hybrid sliding-rocking post-tensioned segmental bridges in seismic ...

hybrid sliding-rocking post-tensioned segmental bridges in seismic ... hybrid sliding-rocking post-tensioned segmental bridges in seismic ...

mceer.buffalo.edu
from mceer.buffalo.edu More from this publisher
09.06.2014 Views

HYBRID SLIDING-ROCKING POST-TENSIONED SEGMENTAL BRIDGES IN SEISMIC REGIONS Petros Sideris, Ph.D. Department of Civil, Structural, and Environmental Engineering University at Buffalo, The State University of New York September 17, 2012 Major Funding Agency: RESEARCH GROUP • Petros Sideris Post-doctoral Research Fellow and Adjunct Lecturer, Dept. of CSEE at UB • Amjad J. Aref Professor, Dept of CSEE at UB • Andre Filiatrault Professor, Dept of CSEE at UB This presentation is based on: Sideris, P. (2012). "Seismic Analysis and Design of Precast Concrete Segmental Bridges." Ph.D. Dissertation, State University of New York at Buffalo, Buffalo, NY, U.S.A. P. Sideris, Sept. 17, 2012 OVERVIEW INTRODUCTION DEVELOPMENT OF HSR SEGMENTAL MEMBERS EXPERIMENTAL VALIDATION OF HSR BRIDGES: • Seismic Testing • Quasi-Static Testing NUMERICAL MODELING: • ABAQUS & SAP2000 Modeling COMPONENT TESTING: • Response of Strand-Anchor Systems • Frictional Properties of HSR Joints CONCLUSIONS ACKNOWLEDGEMENTS P. Sideris, Sept. 17, 2012 INTRODUCTION Problem Statement: • Thousands of bridges in the US classified as “structurally deficient or functionally obsolete” Many located in moderate/high seismicity areas Need for immediate replacement/retrofit • Accelerated Bridge Construction (ABC) Techniques: Minimal operation disruption Minor environmental consequences Limited socio-economical impact • Precast Concrete Segmental Bridges: Definition: • Members composed of segments post-tensioned together with steel tendon Construction Process: • Segments constructed in precast plant Transported to site System assembly (Joint preparation & tendon grouting) P. Sideris, Sept. 17, 2012 INTRODUCTION Problem Statement: • Precast Concrete Segmental Bridges: (Otay River Bridge, 2007) (Otay River Bridge, 2007) (C&D Canal Bridge, 1995) INTRODUCTION Precast Concrete Segmental Bridges: • Advantages: Higher construction quality (precast plants) Erection rapidity • Concerns – Technical Challenges: Seismic performance is largely unknown (Joint response under earthquake loading) q g) Research Objectives: • Extension of ABC in high seismicity regions Hybrid Sliding-Rocking (HSR) Post-tensioned Segmental Members HSR Bridges • System Development: Mitigation of seismic loading with low damage • Seismic performance evaluation • Numerical modeling techniques P. Sideris, Sept. 17, 2012 P. Sideris, Sept. 17, 2012 1

HYBRID SLIDING-ROCKING<br />

POST-TENSIONED SEGMENTAL<br />

BRIDGES IN SEISMIC REGIONS<br />

Petros Sideris, Ph.D.<br />

Department of Civil, Structural, and Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

University at Buffalo, The State University of New York<br />

September 17, 2012<br />

Major Fund<strong>in</strong>g Agency:<br />

RESEARCH GROUP<br />

• Petros Sideris<br />

Post-doctoral Research Fellow and Adjunct Lecturer,<br />

Dept. of CSEE at UB<br />

• Amjad J. Aref<br />

Professor, Dept of CSEE at UB<br />

• Andre Filiatrault<br />

Professor, Dept of CSEE at UB<br />

This presentation is based on:<br />

Sideris, P. (2012). "Seismic Analysis and Design of Precast Concrete<br />

Segmental Bridges." Ph.D. Dissertation, State University of New York at<br />

Buffalo, Buffalo, NY, U.S.A.<br />

P. Sideris,<br />

Sept. 17, 2012<br />

OVERVIEW<br />

INTRODUCTION<br />

DEVELOPMENT OF HSR SEGMENTAL MEMBERS<br />

EXPERIMENTAL VALIDATION OF HSR BRIDGES:<br />

• Seismic Test<strong>in</strong>g<br />

• Quasi-Static Test<strong>in</strong>g<br />

NUMERICAL MODELING:<br />

• ABAQUS & SAP2000 Model<strong>in</strong>g<br />

COMPONENT TESTING:<br />

• Response of Strand-Anchor Systems<br />

• Frictional Properties of HSR Jo<strong>in</strong>ts<br />

CONCLUSIONS<br />

ACKNOWLEDGEMENTS<br />

P. Sideris,<br />

Sept. 17, 2012<br />

INTRODUCTION<br />

Problem Statement:<br />

• Thousands of <strong>bridges</strong> <strong>in</strong> the US classified as<br />

“structurally deficient or functionally obsolete”<br />

Many located <strong>in</strong> moderate/high <strong>seismic</strong>ity areas<br />

Need for immediate replacement/retrofit<br />

• Accelerated Bridge Construction (ABC) Techniques:<br />

M<strong>in</strong>imal operation disruption<br />

M<strong>in</strong>or environmental consequences<br />

Limited socio-economical impact<br />

• Precast Concrete Segmental Bridges:<br />

Def<strong>in</strong>ition:<br />

• Members composed of segments <strong>post</strong>-<strong>tensioned</strong> together with<br />

steel tendon<br />

Construction Process:<br />

• Segments constructed <strong>in</strong> precast plant Transported to site <br />

System assembly (Jo<strong>in</strong>t preparation & tendon grout<strong>in</strong>g)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

INTRODUCTION<br />

Problem Statement:<br />

• Precast Concrete Segmental Bridges:<br />

(Otay River Bridge, 2007)<br />

(Otay River Bridge, 2007)<br />

(C&D Canal<br />

Bridge, 1995)<br />

INTRODUCTION<br />

Precast Concrete Segmental Bridges:<br />

• Advantages:<br />

Higher construction quality (precast plants)<br />

Erection rapidity<br />

• Concerns – Technical Challenges:<br />

Seismic performance is largely unknown (Jo<strong>in</strong>t response under<br />

earthquake load<strong>in</strong>g)<br />

q g)<br />

Research Objectives:<br />

• Extension of ABC <strong>in</strong> high <strong>seismic</strong>ity regions<br />

Hybrid Slid<strong>in</strong>g-Rock<strong>in</strong>g (HSR) Post-<strong>tensioned</strong><br />

Segmental Members HSR Bridges<br />

• System Development: Mitigation of <strong>seismic</strong> load<strong>in</strong>g with<br />

low damage<br />

• Seismic performance evaluation<br />

• Numerical model<strong>in</strong>g techniques<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

1


INTRODUCTION<br />

OVERVIEW<br />

DEVELOPMENT OF HSR SEGMENTAL MEMBERS<br />

EXPERIMENTAL VALIDATION OF HSR BRIDGES:<br />

• Seismic Test<strong>in</strong>g<br />

• Quasi-Static Test<strong>in</strong>g<br />

NUMERICAL MODELING:<br />

• ABAQUS & SAP2000 Model<strong>in</strong>g<br />

COMPONENT TESTING:<br />

• Frictional Properties of HSR Jo<strong>in</strong>ts<br />

• Response of Strand-Anchor Systems<br />

CONCLUSIONS & ORIGINAL CONTRIBUTIONS<br />

ACKNOWLEDGEMENTS<br />

P. Sideris,<br />

Sept. 17, 2012<br />

HSR SEGMENTAL MEMBERS<br />

Fundamental Concepts:<br />

• Hybrid Slid<strong>in</strong>g-Rock<strong>in</strong>g<br />

(HSR) Jo<strong>in</strong>ts:<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g<br />

• Internal Unbonded Posttension<strong>in</strong>g<br />

of L<strong>in</strong>ear or<br />

Nonl<strong>in</strong>ear Geometry:<br />

L<strong>in</strong>ear Geometry Straight<br />

tendons, parallel to member axis<br />

Nonl<strong>in</strong>ear Paths Curved tendons<br />

Benchmark System<br />

P 1<br />

P 2<br />

Tendon<br />

HSR<br />

Jo<strong>in</strong>t<br />

Duct<br />

Duct adaptor<br />

Rigid connection<br />

P. Sideris,<br />

Sept. 17, 2012<br />

HSR SEGMENTAL MEMBERS<br />

Response of Benchmark Configuration:<br />

• Slip-dom<strong>in</strong>ant Jo<strong>in</strong>ts:<br />

Slid<strong>in</strong>g until capacity is reached<br />

• Resistance by tendon bear<strong>in</strong>g forces (dowel effect) and friction<br />

• Re-center<strong>in</strong>g only by tendon bear<strong>in</strong>g forces (dowel effect)<br />

• Slid<strong>in</strong>g amplitude controlled by diameter of duct adaptor<br />

• Variation of PT bear<strong>in</strong>g forces controlled by height of duct<br />

adaptor<br />

Tendon restor<strong>in</strong>g force<br />

(Dowel effect)<br />

Rock<strong>in</strong>g, after<br />

Tendon<br />

<strong>slid<strong>in</strong>g</strong> capacity<br />

Top<br />

Segment Duct<br />

is reached<br />

HSR SEGMENTAL MEMBERS<br />

Response of Benchmark Configuration:<br />

• Slip-dom<strong>in</strong>ant Jo<strong>in</strong>ts:<br />

Mechanics of Jo<strong>in</strong>t Slid<strong>in</strong>g:<br />

• Constant PT force and Axial Compression<br />

• Rotations are restra<strong>in</strong>ed<br />

• Lateral cyclic load<strong>in</strong>g is applied<br />

Bottom<br />

Segment<br />

Duct<br />

adaptor<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

HSR SEGMENTAL MEMBERS<br />

Response of Benchmark Configuration:<br />

• Slip-dom<strong>in</strong>ant Jo<strong>in</strong>ts:<br />

Mechanics of Jo<strong>in</strong>t Slid<strong>in</strong>g:<br />

HSR SEGMENTAL MEMBERS<br />

Response of Benchmark Configuration:<br />

• Slip-dom<strong>in</strong>ant Jo<strong>in</strong>ts:<br />

Mechanics of Jo<strong>in</strong>t Slid<strong>in</strong>g:<br />

Tendon Bear<strong>in</strong>g Forces<br />

Jo<strong>in</strong>t Lateral Reaction<br />

Friction + PT<br />

Bear<strong>in</strong>g Forces<br />

Friction<br />

Stiffen<strong>in</strong>g at<br />

Unload<strong>in</strong>g Branches<br />

Ultimate Slid<strong>in</strong>g<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g<br />

