />

Observed<br />

Limit<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Frequency (Hz)<br />

Figure 62. Comparison desired (DRS) and<br />

observed (ORS) floor response spectra for top<br />

UB-NCS level<br />

5.2 Partition walls performance evalu<strong>at</strong>ion<br />

Figure 63 shows the ensemble of hysteresis loops for the tests performed using the proposed testing<br />

protocol and the quasi-st<strong>at</strong>ic interstory drift protocol. The forces in partition walls shown in the hysteresis<br />

loops in Figure 63 were calcul<strong>at</strong>ed by subtracting the inertial forces from the forces observed in the<br />

actu<strong>at</strong>ors (Figure 60). The inertial forces were estim<strong>at</strong>ed from the recorded acceler<strong>at</strong>ion histories and the<br />

estim<strong>at</strong>ed mass of the pl<strong>at</strong>form and specimen. The time lag existing between recorded acceler<strong>at</strong>ions and<br />

actu<strong>at</strong>or forces <strong>at</strong> high frequencies makes inaccur<strong>at</strong>e the comput<strong>at</strong>ion of forces in the walls <strong>at</strong> high testing<br />

frequencies. However, the impact of this time lag in the overall shape of the hysteresis loop is minimum<br />

because the drift imposed <strong>at</strong> those frequencies is close to zero.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 30 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

30<br />

Ensemble Histeresis Loops Emergency Room<br />

20<br />

10<br />

Force (Kips)<br />

0<br />

10% Protocol<br />

25% Protocol<br />

-10<br />

50% Protocol<br />

100% Protocol<br />

150% Protocol<br />

-20<br />

200% Protocol (QS)<br />

250% Protocol (QS)<br />

300% Protocol (QS)<br />

350% Protocol (QS)<br />

-30<br />

-3 -2 -1 0 1 2 3<br />

Interstory Drift (%)<br />

Figure 63. Ensemble hysteresis loops. Tests: 1-5, 10-13.<br />

5.3 Test observ<strong>at</strong>ions<br />

During the tests performed considering the testing protocol scaled to 25 and 50% only minor damage was<br />

observed. Some hairlines cracks along corner beads and paper joint tape, rising of screws along top and<br />

bottom tracks and an incipient diagonal crack <strong>at</strong> the door fenestr<strong>at</strong>ion were observed.<br />

During the test for 100% of the testing protocol (design earthquake level), <strong>at</strong> which a peak floor<br />

acceler<strong>at</strong>ion of 0.77g and a peak interstory drift of 0.87% were reached, more extensive damage was<br />

observed. Extensive cracks were observed along corner beads and joints between gypsum panels. The<br />

number of raised screws increased. Two monitors <strong>at</strong>tached to the partition walls perpendicular to the<br />

direction of loading broke off their mounting systems and the monitor shown in Figure 35 moved out of<br />

its supporting system’s retention clip (without falling), the large light in the surgical lamp shown in<br />

Figure 5 broke off its support after exhibiting excessive displacement and hitting the UB-NCS columns<br />

several times. One of the drop-in devices <strong>at</strong>taching one of the medical gas piping hangers to the top<br />

concrete slab was pulled out from the concrete. The gurney exhibited excessive motion after deactiv<strong>at</strong>ion<br />

of the breaking system. The crash test dummy was thrown off the gurney. Severe impact was observed<br />

between the video cabinet and the p<strong>at</strong>ient monitor shown in Figure 34.<br />

During the test for 150% of the testing protocol (maximum considered earthquake level), an even more<br />

extensive level of damage was observed. Extensive residual crack openings (~1/8-1/4”) were observed<br />

along corner beads and joints between gypsum panels. Evidences of rocking of screws <strong>at</strong>taching gypsum<br />

panels to the steel stud frame were observed. The crack in the corner of the door opening propag<strong>at</strong>ed. The<br />

monitor shown in Figure 35 fell down <strong>at</strong> this intensity (it was repositioned following the 100% level test).<br />

Noticeable residual deform<strong>at</strong>ions were observed in the medical gas pipes. Once again, the gurney<br />

exhibited excessive motion after deactiv<strong>at</strong>ion of the breaking system and the dummy was thrown off the<br />

gurney and almost out of the room. All medical supplies on the medical cart shown in Figure 34 fell<br />

down.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 31 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