Lock<strong>in</strong>g Forces<br />

Force (kips)<br />

50<br />

0<br />

-50<br />

Effect of Duct Diameter<br />

d =0.9<br />

d<br />

d d<br />

=0.75<br />

-0.5 0 0.5<br />

Slid<strong>in</strong>g (<strong>in</strong>)<br />

Force (kips)<br />

50<br />

0<br />

-50<br />

Effect of Duct Adaptor Height<br />

h da<br />

=1.5<br />

h da<br />

=0.75<br />

-0.5 0 0.5<br />

Slid<strong>in</strong>g (<strong>in</strong>)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

2


'<br />

'<br />

c<br />

cm<br />

'<br />

cc cc<br />

HSR SEGMENTAL MEMBERS<br />

Response of Benchmark Configuration:<br />

• Rock<strong>in</strong>g-dom<strong>in</strong>ant Jo<strong>in</strong>ts:<br />

Pure <strong>rock<strong>in</strong>g</strong> response<br />

• Resistance and re-center<strong>in</strong>g by PT tendon axial forces<br />

• Duct adaptors are not required<br />

HSR SEGMENTAL MEMBERS<br />

Response of Benchmark Configuration:<br />

• Rock<strong>in</strong>g-dom<strong>in</strong>ant Jo<strong>in</strong>ts:<br />

Mechanics of Jo<strong>in</strong>t Rock<strong>in</strong>g :<br />

M<br />

Concrete<br />

Proportionality Limit<br />

Conf<strong>in</strong>ed Concrete<br />

Ultimate Stra<strong>in</strong><br />

M<br />

Concrete<br />

Proportionality Limit<br />

Conf<strong>in</strong>ed Concrete<br />

Ultimate Stra<strong>in</strong><br />

Unconf<strong>in</strong>ed Concrete<br />

Ultimate Strength<br />

a f<br />

Top<br />

Segment<br />

Bottom<br />

Segment<br />

Tendon<br />

Duct<br />

Duct<br />

adaptor<br />

Unconf<strong>in</strong>ed Concrete<br />

Ultimate Strength<br />

Decompression<br />

Stress:<br />

<br />

0.5 f c<br />

M<br />

N<br />

'<br />

<br />

<br />

0.5 f c<br />

c<br />

Decompression<br />

y<br />

x<br />

M<br />

ϕ<br />

c<br />

<br />

0.003<br />

0.85 f c<br />

c<br />

β 1 c<br />

Cover neglected<br />

<br />

<br />

c<br />

c<br />

β cc c<br />

ϕ<br />

Stra<strong>in</strong>:<br />

c<br />

N<br />

c<br />

Expla<strong>in</strong><br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

HSR SEGMENTAL MEMBERS<br />

Response of Benchmark Configuration:<br />

• Effects of PT Geometry:<br />

L<strong>in</strong>ear PT Geometry:<br />

Higher restor<strong>in</strong>g forces at<br />

larger <strong>slid<strong>in</strong>g</strong> amplitudes<br />

Nonl<strong>in</strong>ear PT Geometry:<br />

Higher restor<strong>in</strong>g forces even<br />

at smaller <strong>slid<strong>in</strong>g</strong> amplitudes<br />

Thus, PT geometry affects<br />

the jo<strong>in</strong>t mode to be exhibited<br />

Tendon<br />

bear<strong>in</strong>g<br />

forces<br />

P. Sideris,<br />

Sept. 17, 2012<br />

HSR SEGMENTAL MEMBERS<br />

Seismic Performance of HSR Jo<strong>in</strong>ts<br />

• General (both jo<strong>in</strong>t modes):<br />

Control <strong>seismic</strong> forces by modify<strong>in</strong>g jo<strong>in</strong>t stiffness and<br />

strength<br />

• Slide Mode:<br />

High energy dissipation with low damage (Friction)<br />

Moderate self-center<strong>in</strong>g<br />

• Depends on PT system, duct adaptors and frictional properties<br />

at jo<strong>in</strong>t <strong>in</strong>terface<br />

• Rock<strong>in</strong>g Mode:<br />

Low energy dissipation (Concrete crush<strong>in</strong>g or PT yield<strong>in</strong>g)<br />

High self-center<strong>in</strong>g<br />

• Excellent at lower deformations, but reduces as damage<br />

progresses<br />

P. Sideris,<br />

Sept. 17, 2012<br />

HSR SEGMENTAL MEMBERS<br />

HSR Members Types<br />

• HSR-SD members:<br />

Slip-dom<strong>in</strong>ant jo<strong>in</strong>ts and L<strong>in</strong>ear PT geometry<br />

Intended for substructures<br />

• HSR-RD members:<br />

Rock<strong>in</strong>g-dom<strong>in</strong>ant Jo<strong>in</strong>ts and Nonl<strong>in</strong>ear PT Geometry<br />

Intended for superstructures<br />

HSR SEGMENTAL MEMBERS<br />

Seismic Performance of HSR Members<br />

• As dictated by the dom<strong>in</strong>ant jo<strong>in</strong>t response mode<br />

• Also:<br />

HSR-SD members:<br />

• Need for external energy dissipation is alleviated<br />

HSR-SD SD and HSR-RD RD members:<br />

• Control of higher modes (Different mode shapes<br />

activate different jo<strong>in</strong>ts or response modes)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

3


C.M.<br />

INTRODUCTION<br />

OVERVIEW<br />

DEVELOPMENT OF HSR SEGMENTAL MEMBERS<br />

EXPERIMENTAL VALIDATION OF HSR BRIDGES:<br />

• Seismic Test<strong>in</strong>g<br />

• Quasi-Static Test<strong>in</strong>g<br />

NUMERICAL MODELING:<br />

• ABAQUS & SAP2000 Model<strong>in</strong>g<br />

COMPONENT TESTING:<br />

• Response of Strand-Anchor Systems<br />

• Frictional Properties of HSR Jo<strong>in</strong>ts<br />

CONCLUSIONS & ORIGINAL CONTRIBUTIONS<br />

ACKNOWLEDGEMENTS<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

Prototype System (Megally et al., 2002):<br />

• Superstructure:<br />

Five-span s<strong>in</strong>gle-cell box girder bridge<br />

Each span <strong>post</strong>-<strong>tensioned</strong> with harped shaped tendons<br />

• Substructure:<br />

Re<strong>in</strong>forced Concrete – 30 ft highh<br />

(Megally et et all, all, 2002) 2002)<br />

30’<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

Test Specimen:<br />

• S<strong>in</strong>gle-span s<strong>in</strong>gle-cell bridge - Both of its supports<br />

overhang<strong>in</strong>g at equal lengths (25% of span)<br />

• Large-scale model (S L =2.39):<br />

Superstructure:<br />

• HSR-RD RD member<br />

• 8 segments and 12 <strong>in</strong>ternal unbonded PT tendons<br />

Substructure:<br />

• Two s<strong>in</strong>gle-column HSR-SD piers<br />

• 5 segments and 8 <strong>in</strong>ternal unbonded PT tendons per pier<br />

• Cap beam at top end and Foundation block at bottom end<br />

• All components used the same <strong>post</strong>-tension<strong>in</strong>g system<br />

SEISMIC TESTING<br />

Test Specimen:<br />

2'-4 3/8"<br />

2'-0" 7" 1'-3 1/2"<br />

2'-0"<br />

2'-0"<br />

2'-0"<br />

2'-0"<br />

2'-5"<br />

1'-3 7/8"<br />

11'-0 3/8"<br />

3"<br />

1'-6"<br />

8 1/2"<br />

Top anchorage of PT system<br />

Lateral<br />

2'-10 7/8"<br />

Restra<strong>in</strong>er<br />

Cap beam<br />

Duct t& Duct<br />

Adaptor<br />

Duct not used dur<strong>in</strong>g<br />

shake table test<strong>in</strong>g<br />

Pier Segment<br />

Foundation Block<br />

Bottom anchorage<br />

of PT system<br />

5"<br />

2'-1"<br />

2 1/2"<br />

10" 10"<br />

2'-1"<br />

2 1/2"<br />

P. Sideris,<br />

Sept. 17, 2012<br />

9'-0"<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

Test Specimen:<br />

SEISMIC TESTING<br />

Test Specimen:<br />

5'-9 3/4" 8'-4 1/2" 8'-4 1/2" 8'-4 1/2"<br />

5'-9 3/4" 8'-4 1/2"<br />

8'-4 1/2" 8'-4 1/2"<br />

1'-2 7/8"<br />

9"<br />

9"<br />

9"<br />

9"<br />

1'-2 7/8"<br />

Straight Tendons<br />

–Top Flange<br />

Spare Straight Ducts – Top<br />

Flange (not used dur<strong>in</strong>g test<strong>in</strong>g)<br />

1'-10 1/2"<br />

2'-0"<br />

2'-0"<br />

2'-0"<br />

2'-0"<br />

2'-0"<br />

2'-5"<br />

2'-4"<br />

Cap Beam<br />

Pier Segment<br />

Foundation Block<br />

Tendons<br />

Deck<br />

Segment<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

4


SEISMIC TESTING<br />

Test Specimen:<br />

Sand Bag<br />

Lateral<br />

Restra<strong>in</strong>er<br />

Suspension<br />

Safety System<br />

Cap Beam<br />

Pier<br />

Foundation<br />

Block<br />

(SEESL at UB, May 2010)<br />

SEISMIC TESTING<br />

Test Specimen:<br />

• Superstructure-to-substructure connection:<br />

Non-<strong>in</strong>tegral Superstruct. simply supported on cap beams<br />

• Dimensions:<br />

61.9 ft long (pier-to-pier distance: 41.9 ft)<br />

14.2 ft high h <strong>in</strong>clud<strong>in</strong>g cap beam and foundation block (16.5<br />

ft <strong>in</strong>clud<strong>in</strong>g superstructure as well)<br />

• Design:<br />

AASHTO LRFD Bridge Design Specifications (2007)<br />

PCI Bridge Design Manual (2003)<br />

R sup =2.5 and R sub =3.75 (=1.5×2.5)<br />

Implementation of HSR concepts<br />

Parts of design validated through FE analysis<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

Test Specimen:<br />

• HSR Jo<strong>in</strong>t Design:<br />

Superstructure:<br />

• Match-cast jo<strong>in</strong>ts<br />

• No duct adaptors<br />

• Nom<strong>in</strong>al <strong>slid<strong>in</strong>g</strong> capacity: ± 0.4”<br />

Substructure:<br />

• Silicone material at all jo<strong>in</strong>ts:<br />

• Target friction <strong>in</strong> range of 0.08 – 0.10<br />

• Uniform frictional properties over the <strong>in</strong>terface<br />

• Stability dur<strong>in</strong>g erection<br />

• Duct adaptors of I.D. of 1.375” and length of 1.5” at segments<br />

• No duct adaptors at cap beams and foundation blocks<br />

• Nom<strong>in</strong>al <strong>slid<strong>in</strong>g</strong> capacity: ± 0.775” (or ± 0.5375” at ends)<br />

SEISMIC TESTING<br />

Specimen Configurations:<br />

• Superstructure-to-cap beam connectivity:<br />

Free <strong>slid<strong>in</strong>g</strong><br />

Fully restra<strong>in</strong>ed lateral <strong>slid<strong>in</strong>g</strong> (lateral restra<strong>in</strong>ers <strong>in</strong> contact)<br />

Limited lateral <strong>slid<strong>in</strong>g</strong> (lateral restra<strong>in</strong>ers at distance of 4”)<br />

• Load<strong>in</strong>g conditions:<br />

Fully unloaded specimen<br />

Fully loaded specimen<br />

Partially loaded specimen<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

Specimen Configurations:<br />

(SEESL at UB, May 2010)<br />

(SEESL at UB, May 2010)<br />

(SEESL at UB, May 2010)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

Ground Motion Input:<br />

• Ground Motion (GM) Ensembles:<br />

Subset of FEMA P695 Far-field GM set (5 out of 22 motions)<br />

Subset of FEMA P695 Near-field GM set (6 out of 28 motions<br />

– 3 with and 3 without pulses)<br />

• Seismic Hazard:<br />

Modification of AASHTO (2007) Design Spectrum follow<strong>in</strong>g<br />

the process of FEMA 356<br />

Hazard Levels:<br />

• Low DE (25% <strong>in</strong> 50 yrs – DE/1.5)<br />

• DE (10% <strong>in</strong> 50 yrs)<br />

• MCE (2% <strong>in</strong> 50 yrs – 1.5×DE)<br />

• Amplified DE-1 (2.4×DE)<br />

• Amplified DE-2 (3.6×DE)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

5


SEISMIC TESTING<br />

Ground Motion Input:<br />

SA (g)<br />

• Spatial Variability (Asynchronous Base Excitation)<br />

Time delay between the time <strong>in</strong>stants that the <strong>seismic</strong> wave<br />

reaches each piers<br />

• ∆t 1 =0.05 sec (based on soil profile at the site)<br />

• ∆t 2 =0.5 sec (amplified)<br />

1.8<br />

1.5<br />

1.2<br />

0.9<br />

0.6<br />

0.3<br />

0.0<br />

Horizontal Motions – Model Doma<strong>in</strong><br />

Range of<br />

<strong>in</strong>terest<br />

DE<br />

F-F GM Set<br />

N-F GM Set<br />

0 0.4 0.8 1.2<br />

T (sec)<br />

SA (g)<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

Vertical Motions – Model Doma<strong>in</strong><br />

DE<br />

F-F GM Set<br />

N-F GM Set<br />

0 0.4 0.8 1.2<br />

T (sec)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

Test<strong>in</strong>g Program:<br />

• System Identification Tests<br />

Objective: Monitor state of damage<br />

~ 175 White noise tests<br />

• Shake Table Test<strong>in</strong>g<br />

13 Phases – 15 Days – ~145 testst<br />

Comb<strong>in</strong><strong>in</strong>g:<br />

• Load<strong>in</strong>g conditions<br />

• Ground motion types<br />

• Seismic hazard levels<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

System Identification:<br />

• White Noise Tests:<br />

Frequency and damp<strong>in</strong>g ratio<br />

SEISMIC TESTING<br />

System Identification:<br />

• White Noise Tests:<br />

Frequency and damp<strong>in</strong>g ratio<br />

X Direction<br />

Y Direction<br />

Z Direction<br />

Unloaded Specimen<br />

(before test<strong>in</strong>g)<br />

Fully Loaded Specimen<br />

(after some test<strong>in</strong>g)<br />

Partially Loaded Specimen<br />

(before end of test<strong>in</strong>g)<br />

f (Hz) ξ f (Hz) ξ f (Hz) ξ<br />

Mode 1 0.27 6.2% 0.34 7.2% 0.35 7.2%<br />

Mode 2 0.028 5.9% 0.030 11.5% 0.029 10.1%<br />

Mode 1 0.35 6.4% 0.56 4.0% 0.55 6.1%<br />

Mode 2 0.20 11.2% 0.31 9.1% 0.33 12.4%<br />

Mode 3 0.065 5.2% 0.073 4.3% 0.071 3.8%<br />

Mode 4 0.039 0.7% 0.039 2.7% 0.047 1.8%<br />

Mode 1 0.14 1.3% 0.17 2.1% 0.16 1.8%<br />

Mode 2 0.045 5.6% 0.060 2.8% 0.062 3.6%<br />

Mode 3 0.022 1.5% 0.029 5.0% ‐‐‐ ‐‐‐<br />

ude<br />

Transfer Function Amplit<br />

15<br />

10<br />

5<br />

Transfer Functions - W<strong>in</strong>dow Length=6000<br />

1 st Mode<br />

Transfer Function Amplitude – Transverse Direction<br />

2 nd Mode 3 rd Mode<br />

4 th Mode<br />

0<br />

0 10 20 30 40 50<br />

Frequency (Hz)<br />

as1y/afe1y a<br />

as2y/afe2y<br />

a<br />

as3y/afe3y a<br />

as4ney/afe3y a<br />

as4nwy/afe3y a<br />

as5ney/afw3y a<br />

as5nwy/afw3y<br />

a<br />

as6y/afw3y a<br />

as7y/afw2y a<br />

as8y/afw1y a<br />

50<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

System Identification:<br />

• White Noise Tests:<br />

Mode Shapes:<br />

SEISMIC TESTING<br />

System Identification:<br />

• White Noise Tests:<br />

Mode Shapes:<br />

Y-Direction: 1 st Mode Shape<br />

200<br />

X-Direction: 1 st Mode Shape<br />

200<br />

X-Direction: p 2 nd Mode Shape <br />

300<br />

Plan View<br />

3-D View<br />

Z (<strong>in</strong>)<br />

150<br />

100<br />

50<br />

Z (<strong>in</strong>)<br />

150<br />

100<br />

50<br />

Y (<strong>in</strong>)<br />

200<br />

100<br />

Z (<strong>in</strong>)<br />

200<br />

100<br />

0<br />

0<br />

0<br />

0 100 200 300 400 500 600 700<br />

X (<strong>in</strong>)<br />

0<br />

0 100 200 300 400 500 600 700<br />

X (<strong>in</strong>)<br />

0<br />

0 100 200 300 400 500 600 700<br />

X (<strong>in</strong>)<br />

200<br />

400<br />

600<br />

X (<strong>in</strong>)<br />

0<br />

300<br />

200<br />

100<br />

Y (<strong>in</strong>)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

6


SEISMIC TESTING<br />

System Identification:<br />

• White Noise Tests:<br />

Mode Shapes:<br />

Y-Direction: 2 nd Mode Shape<br />

SEISMIC TESTING<br />

System Identification:<br />

• White Noise Tests:<br />

Mode Shapes:<br />

Y-Direction: 3 rd Mode Shape<br />

300<br />

Plan View<br />

3-D View<br />

200<br />

Side Elevation<br />

3-D View<br />

Y (<strong>in</strong>)<br />

200<br />

100<br />

0<br />

-100<br />

0 100 200 300 400 500 600 700<br />

X (<strong>in</strong>)<br />

Z (<strong>in</strong>)<br />

200<br />

100<br />

0<br />

0<br />

200<br />

400<br />

X (<strong>in</strong>)<br />

600<br />

0<br />

-100<br />

100<br />

Y (<strong>in</strong>)<br />

200<br />

300<br />

Z (<strong>in</strong>)<br />

150<br />

100<br />

50<br />

0<br />

-100 -50 0 50 100 150 200 250 300<br />

Y (<strong>in</strong>)<br />

Z (<strong>in</strong>)<br />

200<br />

100<br />

0<br />

0<br />

200<br />

400<br />

600<br />

X (<strong>in</strong>)<br />

-100 0 100<br />

Y (<strong>in</strong>)<br />

200<br />

300<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

System Identification:<br />

• White Noise Tests:<br />

Mode Shapes:<br />

300<br />

200<br />

100<br />

Plan View<br />

Y-Direction: 4 th Mode Shape<br />

Z (<strong>in</strong>)<br />

200<br />

100<br />

3-D View<br />

Z (<strong>in</strong>)<br />

System Identification:<br />

• White Noise Tests:<br />

Mode Shapes:<br />

150<br />

100<br />

Z-Direction: 1 st Mode Shape<br />

SEISMIC TESTING<br />

Z (<strong>in</strong>)<br />

150<br />

100<br />

50<br />

Z-Direction: 2 nd Mode Shape<br />

0<br />

0 100 200 300 400 500 600 700<br />

X (<strong>in</strong>)<br />

Z-Direction: 3 rd Mode Shape<br />

Y (<strong>in</strong>)<br />

0<br />

-100<br />

-200<br />

0 200 400 600<br />

X (<strong>in</strong>)<br />

0<br />

0<br />

200<br />

400<br />

600<br />

X (<strong>in</strong>)<br />

-200 -100 0 100 200 300<br />

Y (<strong>in</strong>)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

50<br />

0<br />

0 100 200 300 400 500 600 700<br />

X (<strong>in</strong>)<br />

Z (<strong>in</strong>)<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300 400 500 600 700<br />

X (<strong>in</strong>)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

Shake Table Test<strong>in</strong>g Process<strong>in</strong>g:<br />

• S<strong>in</strong>gle Test Analysis<br />

Dynamic characteristics illustrated<br />

• Global Seismic Performance<br />

Effects of different system parameters evaluated<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

• Unloaded Specimen<br />

• Free Slid<strong>in</strong>g at superstructure-to-cap beam connection<br />

Video Recorded Response:<br />

• General view - Test ABC_S1_SC_M2_XYZ<br />

• Lower Pier Jo<strong>in</strong>ts - Test ABC_S1_SC_M2_XYZ_V05_V11<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

SA (g)<br />

Base Excitation<br />

4.5<br />

4.5<br />

DE (AASHTO 2007)<br />

2/3 of DE <strong>in</strong> Horiz. Direction<br />

MCE<br />

2/3 of MCE <strong>in</strong> Horiz. Direction<br />

Longit. Dir. - West Table<br />

Longit. Dir. - East Table<br />

Vertical Dir. - West Table<br />

3.0<br />

3.0 30<br />

Lateral Dir. - West Table<br />

Vertical Dir. - East Table<br />

Lateral Dir. - East Table<br />

1.5<br />

1.5<br />

0.0<br />

0.0<br />

0 0.2 0.4 0.6 0.8 1<br />

0 0.2 0.4 0.6 0.8 1<br />

T (sec)<br />

T (sec)<br />

SA (g)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

7


)<br />

S<strong>in</strong>gle Test Analysis:<br />

SEISMIC TESTING<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

Total Accel. - Longit. Dir. (g)<br />

Total Acceleration<br />

1.5<br />

1.5<br />

West Table<br />

West Table<br />

10 1.0<br />

Superstructure - West Side<br />

10 1.0<br />

Superstructure t - West tSide<br />

0.5<br />

0.5<br />

0.0<br />

0.0<br />

-0.5<br />

-0.5<br />

-1.0<br />

-1.0<br />

Limited at ~0.5g<br />

Limited at ~0.55g<br />

-1.5<br />

-1.5<br />

0 10 20 30 40 50 60<br />

0 10 20 30 40 50 60<br />

Time (sec)<br />

Time (sec)<br />

Total Accel. - Lateral Dir.<br />

(g)<br />

Displ. - Lateral Dir. (<strong>in</strong>)<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