No damage was observed in the sprinkler system during the test series. Comparable damage in<br />

acceler<strong>at</strong>ion sensitive components was observed following the tests performed using the simul<strong>at</strong>ed floor<br />

motions for the aforementioned medical facility. Damage in displacement sensitive components could not<br />

be compared due to the preexisting damage in the specimen.<br />

6. Conclusions<br />

An innov<strong>at</strong>ive testing appar<strong>at</strong>us and testing protocol have been developed for real-time experimental<br />

seismic qualific<strong>at</strong>ion and fragility assessment of full-scale distributed nonstructural components. The<br />

testing frame provides the unique labor<strong>at</strong>ory capabilities to replic<strong>at</strong>e full-scale floor motions expected <strong>at</strong><br />

the upper levels of multistory buildings, allowing for the simultaneous testing of displacement and/or<br />

acceler<strong>at</strong>ion sensitive building nonstructural components and systems and equipment. Further, the seismic<br />

interaction between components can be evalu<strong>at</strong>ed. The proposed testing protocol can be expressed in<br />

closed-form for consistent gener<strong>at</strong>ion of motions comp<strong>at</strong>ible with both a target design basis floor<br />

spectrum for acceler<strong>at</strong>ion sensitive systems and a generalized interstory drift for displacement sensitive<br />

systems as expected for a specified normalized building height. The testing protocol has been calibr<strong>at</strong>ed<br />

to induce/impose on acceler<strong>at</strong>ion/displacement sensitive nonstructural systems a number of rainflow<br />

cycles comp<strong>at</strong>ible with the number of rainflow cycles induced/imposed by the floor motions recorded in<br />

buildings during real earthquakes.<br />

A full scale test of a hospital emergency room with architectural finishes and medical equipment was used<br />

to demonstr<strong>at</strong>e the capabilities of the UB-NCS and the suitability of the proposed testing protocol for<br />

assessing the seismic performance of combined displacement-acceler<strong>at</strong>ion nonstructural systems. The<br />

experiments successfully verified the testing capabilities of the UB-NCS to reproduce, in a controlled<br />

environment, the full-scale floor motions gener<strong>at</strong>ing damage levels comp<strong>at</strong>ible with the damage levels<br />

observed in multistory building during real seismic events.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 32 of 33


<strong>University</strong> <strong>at</strong> <strong>Buffalo</strong><br />

Department of Civil, Structural and Environmental Engineering<br />

By: Andre Fili<strong>at</strong>rault, Gilberto Mosqueda, Andrei Reinhorn,<br />

Mark Pitman, Scot Weinreber & Rodrigo Retamales<br />

e-mail: rr62@buffalo.edu<br />

References (To be Upd<strong>at</strong>ed!)<br />

1. Retamales, R., Mosqueda, G., Fili<strong>at</strong>rault, A., Reinhorn, A.M. Experimental study on the seismic<br />

behavior of nonstructural components subjected to full-scale floor motions. in Proceedings 8th<br />

US N<strong>at</strong>ional conference on earthquake engineering. April 18-21, San Francisco, California.<br />

2006.<br />

2. Mosqueda, G., Retamales, R., Fili<strong>at</strong>rault, A., Reinhorn, A. Seismic behavior of nonstructural<br />

partition walls subjected to full scale floor motions. in 2005 ANCER Annual meeting. Asian-<br />

Pacific Network of Centers for Earthquake Engineering Research. 2005. Jeju, Korea.<br />

3. Restrepo, J.I., Lang, A.F., Interim report to PEER advisory board. Year 7: Performance<br />

evalu<strong>at</strong>ion of gypsum wallboard partitions. Results of test 1. 2005, Department of Structural<br />

Engineering. <strong>University</strong> of California, San Diego: San Diego.<br />

4. Lang, A.F., Restrepo, J.I., Seismic performance evalu<strong>at</strong>ion of gypsum wallboard partitions.<br />

Proceedings 8th US N<strong>at</strong>ional conference on earthquake engineering. April 18-21, San Francisco,<br />

California, 2006.<br />

5. Krawinkler, H., Parisi, F., Ibarra, L., Ayoub, A., Medina, R., CUREE-Caltech Woodframe<br />

Project Public<strong>at</strong>ion W-02: Development of a testing protocol for wood frame structures. 2000,<br />

Consortium of Universities for Research in Earthquake Engineering.<br />

6. Keller, D., Mosqueda, G. <strong>Nonstructural</strong> <strong>Component</strong> <strong>Simul<strong>at</strong>or</strong>: Specimen Design and<br />

Preliminary Study of Damage Mechanisms. in 2005 Earthquake Engineering Symposium for<br />

Young Researchers. 2005. Peppermill Hotel - Reno, Nevada.<br />

7. Myrtle, R.C., Masri, S.F., Nigbor, R.L., Caffrey, J.P., Classific<strong>at</strong>ion and Prioritiz<strong>at</strong>ion of<br />

Essential Systems in Hospitals under Extreme Events. Earthquake Spectra, 2005. 21(3): p. 779-<br />

802.<br />

8. SSMA, Product Technical Inform<strong>at</strong>ion. ICBO ER-4943P. 2001, Steel Stud Manufacturers<br />

Associ<strong>at</strong>ion.<br />

UB-NCS Preliminary Results ER Tests - 2/4/2008 Page 33 of 33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!