West Cap Beam<br />

Relative Displacement<br />

Displ. - Longitud<strong>in</strong>al Dir. (<strong>in</strong>)<br />

Superstructure - West Side<br />

4<br />

0 10 20 30 40 50 60<br />

Time (sec)<br />

6<br />

West Cap Beam<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

Superstructure - West Side<br />

0 10 20 30 40 50 60<br />

Time (sec)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Slid<strong>in</strong>g<br />

(<strong>in</strong>) / Rotation (rad)<br />

Slid<strong>in</strong>g at Bottom Jo<strong>in</strong>t<br />

0.6<br />

X-dir. Slid<strong>in</strong>g<br />

0.4<br />

Y-dir. Slid<strong>in</strong>g<br />

Z-dir. Rotation<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

0 10 20 30 40 50 60<br />

Time (sec)<br />

Rock<strong>in</strong>g at Bottom Jo<strong>in</strong>t<br />

0.03<br />

X-dir. Rock<strong>in</strong>g<br />

0.02<br />

Y-dir. Rock<strong>in</strong>g<br />

0.01<br />

0.00<br />

-0.01<br />

-0.02<br />

SEISMIC TESTING<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Slid<strong>in</strong>g<br />

(<strong>in</strong>) / Rotation (rad)<br />

Slid<strong>in</strong>g at 2 nd (from the Bottom) Jo<strong>in</strong>t<br />

0.6<br />

X-dir. Slid<strong>in</strong>g<br />

Y-dir. Slid<strong>in</strong>g<br />

0.4<br />

Z-dir. Rotation<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

0 10 20 30 40 50 60<br />

Time (sec)<br />

Rock<strong>in</strong>g at 2<br />

0.03<br />

nd (from the Bottom) Jo<strong>in</strong>t<br />

X-dir. Rock<strong>in</strong>g<br />

0.02<br />

Y-dir. Rock<strong>in</strong>g<br />

0.01<br />

0.00<br />

-0.01<br />

-0.02<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

Total Base Shear (kips)<br />

40<br />

20<br />

0<br />

-20<br />

Hysteresis <strong>in</strong> the Y-Direction<br />

Mid-span<br />

-40<br />

-6 -4 -2 0 2 4 6<br />

Relat. Displ. u supY<br />

(<strong>in</strong>)<br />

Base Shear (kip ps)<br />

20<br />

10<br />

0<br />

-10<br />

Pier Hysteresis <strong>in</strong> the Y-Direction<br />

East<br />

West<br />

-20<br />

-6 -4 -2 0 2 4 6<br />

Relat. Displ. u cbY<br />

(<strong>in</strong>)<br />

-0.03<br />

0 10 20 30 40 50<br />

Time (sec)<br />

-0.03<br />

0 10 20 30 40 50<br />

Time (sec)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g<br />

JE0<br />

JE1<br />

JE5<br />

3000<br />

3000<br />

3000<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g<br />

JE0<br />

JE1<br />

JE5<br />

20<br />

20<br />

20<br />

Jo<strong>in</strong>t Mo oment (kip-<strong>in</strong>)<br />

2000<br />

1000<br />

0<br />

-1000<br />

X-Direction<br />

-2000<br />

Y-Direction<br />

-3000<br />

-0.02 -0.01 0 0.01 0.02<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Jo<strong>in</strong>t Mo oment (kip-<strong>in</strong>)<br />

2000<br />

1000<br />

0<br />

-1000<br />

-2000<br />

X-Direction<br />

Y-Direction<br />

-3000<br />

-0.02 -0.01 0 0.01 0.02<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Jo<strong>in</strong>t Mo oment (kip-<strong>in</strong>)<br />

2000<br />

1000<br />

0<br />

-1000<br />

-2000<br />

X-Direction<br />

Y-Direction<br />

-3000<br />

-0.02 -0.01 0 0.01 0.02<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Shear (kips)<br />

Jo<strong>in</strong>t<br />

10<br />

0<br />

-10<br />

X-Direction<br />

Y-Direction<br />

-20<br />

-0.5 0 0.5<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

Jo<strong>in</strong>t Shear (kips)<br />

10<br />

0<br />

-10<br />

X-Direction<br />

Y-Direction<br />

-20<br />

-0.5 0 0.5<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

Jo<strong>in</strong>t Shear (kips)<br />

10<br />

0<br />

-10<br />

X-Direction<br />

Y-Direction<br />

-20<br />

-0.5 0 0.5<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

3000<br />

JW0<br />

3000<br />

JW1<br />

3000<br />

JW5<br />

20<br />

JW0<br />

20<br />

JW1<br />

20<br />

JW5<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

2000<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

X-Direction<br />

Y-Direction<br />

-0.02 -0.01 0 0.01 0.02<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

2000<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

X-Direction<br />

Y-Direction<br />

-0.02 -0.01 0 0.01 0.02<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

2000<br />

1000<br />

0<br />

-1000<br />

-2000<br />

-3000<br />

X-Direction<br />

Y-Direction<br />

-0.02 -0.01 0 0.01 0.02<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

Jo<strong>in</strong>t Shear (kips)<br />

10<br />

0<br />

-10<br />

X-Direction<br />

Y-Direction<br />

-20<br />

-0.5 0 0.5<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

Jo<strong>in</strong>t Shear (kips)<br />

10<br />

0<br />

-10<br />

-20<br />

X-Direction<br />

Y-Direction<br />

-0.5 0 0.5<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

Jo<strong>in</strong>t Shear (kips)<br />

10<br />

0<br />

-10<br />

-20<br />

X-Direction<br />

Y-Direction<br />

-0.5 0 0.5<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

8


)<br />

)<br />

)<br />

)<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-1000<br />

Y-Direction<br />

Z-Direction<br />

J34<br />

-4 -2 0 2 4<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

x 10 -3<br />

SEISMIC TESTING<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g - Superstructure<br />

J45<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-1000<br />

Y-Direction<br />

Z-Direction<br />

-4 -2 0 2 4<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

x 10 -3<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

-1000<br />

Y-Direction<br />

Z-Direction<br />

J56<br />

-4 -2 0 2 4<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

x 10 -3<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Tri-axial Excitation (1979 Imperial Valley EQ ):<br />

Observations:<br />

• Control of <strong>seismic</strong> forces<br />

• Moderate Self-center<strong>in</strong>g - Low residual deformations<br />

• Low Damage<br />

• Vertical Excitation (1992 Landers EQ):<br />

• Unloaded Specimen<br />

• Free Slid<strong>in</strong>g at superstructure-to-substructure connection<br />

Video Recorded Response:<br />

• General view - Test_ABC_S1_FF4_M4_Z_e<br />

• Deck mid-jo<strong>in</strong>t - Test_ABC_S1_FF4_M4_Z_V13<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Vertical Excitation (1992 Landers EQ):<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Vertical Excitation (1992 Landers EQ):<br />

Base Excitation<br />

Vertical Acceleration<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g at Mid-Span<br />

Vertical Relative Displacement at Mid-span<br />

SA (g)<br />

6.0<br />

2/3 of DE <strong>in</strong> Horiz. Direction<br />

5.0<br />

2/3 of MCE <strong>in</strong> Horiz. Direction<br />

Vertical Direction - West Table<br />

4.0<br />

Vertical Direction - East Table<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

0 0.2 0.4 0.6 0.8 1<br />

Total Acc. - Vert. Dir. (g<br />

6.0<br />

Limited at 2.0 -2.1g<br />

Mid-span<br />

4.0<br />

East Table<br />

2.0<br />

0.0<br />

-2.0<br />

-4.0<br />

Limited at 2.4 -2.6 g<br />

-6.0<br />

0 5 10 15 20<br />

Midspan - Jo<strong>in</strong>t Rock<strong>in</strong>g (ra ad)<br />

0.03<br />

Y-dir. Rock<strong>in</strong>g<br />

0.02<br />

Z-dir. Rock<strong>in</strong>g<br />

0.01<br />

0.00<br />

-0.01<br />

-0.02<br />

-0.03<br />

0 5 10 15 20<br />

Displ. - Vert. Dir. (<strong>in</strong>)<br />

3.0<br />

Mid-spanp<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

-3.0<br />

0 5 10 15 20<br />

T (sec)<br />

Time (sec)<br />

Time (sec)<br />

Time (sec)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Vertical Excitation (1992 Landers EQ):<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

6000<br />

4000<br />

2000<br />

0<br />

-2000<br />

-4000<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g at Mid-span<br />

J34 J45 J56<br />

Y-Direction<br />

Z-Direction<br />

-0.01 -0.005 0 0.005 0.01<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

6000<br />

4000<br />

2000<br />

0<br />

-2000<br />

-4000<br />

Y-Direction<br />

Z-Direction<br />

-0.01 -0.005 0 0.005 0.01<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

Jo<strong>in</strong>t Moment (kip-<strong>in</strong>)<br />

6000<br />

4000<br />

2000<br />

0<br />

-2000<br />

-4000<br />

Y-Direction<br />

Z-Direction<br />

-0.01 -0.005 0 0.005 0.01<br />

Jo<strong>in</strong>t Rock<strong>in</strong>g (rad)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

S<strong>in</strong>gle Test Analysis:<br />

• Vertical Excitation (1992 Landers EQ):<br />

Observations:<br />

• Control of <strong>seismic</strong> forces, despite amplification<br />

(resonance)<br />

• High self-center<strong>in</strong>g - Negligible residual deformations<br />

• Low energy dissipation capacity<br />

General System Performance:<br />

• Effect of different factors on system response:<br />

Seismic hazard<br />

Weight/mass<br />

Superstructure-to-cap<br />

beam connectivity<br />

Far-field vs. near-fault<br />

Asynchronous base excitation<br />

Bi-axial vs. tri-axial excitation<br />

P. Sideris,<br />

Sept. 17, 2012<br />

9


SEISMIC TESTING<br />

General System Performance:<br />

• Effect of Asynchronous Base Excitation:<br />

Transverse and vertical peak deformations decrease with<br />

time delay, while residual deformations rema<strong>in</strong> small<br />

Longitud<strong>in</strong>al direction: Effects not clear<br />

Test Phases: S3b_FF1_XYZ, S3b_FF1DT1_XYZ and S3b_FF1DT2_XYZ<br />

Peak - I<br />

Residual - I<br />

2<br />

0<br />

Peak - AD<br />

Residual - AD<br />

Median Peak - I<br />

Median Residual - I<br />

1<br />

-1<br />

Median Peak - AD<br />

Median Residual - AD<br />

East Pier - Y-Dir.<br />

West Pier - Y-Dir.<br />

5<br />

5<br />

(<strong>in</strong>)<br />

Rel. Disp.<br />

SEISMIC TESTING<br />

General System Performance:<br />

• Effect of Bi-axial vs. Tri-axial Base Excitation:<br />

Transverse peak deformations are smaller for tri-axial base<br />

excitation<br />

Residual deformations rema<strong>in</strong> small<br />

4.25<br />

Test Phases: S2_FF1_YZ _ and S2_FF1_XYZ<br />

_<br />

Peak - I<br />

Residual - I<br />

2<br />

0<br />

Peak - AD<br />

Residual - AD<br />

Median Peak - I<br />

Median Residual - I<br />

1<br />

-1<br />

Median Peak - AD<br />

Median Residual - AD<br />

East Pier - Y-Dir.<br />

West Pier - Y-Dir.<br />

4.25<br />

(<strong>in</strong>)<br />

Rel. Disp.<br />

Rel. Disp. (<strong>in</strong>)<br />

3.75<br />

2.5<br />

1.25<br />

Rel. Disp. (<strong>in</strong>)<br />

3.75<br />

2.5<br />

1.25<br />

Rel. Disp. (<strong>in</strong>)<br />

2.125<br />

Rel. Disp. (<strong>in</strong>)<br />

2.125<br />

0<br />

0 0.05 0.5<br />

Time Lag (sec)<br />

0<br />

0 0.05 0.5<br />

Time Lag (sec)<br />

0<br />

YZ XYZ<br />

Ground Motion Directions<br />

0<br />

YZ XYZ<br />

Ground Motion Directions<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

SEISMIC TESTING<br />

General Observations from Seismic Test<strong>in</strong>g:<br />

Superstructure:<br />

• Survived <strong>in</strong>tense (>>MCE) vertical motions with small<br />

concrete crush<strong>in</strong>g at mid-span jo<strong>in</strong>t<br />

• Low PT losses<br />

SEISMIC TESTING<br />

General Observations from Seismic Test<strong>in</strong>g:<br />

Piers:<br />

• Survived severe (e.g., DE, MCE) Far-field and Near-field<br />

motions<br />

• Damage:<br />

• Spall<strong>in</strong>g of re<strong>in</strong>forcement cover<br />

• Crush<strong>in</strong>g of concrete at bottom jo<strong>in</strong>t<br />

• PT losses reached 40% <strong>in</strong> some cases<br />

Jo<strong>in</strong>t at Mid-span – East Face<br />

Jo<strong>in</strong>t at Mid-span – East Face<br />

Bottom End – East Pier – Spalled concrete removed<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

General Observations from Seismic Test<strong>in</strong>g:<br />

Piers:<br />

• Damage:<br />

SEISMIC TESTING<br />

West Pier - Bottom Segment<br />

East Side North Side West Side North Side<br />

East Pier - Bottom Segment<br />

East Side North Side West Side North Side<br />

P. Sideris,<br />

Sept. 17, 2012<br />

OVERVIEW<br />

INTRODUCTION<br />

DEVELOPMENT OF HSR SEGMENTAL MEMBERS<br />

EXPERIMENTAL VALIDATION OF HSR BRIDGES:<br />

• Seismic Test<strong>in</strong>g<br />

• Quasi-Static Test<strong>in</strong>g<br />

NUMERICAL MODELING:<br />

• ABAQUS & SAP2000 Model<strong>in</strong>g<br />

COMPONENT TESTING:<br />

• Response of Strand-Anchor Systems<br />

• Frictional Properties of HSR Jo<strong>in</strong>ts<br />

CONCLUSIONS & ORIGINAL CONTRIBUTIONS<br />

ACKNOWLEDGEMENTS<br />

P. Sideris,<br />

Sept. 17, 2012<br />

10


Test Specimens:<br />

QUASI-STATIC TESTING<br />

• HSR-SD piers of bridge specimen (Shake Table<br />

Test<strong>in</strong>g)<br />

• Pier were disassembled and some segments were<br />

repaired<br />

• Re-assembly so that:<br />

t<br />

1 st HSR Pier: Orig<strong>in</strong>al segments only<br />

2 nd HSR Pier: Repaired segments (damage due to dynamic test<strong>in</strong>g)<br />

QUASI-STATIC TESTING<br />

Test Specimens:<br />

Jo<strong>in</strong>t 5<br />

PS5<br />

PS4<br />

PS3<br />

PS2<br />

PS1<br />

Jo<strong>in</strong>t 4<br />

Jo<strong>in</strong>t 3<br />

Jo<strong>in</strong>t 2<br />

Jo<strong>in</strong>t 1<br />

Jo<strong>in</strong>t 0<br />

Gravity Tendon<br />

(For safety reasons,<br />

PVC tub<strong>in</strong>g is used as<br />

a cover)<br />

Actuator<br />

Sandwich<br />

steel plates<br />

Tendon for<br />

gravity<br />

loa ds<br />

Threaded<br />

rods<br />

Steel tubes<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

QUASI-STATIC TESTING<br />

Test<strong>in</strong>g Procedures:<br />

• Two Test<strong>in</strong>g Cases:<br />

Low PT (5 kips per tendon) & Low drift ratio (2.3%)<br />

Design-Level PT (20 kips per tendons) & Large drift ratio<br />

(14.9%)<br />

• Test<strong>in</strong>g Protocol:<br />

Displacement-controlled lateral cyclic load<strong>in</strong>g<br />

Increas<strong>in</strong>g amplitudes - 2 cycles per amplitude<br />

Load<strong>in</strong>g rate: 0.01-0.05 <strong>in</strong>/sec<br />

• Total gravity load: 44 kips<br />

Applied by two tendons (18 kips each, nom<strong>in</strong>al)<br />

Weight of actuators (4.2 kips each)<br />

QUASI-STATIC TESTING<br />

Recorded Response – Orig<strong>in</strong>al Pier:<br />

• Low PT Forces – Maximum drift ratio of 2.3%:<br />

North Elevation – Test_ABC_SO_P05_t5_V01<br />

Northwest Corner– Test_ABC_SO_P05_t5_V03<br />

• Regular PT Forces – Maximum drift ratio of 14.9 %:<br />

North Elevation – Test_ABC_SO_P20_t13 t13 V01<br />

Northwest Corner– Test_ABC_SO_P20_t13_V03<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

QUASI-STATIC TESTING<br />

Orig<strong>in</strong>al Pier :<br />

• Hysteretic Response:<br />

QUASI-STATIC TESTING<br />

Orig<strong>in</strong>al Pier :<br />

• External Vertical Load<strong>in</strong>g:<br />

All contributions are <strong>in</strong>cluded<br />

Low PT – 5 kips per Tendon<br />

Design-Level PT – 20 kips per Tendon<br />

Low PT – 5 kips per Tendon<br />

Design-Level PT – 20 kips per Tendon<br />

Lateral Drift Ratio (%)<br />

-2.32 -1.55 -0.77 0 0.77 1.55 2.32<br />

20<br />

Lateral Drift Ratio (%)<br />

40<br />

-15.5 -11.62 -7.75 -3.87 0 3.87 7.75 11.62 15.5<br />

Lateral Drift Ratio (%)<br />

-2.32 -1.55 -0.77 0 0.77 1.55 2.32<br />

Lateral Drift Ratio (%)<br />

-15.5 -11.62 -7.75 -3.87 0 3.87 7.75 11.62 15.5<br />

15<br />

30<br />

46<br />

80<br />

Lateral Force (kips)<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

Lateral Force (kips)<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

Vertical Force (kips)<br />

44<br />

42<br />

40<br />

38<br />

36<br />

Vertical Force (kips)<br />

70<br />

60<br />

50<br />

40<br />

-15<br />

-30<br />

34<br />

30<br />

-20<br />

-3 -2 -1 0 1 2 3<br />

Lateral Displacement (<strong>in</strong>.)<br />

-40<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

-3 -2 -1 0 1 2 3<br />

Lateral Displacement (<strong>in</strong>.)<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

11


)<br />

)<br />

Orig<strong>in</strong>al Pier :<br />

• Jo<strong>in</strong>t Response:<br />

QUASI-STATIC TESTING<br />

Low PT – 5 kips per tendon:<br />

Jo<strong>in</strong>t Shear (kip ps)<br />

25<br />

2750<br />

12.5<br />

1375<br />

0<br />

0<br />

-12.5<br />

-1375<br />

-25<br />

-2750<br />

25 2750<br />

12.5<br />

1375<br />

PS5<br />

0<br />

0<br />

PS4<br />

-12.5<br />

-1375<br />

PS3<br />

-25<br />

-2750<br />

25<br />

2750<br />

Jo<strong>in</strong>t Moment My (Kip-<strong>in</strong>)<br />

Jo<strong>in</strong>t Moment My (kip (Kip- p-<strong>in</strong>)<br />

Orig<strong>in</strong>al Pier :<br />

• Jo<strong>in</strong>t Response:<br />

QUASI-STATIC TESTING<br />

Low PT – 5 kips per tendon:<br />

PS5<br />

PS4<br />

PS3<br />

Jo<strong>in</strong>t Shear (kip ps)<br />

25<br />

12.5<br />

0<br />

-12.5<br />

-25<br />

-2750<br />

25 2750<br />

12.5<br />

0<br />

-12.5<br />

-25<br />

25<br />

Jo<strong>in</strong>t Moment My (Kip-<strong>in</strong>)<br />

Jo<strong>in</strong>t Moment My (Kip- (kip p-<strong>in</strong>)<br />

2750<br />

1375<br />

0<br />

-1375<br />

1375<br />

0<br />

-1375<br />

-2750<br />

2750<br />

PS2<br />

PS1<br />

12.5<br />

0<br />

-12.5<br />

Jo<strong>in</strong>t Moment My (Kip-<strong>in</strong>)<br />

1375<br />

0<br />

-1375<br />

PS2<br />

PS1<br />

12.5<br />

0<br />

-12.5<br />

Jo<strong>in</strong>t Moment My (Kip-<strong>in</strong>)<br />

1375<br />

0<br />

-1375<br />

-25<br />

-1 -0.5 0 0.5 1<br />

-2750<br />

-0.015 -0.0075 0 0.0075 0.015<br />

-25<br />

-1 -0.5 0 0.5 1<br />

-2750<br />

-0.015 -0.0075 0 0.0075 0.015<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

Jo<strong>in</strong>t <strong>rock<strong>in</strong>g</strong> (rad)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

Jo<strong>in</strong>t <strong>rock<strong>in</strong>g</strong> (rad)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

Orig<strong>in</strong>al Pier :<br />

• Jo<strong>in</strong>t Response:<br />

QUASI-STATIC TESTING<br />

Design-Level PT – 20 kips<br />

per tendon:<br />

50<br />

25<br />

0<br />

-25<br />

-50<br />

Jo<strong>in</strong>t Moment My (Kip-<strong>in</strong>)<br />

6250<br />

3125<br />

0<br />

-3125<br />

-6250<br />

Orig<strong>in</strong>al Pier :<br />

• Jo<strong>in</strong>t Response:<br />

QUASI-STATIC TESTING<br />

Design-Level PT – 20 kips<br />

per tendon:<br />

50<br />

25<br />

0<br />

-25<br />

-50<br />

Jo<strong>in</strong>t Moment My (Kip-<strong>in</strong>)<br />

6250<br />

3125<br />

0<br />

-3125<br />

-6250<br />

50 6250<br />

50 6250<br />

PS5<br />

PS4<br />

PS3<br />

PS2<br />

PS1<br />

Jo<strong>in</strong>t Shear (kips)<br />

25<br />

0<br />

-25<br />

-50<br />

50<br />

25<br />

0<br />

-25<br />

Jo<strong>in</strong>t Moment My (Kip-<strong>in</strong>) Jo<strong>in</strong>t Moment My (kip-i (Kip-<strong>in</strong><br />

n)<br />

3125<br />

0<br />

-3125<br />

-6250<br />

6250<br />

3125<br />

0<br />

-3125<br />

PS5<br />

PS4<br />

PS3<br />

PS2<br />

PS1<br />

Jo<strong>in</strong>t Shear (kips)<br />

25<br />

0<br />

-25<br />

-50<br />

50<br />

25<br />

0<br />

-25<br />

Jo<strong>in</strong>t Moment My (Kip-<strong>in</strong>) Jo<strong>in</strong>t Moment My (kip-i (Kip-<strong>in</strong><br />

n)<br />

3125<br />

0<br />

-3125<br />

-6250<br />

6250<br />

3125<br />

0<br />

-3125<br />

-50<br />

-1 -0.5 0 0.5 1<br />

-6250<br />

-0.2 -0.1 0 0.1 0.2<br />

-50<br />

-1 -0.5 0 0.5 1<br />

-6250<br />

-0.2 -0.1 0 0.1 0.2<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

Jo<strong>in</strong>t <strong>rock<strong>in</strong>g</strong> (rad)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>)<br />

Jo<strong>in</strong>t <strong>rock<strong>in</strong>g</strong> (rad)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

Orig<strong>in</strong>al Pier :<br />

• Decomposition <strong>in</strong>to Jo<strong>in</strong>t Slid<strong>in</strong>g and Rock<strong>in</strong>g<br />

Contribution to the response:<br />

Lateral Displacement (<strong>in</strong>.)<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

Total<br />

Slid<strong>in</strong>g Only<br />

Rock<strong>in</strong>g Only<br />

QUASI-STATIC TESTING<br />

Low PT – 5 kips per Tendon<br />

Lateral Force (kips)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

Rock<strong>in</strong>g Contribution only<br />

Slid<strong>in</strong>g Contribution Only<br />

Orig<strong>in</strong>al Pier :<br />

• Decomposition <strong>in</strong>to Jo<strong>in</strong>t Slid<strong>in</strong>g and Rock<strong>in</strong>g<br />

Contribution to the response:<br />

Lateral Displacement (<strong>in</strong>.)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

QUASI-STATIC TESTING<br />

Design-Level PT – 20 kips per Tendon<br />

Rock<strong>in</strong>g Contribution only<br />

40 Slid<strong>in</strong>g Contribution Only<br />

Total<br />

Slid<strong>in</strong>g Only 30<br />

Rock<strong>in</strong>g Only<br />

20<br />

Lateral Force (kips)<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-3<br />

0 200 400 600 800 1000 1200 1400 1600<br />

Time (sec)<br />

-20<br />

-3 -2 -1 0 1 2 3<br />

Lateral Displacement (<strong>in</strong>.)<br />

-20<br />

0 2000 4000 6000 8000 10000 12000<br />

Time (sec)<br />

-40<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

12


o<br />

Recorded Response – Orig<strong>in</strong>al Pier:<br />

• Cycles at 13.5 <strong>in</strong>:<br />

Lateral Force (ki ips)<br />

QUASI-STATIC TESTING<br />

Experimental Capacity<br />

F max , u max Drift Ratio (%)<br />

40<br />

0 3.87 7.75 11.62 15.5<br />

40<br />

D<br />

=0.17<br />

30 SER=0.42<br />

35<br />

RSE=0.60<br />

20 u max<br />

=13.11<br />

30<br />

F max<br />

=37.56<br />

10<br />

K 25<br />

sec<br />

=2.86<br />

0<br />

20<br />

-10<br />

15<br />

-20<br />

10<br />

-30<br />

5<br />

P05<br />

P20<br />

-40<br />

0<br />

-20 -15 -10 -5 0 5 10 15 20<br />

0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

Displacement Amplitude (<strong>in</strong>.)<br />

Maximum Force (k kips)<br />

Recorded Response – Orig<strong>in</strong>al Pier:<br />

• Cycles at 13.5 <strong>in</strong>:<br />

Lateral Force (ki ips)<br />

QUASI-STATIC TESTING<br />

F max , u max Drift Ratio (%)<br />

40<br />

0 3.87 7.75 11.62 15.5<br />

100<br />

0.21<br />

D<br />

=0.17<br />

30<br />

P05<br />

SER=0.42<br />

RSE=0.60<br />

P20<br />

20<br />

80<br />

0.23<br />

u max<br />

=13.11<br />

F max<br />

=37.56<br />

10<br />

K sec<br />

=2.86<br />

60<br />

0.27<br />

0<br />

-10<br />

40<br />

0.33<br />

-20<br />

20<br />

0.47<br />

-30<br />

-40<br />

0<br />

Inf<br />

-20 -15 -10 -5 0 5 10 15 20<br />

0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

Displacement Amplitude (<strong>in</strong>.)<br />

Secant stiffness (kip ps/<strong>in</strong>ch)<br />

Secant Stiffness<br />

Secant Period (se ec.)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

Recorded Response – Orig<strong>in</strong>al Pier:<br />

• Cycles at 13.5 <strong>in</strong>:<br />

Lateral Force (ki ips)<br />

QUASI-STATIC TESTING<br />

Equivalent Viscous Damp<strong>in</strong>g<br />

F max , u max Drift Ratio (%)<br />

40<br />

0 3.87 7.75 11.62 15.5<br />

0.5<br />

D<br />

=0.17<br />

30<br />

P05<br />

SER=0.42<br />

RSE=0.60<br />

P20<br />

20<br />

0.4<br />

u max<br />

=13.11<br />

F max<br />

=37.56<br />

10<br />

K sec<br />

=2.86<br />

0.3<br />

0<br />

E D<br />

-10<br />

0.2<br />

-20<br />

ED<br />

0.1<br />

<br />

D <br />

-30<br />

2<br />

2<br />

Ksecumax<br />

-40<br />

0<br />

-20 -15 -10 -5 0 5 10 15 20<br />

0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

Displacement Amplitude (<strong>in</strong>.)<br />

Damp<strong>in</strong>g Ratio<br />

Recorded Response – Orig<strong>in</strong>al Pier:<br />

• Cycles at 13.5 <strong>in</strong>:<br />

Lateral Force (ki ips)<br />

QUASI-STATIC TESTING<br />

Slid<strong>in</strong>g Energy Ratio<br />

F max , u max Drift Ratio (%)<br />

40<br />

0 3.87 7.75 11.62 15.5<br />

1<br />

D<br />

=0.17<br />

30<br />

P05<br />

SER=0.42<br />

RSE=0.60<br />

P20<br />

20<br />

0.8<br />

u max<br />

=13.11<br />

F max<br />

=37.56<br />

10<br />

K sec<br />

=2.86<br />

0.6<br />

0<br />

E D<br />

-10<br />

0.4<br />

-20<br />

ED,<br />

sl<br />

0.2<br />

SER <br />

-30<br />

ED<br />

-40<br />

0<br />

-20 -15 -10 -5 0 5 10 15 20<br />

0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

Displacement Amplitude (<strong>in</strong>.)<br />

Slid<strong>in</strong>g Energy Ratio<br />

(SER)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

Recorded Response – Orig<strong>in</strong>al Pier:<br />

• Cycles at 13.5 <strong>in</strong>:<br />

Lateral Force (ki ips)<br />

QUASI-STATIC TESTING<br />

Relative Self-center<strong>in</strong>g Efficiency<br />

F max , u max Drift Ratio (%)<br />

40<br />

0 3.87 7.75 11.62 15.5<br />

1<br />

D<br />

=0.17<br />

30<br />

P05<br />

SER=0.42<br />

P20<br />

RSE=0.60<br />

20<br />

0.8<br />

u max<br />

=13.11<br />

F max<br />

=37.56<br />

10<br />

K sec<br />

=2.86<br />

0.6<br />

0<br />

E D<br />

-10<br />

0.4<br />

-20<br />

<br />

ures ures<br />

0.2<br />

RSE 1<br />

-30<br />

umax<br />

um<strong>in</strong><br />

-40<br />

0<br />

-20 -15 -10 -5 0 5 10 15 20<br />

0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

Displacement Amplitude (<strong>in</strong>.)<br />

Relative Self-center<strong>in</strong>g Effi ciency (RSE)<br />

QUASI-STATIC TESTING<br />

Orig<strong>in</strong>al Pier at Ultimate Amplitude (14.9%):<br />

ABC_SO_P20_t13<br />

ABC_SO_P20_t13<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

13


QUASI-STATIC TESTING<br />

Orig<strong>in</strong>al Pier:<br />

East Side North Side West Side North Side<br />

• Spall<strong>in</strong>g at<br />

End of Test<strong>in</strong>g:<br />

P. Sideris,<br />

Sept. 17, 2012<br />

QUASI-STATIC TESTING<br />

Observations:<br />

• No failure was observed at ultimate load<strong>in</strong>g: ~15%<br />

drift & vertical force of ~80 kips<br />

• Damage:<br />

Negligible at smaller amplitudes (5% drift<br />

ratio Jo<strong>in</strong>t <strong>rock<strong>in</strong>g</strong> contributes significantly)<br />

Initiation of concrete crush<strong>in</strong>g at ~6% drift, which seems to<br />

saturate/stabilize after ~10%<br />

• PT System:<br />

Negligible or no yield<strong>in</strong>g – Negligible dowel deformations<br />

Some tendons lost 50% of <strong>in</strong>itial PT at drift ratios >8%<br />

P. Sideris,<br />

Sept. 17, 2012<br />

OVERVIEW<br />

INTRODUCTION<br />

DEVELOPMENT OF HSR SEGMENTAL MEMBERS<br />

EXPERIMENTAL VALIDATION OF HSR BRIDGES:<br />

• Seismic Test<strong>in</strong>g<br />

• Quasi-Static Test<strong>in</strong>g<br />

NUMERICAL MODELING:<br />

• ABAQUS & SAP2000 Model<strong>in</strong>g<br />

COMPONENT TESTING:<br />

• Response of Strand-Anchor Systems<br />

• Frictional Properties of HSR Jo<strong>in</strong>ts<br />

CONCLUSIONS & ORIGINAL CONTRIBUTIONS<br />

ACKNOWLEDGEMENTS<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

Model<strong>in</strong>g Approaches:<br />

• ABAQUS<br />

General-purpose f<strong>in</strong>ite element software<br />

• SAP2000<br />

Structural analysis software<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

ABAQUS F<strong>in</strong>ite Element Analysis:<br />

• Model<strong>in</strong>g of the Quasi-Static Test<strong>in</strong>g Setup<br />

• Geometry and Mesh:<br />

Concrete:<br />

• Solid elements (C3D8R)<br />

• Size: ~ 0.375” – 1”<br />

Mild steel:<br />

• Beam elements (B31)<br />

embedded to concrete<br />

segments<br />

• Size: ~ 0.5”<br />

PT Tendons:<br />

• Truss elements (T3D2)<br />

• Size: 2” and 0.15” at jo<strong>in</strong>ts<br />

NUMERICAL MODELING<br />

ABAQUS F<strong>in</strong>ite Element Analysis:<br />

• Geometry and Mesh:<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

14


NUMERICAL MODELING<br />

ABAQUS F<strong>in</strong>ite Element Analysis:<br />

• Material Model<strong>in</strong>g:<br />

Concrete:<br />

• Concrete Damage Plasticity with tension damage<br />

• Post-peak tensile strength based on fracture energy<br />

(0.7lbs/<strong>in</strong>)<br />

Comp. Stress (psi)<br />

6000<br />

4000<br />

2000<br />

Compressive Behavior<br />

L<strong>in</strong>ear Elastic<br />

Range<br />

0<br />

-0.002 0 0.002 0.004 0.006 0.008<br />

Elastic and Inelastic Stra<strong>in</strong><br />

Tensile Stress (psi)<br />

Post-peak Tensile Response<br />

600<br />

L<strong>in</strong>ear<br />

500<br />

Bi-l<strong>in</strong>ear<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 0.002 0.004 0.006<br />

Crack<strong>in</strong>g Displacement (<strong>in</strong>)<br />

70<br />

60<br />

50<br />

NUMERICAL MODELING<br />

ABAQUS F<strong>in</strong>ite Element Analysis:<br />

• Material Model<strong>in</strong>g:<br />

Mild steel and PT steel:<br />

• Flow plasticity with isotropic harden<strong>in</strong>g<br />

Stress (ksi)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Mild Steel<br />

0 0.005 0.01 0.015 0.02<br />

Stra<strong>in</strong><br />

Stress (ksi)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

PT Steel<br />

Analytical (Devalapura<br />

and Tandros 1992)<br />

Simplified<br />

0 0.05 0.1 0.15<br />

Stra<strong>in</strong><br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

ABAQUS F<strong>in</strong>ite Element Analysis:<br />

• Material Model<strong>in</strong>g:<br />

• Interactions:<br />

General Contact Algorithm<br />

Rigid body constra<strong>in</strong>t for cap<br />

beam and foundation<br />

• Analysis Method:<br />

Explicit dynamics (with mass scal<strong>in</strong>g)<br />

Two steps:<br />

• PT application and Gravity loads<br />

• Lateral displacement (both directions)<br />

Coeff. of Friction<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

000 0.00<br />

Coefficient of Friction<br />

0 500 1000 1500 2000<br />

Contact Pressure (psi)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

ABAQUS F<strong>in</strong>ite Element Analysis:<br />

• Test Results:<br />

Two response phases:<br />

• Slid<strong>in</strong>g-controlled<br />

• Rock<strong>in</strong>g-controlled (plateau)<br />

Lateral Force (kips)<br />

Lateral Drift Ratio (%)<br />

40<br />

-15.5 -11.62 -7.75 -3.87 0 3.87 7.75 11.62 15.5<br />

PlateauInitiation<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g Initiation<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g Initiation<br />

Plateau Initiation<br />

-40<br />

-20 -15 -10 -5 0 5 10 15 20<br />

Lateral Displacement (<strong>in</strong>.)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

ABAQUS F<strong>in</strong>ite Element Analysis:<br />

• Test Results:<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g:<br />

Jo<strong>in</strong>t Shea ar (kips)<br />

50<br />

25<br />

0<br />

-25<br />

P20: Jo<strong>in</strong>t 0<br />

Numerical<br />

Jo<strong>in</strong>t Shea ar (kips)<br />

50<br />

25<br />

0<br />

-25<br />

Numerical<br />

P20: Jo<strong>in</strong>t 1<br />

Jo<strong>in</strong>t Shea ar (kips)<br />

50<br />

25<br />

0<br />

-25<br />

P20: Jo<strong>in</strong>t 2<br />

Numerical<br />

NUMERICAL MODELING<br />

ABAQUS F<strong>in</strong>ite Element Analysis:<br />

• Test Results:<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g:<br />

Jo<strong>in</strong>t Shea ar (kips)<br />

50<br />

25<br />

0<br />

-25<br />

Numerical<br />

P20: Jo<strong>in</strong>t 3<br />

Jo<strong>in</strong>t Shea ar (kips)<br />

50<br />

25<br />

0<br />

-25<br />

P20: Jo<strong>in</strong>t 4<br />

Numerical<br />

Jo<strong>in</strong>t Shea ar (kips)<br />

50<br />

25<br />

0<br />

-25<br />

P20: Jo<strong>in</strong>t 5<br />

Numerical<br />

-50<br />

-1 -0.5 0 0.5 1<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>.)<br />

-50<br />

-1 -0.5 0 0.5 1<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>.)<br />

-50<br />

-1 -0.5 0 0.5 1<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>.)<br />

-50<br />

-1 -0.5 0 0.5 1<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>.)<br />

-50<br />

-1 -0.5 0 0.5 1<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>.)<br />

-50<br />

-1 -0.5 0 0.5 1<br />

Jo<strong>in</strong>t Slid<strong>in</strong>g (<strong>in</strong>.)<br />

• F<strong>in</strong>d<strong>in</strong>gs:<br />

Good Correlation<br />

Numerical <strong>in</strong>stabilities and failure<br />

Large computational time and resources<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

15


NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• Model<strong>in</strong>g of segment:<br />

Beam-column element for <strong>in</strong>terior part of a segment (end<br />

plastic h<strong>in</strong>ges should be considered for consistency)<br />

“Fiber Spr<strong>in</strong>gs” to model end regions of segments:<br />

• Two-node <strong>in</strong>elastic axial and shear elements<br />

• Appropriately distributed over cross-section area<br />

• Oriented <strong>in</strong> the axial direction of segment<br />

• Connected to <strong>in</strong>terior part (beam-column) with rigid l<strong>in</strong>ks<br />

• Model<strong>in</strong>g of PT tendon:<br />

Tension-only truss elements with <strong>in</strong>elastic behavior<br />

Post-tension<strong>in</strong>g is applied as <strong>in</strong>itial stress or stra<strong>in</strong> or<br />

temperature change<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• Inter-element Constra<strong>in</strong>ts:<br />

Rigid l<strong>in</strong>ks:<br />

• Connect fiber spr<strong>in</strong>gs to <strong>in</strong>terior part (beam-column) of<br />

segment<br />

• Keep tendons at proper locations at given cross-sections<br />

sections<br />

HSR jo<strong>in</strong>ts<br />

Interior Beam-<br />

Column Element<br />

Fiber-spr<strong>in</strong>g<br />

Fiber-spr<strong>in</strong>g<br />

with Lateral<br />

Slid<strong>in</strong>g<br />

Gap Restra<strong>in</strong>er<br />

aga<strong>in</strong>st Jo<strong>in</strong>t Slid<strong>in</strong>g<br />

Plastic H<strong>in</strong>ges at Interior<br />

Beam-Column Element<br />

Contact Axial<br />

Element<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• Criteria for Distribution of “Fiber Spr<strong>in</strong>gs”<br />

Equivalent Cross-Section moduli:<br />

<br />

N<br />

2 2<br />

EIy <br />

Ez dA<br />

zi EiAi<br />

A<br />

i1<br />

N<br />

<br />

2 2<br />

EI <br />

Ey dA <br />

EA Recommendation:<br />

z <br />

yi i i<br />

A<br />

i1<br />

Acceptable Error < 1%<br />

<br />

N<br />

EA <br />

EidA <br />

EiAi<br />

A<br />

i1<br />

Maximum distance between fiber spr<strong>in</strong>gs:<br />

• Resultant axial force should run “smoothly” over the jo<strong>in</strong>t<br />

<strong>in</strong>terface & Partial contact should be possible<br />

Symmetric distribution for symmetric sections<br />

N<br />

EA<br />

i i<br />

yi<br />

0 and<br />

L<br />

i1<br />

i<br />

N<br />

<br />

i1<br />

EA<br />

i i<br />

zi<br />

0<br />

L<br />

i<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• SAP2000:<br />

Segment model:<br />

• Interior: Beam-column elements with end plastic h<strong>in</strong>ges (P x -<br />

M y -M z Interaction)<br />

• Ends: Fiber Spr<strong>in</strong>gs:<br />

• Consisted of two 2-node Nonl<strong>in</strong>ear L<strong>in</strong>ks <strong>in</strong> series:<br />

• Friction-pendulum l<strong>in</strong>k (lateral response)<br />

• Multi-l<strong>in</strong>ear plastic spr<strong>in</strong>g with k<strong>in</strong>ematic harden<strong>in</strong>g (axial<br />

response)<br />

• Length: 6” for pier segments, and 7.5” for superstructure<br />

segments<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• SAP2000:<br />

Segment model:<br />

• Ends:<br />

• Cross-section distribution:<br />

Superstructure<br />

t Pier<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• SAP2000:<br />

Model<strong>in</strong>g of PT tendons:<br />

• Truss steel elements with <strong>in</strong>itial axial stra<strong>in</strong><br />

Material properties:<br />

• Concrete: fc=5800 psi (unconf<strong>in</strong>ed)<br />

• Steel: Fy=60 ksi<br />

Frictional Properties:<br />

• Pier Jo<strong>in</strong>ts: μ=0.1<br />

• Superstructure Jo<strong>in</strong>ts: μ=0.65<br />

• Superstructure to-Cap beam <strong>in</strong>terface: μ=0.65<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

16


)<br />

(<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• SAP2000:<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• SAP2000:<br />

Interior Beam-Column Element<br />

(Extrude View – Element passes through<br />

the centerl<strong>in</strong>e of cross-section)<br />

Fiber-Spr<strong>in</strong>gs<br />

(Model<strong>in</strong>g of HSR jo<strong>in</strong>ts )<br />

Hysteretic Element (Fiber-spr<strong>in</strong>g)<br />

PT Tendon<br />

Hysteretic Element<br />

(Fiber-spr<strong>in</strong>g)<br />

PT Tendon<br />

Fiber-Spr<strong>in</strong>gs at<br />

Superstructure-to-Cap Beam<br />

Interface<br />

Fiber-Spr<strong>in</strong>gs<br />

(Model<strong>in</strong>g of HSR jo<strong>in</strong>ts )<br />

Friction-Pendulum<br />

Element (Fiberspr<strong>in</strong>g)<br />

Interior Beam-Column Element<br />

(Extrude View – Element passes through<br />

the centerl<strong>in</strong>e of cross-section)<br />

Friction-Pendulum<br />

Element (Fiber-spr<strong>in</strong>g)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• SAP2000 – Modal Analysis:<br />

Model jo<strong>in</strong>t shear stiffness calibrated for unloaded specimen<br />

Experimental<br />

SAP2000<br />

Description<br />

Mode ID Freq. (Hz) ξ Mode # Freq. (Hz)<br />

X-1 3.73 (3.66) 0.061 2 3.23 In-phase pier bend<strong>in</strong>g<br />

Y-1 2.82 0.06 1 2.81 In-phase pier bend<strong>in</strong>g<br />

Y-2 4.88, 4.18* 011 0.11 3 37 3.7 Out-of-phase pier bend<strong>in</strong>g<br />

Z-1 7.13 (7.16) 0.015 4 7.2 Symmetric superstructure vertical bend<strong>in</strong>g<br />

Z-2 22.4 0.056 6 15.33 Anti-symmetric superstructure vertical bend<strong>in</strong>g<br />

Result<strong>in</strong>g values for loaded specimen<br />

Experimental<br />

SAP2000<br />

Description<br />

Mode ID Freq. (Hz) ξ Mode # Freq. (Hz)<br />

X-1 2.98 (3.26) 0.073 2 2.43 In-phase pier bend<strong>in</strong>g<br />

Y-1 1.97 (1.87) 0.04 1 2.09 In-phase pier bend<strong>in</strong>g<br />

Y-2 3.23 0.091 3 2.63 Out-of-phase pier bend<strong>in</strong>g<br />

Z-1 5.99 (6.21) 0.022 4 6.44 Symmetric superstructure vertical bend<strong>in</strong>g<br />

Z-2 16.8 0.028 6 13.21 Anti-symmetric superstructure vertical bend<strong>in</strong>g<br />

NUMERICAL MODELING<br />

Two-node Element Approach:<br />

• SAP2000 – Dynamic Analysis:<br />

Applied Motion:<br />

• 1979 Imperial Valley (Mw=6.5) at Delta Station<br />

• Scaled to DE and SC (MCE horizontal and 2.4xMCE<br />

vertical)<br />

• Tests ABC_S1_FF2_M2_YZ and ABC_S1_SC_M2_YZ<br />

Analysis Method:<br />

• Fast Nonl<strong>in</strong>ear analysis<br />

• Direct <strong>in</strong>tegration failed to converge<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

SAP2000 – Dynamic Analysis:<br />

Comparison between Experimental and Numerical Results<br />

East Side (S2) – Transverse Direction (Y) – Relative e Displacement (<strong>in</strong>)<br />

( )<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-22<br />

-4<br />

-6<br />

-8<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

Rel. Displ. – Deck - East<br />

ABC_S1_FF2_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

ABC_S1_SC_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

Time (sec)<br />

West Side (S7) – Transverse Direction (Y) – Relative e Displacement (<strong>in</strong>)<br />

p( )<br />

p( )<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

Rel. Displ. – Deck - West<br />

ABC_S1_FF2_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

ABC_S1_SC_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

Time (sec)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

SAP2000 – Dynamic Analysis:<br />

Comparison between Experimental and Numerical Results<br />

Displacement<br />

p( )<br />

(<strong>in</strong>)<br />

East Pier – Transverse<br />

p( )<br />

Direction (Y) – Relative<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

Rel. Displ. – East Pier<br />

ABC_S1_FF2_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

ABC_S1_SC_M2_YZ<br />

0 20 40 60<br />

Time (sec)<br />

Experimental<br />

SAP2000<br />

Displacement (<strong>in</strong>)<br />

West Pier – Transverse ( ) Direction (Y) – Relative<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

Rel. Displ. – West Pier<br />

ABC_S1_FF2_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

ABC_S1_SC_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

Time (sec)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

17


NUMERICAL MODELING<br />

SAP2000 – Dynamic Analysis:<br />

Comparison between Experimental and Numerical Results<br />

East Side (S2) – Transverse Direction (Y) – To otal Acceleration (g)<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

-3.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

-3.0<br />

Total Acc. – Deck - East<br />

ABC_S1_FF2_M2_YZ<br />

SAP2000<br />

Experimental<br />

0 20 40 60<br />

ABC_S1_SC_M2_YZ<br />

SAP2000<br />

Experimental<br />

0 20 40 60<br />

Time (sec)<br />

West Side (S7) – Transverse Direction (Y) – To otal Acceleration (g)<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

-3.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

-1.0<br />

-2.0<br />

-3.0<br />

Total Acc. – Deck - West<br />

ABC_S1_FF2_M2_YZ<br />

SAP2000<br />

Experimental<br />

0 20 40 60<br />

ABC_S1_SC_M2_YZ<br />

SAP2000<br />

Experimental<br />

0 20 40 60<br />

Time (sec)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

SAP2000 – Dynamic Analysis:<br />

Comparison between Experimental and Numerical Results<br />

Mid-span – Vertical Direction (Z) – Relative Displacement (<strong>in</strong>)<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

Rel. Vert. Displ. – Midspan<br />

ABC_S1_FF2_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

ABC_S1_SC_M2_YZ<br />

Experimental<br />

SAP2000<br />

0 20 40 60<br />

Time (sec)<br />

Mid-span – Vertical Direction (Z) – Total Acc celeration (g)<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

-2.0<br />

-4.0<br />

-6.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

-2.0<br />

-4.0<br />

-6.0<br />

Total Acc. – Midspan<br />

ABC_S1_FF2_M2_YZ<br />

SAP2000<br />

Experimental<br />

0 20 40 60<br />

ABC_S1_SC_M2_YZ<br />

SAP2000<br />

Experimental<br />

0 20 40 60<br />

Time (sec)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

NUMERICAL MODELING<br />

SAP2000 – Dynamic Analysis:<br />

• Observations:<br />

Good for prelim<strong>in</strong>ary analysis of systems dom<strong>in</strong>ated by jo<strong>in</strong>t<br />

<strong>rock<strong>in</strong>g</strong>, particularly at lower <strong>in</strong>tensities<br />

Poor performance for systems that dom<strong>in</strong>ated by jo<strong>in</strong>t<br />

<strong>slid<strong>in</strong>g</strong>. Larger discrepancies occur at larger <strong>in</strong>tensities<br />

P. Sideris,<br />

Sept. 17, 2012<br />

OVERVIEW<br />

INTRODUCTION<br />

DEVELOPMENT OF HSR SEGMENTAL MEMBERS<br />

EXPERIMENTAL VALIDATION OF HSR BRIDGES:<br />

• Seismic Test<strong>in</strong>g<br />

• Quasi-Static Test<strong>in</strong>g<br />

NUMERICAL MODELING:<br />

• ABAQUS & SAP2000 Model<strong>in</strong>g<br />

COMPONENT TESTING:<br />

• Response of Strand-Anchor Systems<br />

• Frictional Properties of HSR Jo<strong>in</strong>ts<br />

CONCLUSIONS & ORIGINAL CONTRIBUTIONS<br />

ACKNOWLEDGEMENTS<br />

Conclusions<br />

P. Sideris,<br />

Sept. 17, 2012<br />

STRAND-ANCHOR SYSTEM<br />

System Def<strong>in</strong>ition:<br />

• Unbonded monostrand<br />

+<br />

Wedge-anchors at its ends<br />

Test Setup:<br />

• Strand-Anchor system<br />

at Universal Test<strong>in</strong>g Mach<strong>in</strong>e<br />

Specimen Variations:<br />

• 0.5” and 0.6” diameter<br />

monostrands<br />

Test<strong>in</strong>g Program:<br />

• Quasi-static mixed<br />

force/displacement-controlled<br />

load application<br />

P. Sideris,<br />

Sept. 17, 2012<br />

STRAND-ANCHOR SYSTEM<br />

Test Results:<br />

• Three major observations:<br />

Premature fracture of monostrands<br />

Successive (≠ simultaneous) wire fracture<br />

Load<strong>in</strong>g ≠ unload<strong>in</strong>g (and Reload<strong>in</strong>g) stiffness and smaller<br />

than that of monostrand itself<br />

Force (kips)<br />

50<br />

40<br />

30<br />

Load<strong>in</strong>g<br />

Branch<br />

20<br />

10<br />

Unload<strong>in</strong>g-Reload<strong>in</strong>g<br />

Branches<br />

Wire<br />

Fracture<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Displacement (<strong>in</strong>)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

18


Test Results:<br />

STRAND-ANCHOR SYSTEM<br />

• Premature Failure<br />

Ultimate Stress (ksi)<br />

280<br />

260<br />

240<br />

220<br />

Strength reduction up to 10%<br />

Fracture stra<strong>in</strong>s vary between 0.015 – 0.04 (


HSR JOINT FRICTIONAL PROPERTIES<br />

Specimen Description:<br />

• 2”x2”x2” concrete cubes<br />

• Axially compressed<br />

• Displacement is applied to central cube<br />

Test Setup:<br />

HSR JOINT FRICTIONAL PROPERTIES<br />

Specimen Description:<br />

Test Setup:<br />

Slid<strong>in</strong>g<br />

<strong>in</strong>terface<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

HSR JOINT FRICTIONAL PROPERTIES<br />

Specimen Configurations:<br />

• Interface type:<br />

Dry concrete<br />

Concrete-silicone<br />

• Axial compression:<br />

200 psi, 500 psi and 750 psi<br />

• Slid<strong>in</strong>g amplitude and velocity:<br />

< 0.35” and < 3 <strong>in</strong>/sec<br />

HSR JOINT FRICTIONAL PROPERTIES<br />

Test Results:<br />

• Dry Concrete Interface:<br />

CoF<br />

Coeff. of Friction for velocity


Test Results:<br />

• Concrete-Silicone Interface:<br />

Permanent CoF C<br />

HSR JOINT FRICTIONAL PROPERTIES<br />

Coeff. of Friction for velocity


CONCLUSIONS<br />

Numerical models are required to provide reliable predictions<br />

of the response of HSR members<br />

Response of <strong>in</strong>dividual unbonded monostrands considerably<br />

differs from strand-anchor systems<br />

Silicone material significantly affects the HSR jo<strong>in</strong>t frictional<br />

properties<br />

ACKNOWLEDGEMENTS<br />

Federal Highway Adm<strong>in</strong>istration of the U.S.<br />

Department of Transportation<br />

Bodossaki Foundation<br />

Alexander S. Onassis Public Benefit Foundation<br />

SEESL personnel (Particularly Ms. M. Anagnostopoulou,<br />

Structural and Test Eng<strong>in</strong>eer)<br />

UB’s CCR (Particularly Dr. L. Shawn Matott)<br />

Mr. Joe Salvadori (DSI), Dr. Curt Haselton (CSU,<br />

Chico), Mr. David Welch (Undergraduate, University at<br />

Buffalo)<br />

P. Sideris,<br />

Sept. 17, 2012<br />

P. Sideris,<br />

Sept. 17, 2012<br />

Thank you!!!<br />

Questions?<br />

P. Sideris,<br />

Sept. 17, 2012<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!