09.06.2014 Views

Texas DOT Experience with Prefabricated Bridge ... - MCEER

Texas DOT Experience with Prefabricated Bridge ... - MCEER

Texas DOT Experience with Prefabricated Bridge ... - MCEER

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Texas</strong> <strong>DOT</strong> <strong>Experience</strong> <strong>with</strong><br />

<strong>Prefabricated</strong> <strong>Bridge</strong><br />

Construction<br />

Lloyd M. Wolf, P.E.<br />

Tx<strong>DOT</strong> <strong>Bridge</strong> Division<br />

September 2005


Logistics of<br />

CIP Construction


Benefits of <strong>Prefabricated</strong><br />

Construction<br />

TIME<br />

COST<br />

QUALITY<br />

SAFETY


Replication<br />

of Form


Redfish Bay Precast Caps<br />

Nueces County<br />

SH 361<br />

(1994)


Grout Pocket


Pierce Elevated Freeway<br />

<strong>Bridge</strong> Replacement<br />

IH 45<br />

Downtown Houston, TX<br />

(1997)


“Bolted”<br />

Connection


Pierce Elevated<br />

• Precast deck panels<br />

• Precast concrete<br />

beams<br />

•<strong>Prefabricated</strong> steel<br />

bents<br />

• Precast bent caps


Development of a Precast<br />

Bent Cap System<br />

Tx<strong>DOT</strong> Research Project 1748<br />

The University of <strong>Texas</strong> at Austin<br />

Center for Transportation Research


Sponsored Research<br />

•Various connection<br />

types<br />

•System performance<br />

•Design guidelines in<br />

code-like format<br />

•Sample details<br />

•Grout performance<br />

specification<br />

•Construction issues


Design Philosophy<br />

• Limit States<br />

–Strength<br />

–Serviceability<br />

–Fatigue and Fracture<br />

–Extreme Event<br />

• Ductility<br />

•Redundancy<br />

• Structural Integrity


Grout Pockets<br />

• Technique<br />

– precast voids/pockets in cap to contain<br />

column connectors<br />

• Advantages<br />

– flexibility in size and shape<br />

– large construction tolerances<br />

– simple grouting operation<br />

• Disadvantages<br />

– cracking potential at large top surface<br />

– congestion of reinforcement<br />

– larger volume of grout


Grouted Vertical Ducts<br />

• Technique<br />

– steel corrugated ducts embedded in cap to<br />

house column connectors<br />

• Advantages<br />

– inexpensive stay-in-place ducts<br />

– minimal reinforcement congestion<br />

– limited exposed top surface<br />

– minimal volume of grout<br />

• Disadvantages<br />

– more difficult grout placement


Bolted Connection<br />

• Technique<br />

– ducts embedded in cap house threaded rods<br />

tensioned at the top surface<br />

• Advantages<br />

– cap setting via leveling plates/nuts<br />

– post-tensioning option<br />

– resistance to larger moments<br />

• Disadvantages<br />

– more difficult grouting operations<br />

– protecting/recessing top anchorage


Analysis Guidelines<br />

• Structural Analysis<br />

– simplified approach: actions based on worst case of<br />

pinned vs. fixed connection at top of column/pile<br />

– general approach: estimate connection stiffness<br />

– load factor actions at connection increased by 30%<br />

• Strength<br />

– P-M analysis of connector cross-section<br />

– shear friction, V n = cA g + µ [A v f y + P c ]<br />

– joint shear, V n = 12 b j h


Serviceability Guidelines<br />

• bedding layer opening (location of neutral axis)<br />

• if connectors experience tension<br />

– control of crack width via Gergley-Lutz equation (validity?)<br />

– durability enhancement<br />

• connector coatings<br />

• embedment of column or pile into cap<br />

• limit pocket/duct height below top of cap<br />

• external sealants<br />

• drip beads<br />

• waterstops<br />

– bent deflections


Select Trial Bent Configuration<br />

Analyze & Design Bent,<br />

Bent Cap, & Columns<br />

Determine Connection Actions<br />

Select Trial Connector Configuration<br />

Analyze Connector Configuration<br />

Determine Connector Type & Embedment<br />

Select Confining & Auxiliary Reinforcement


Connection Details<br />

• min. connector area of 0.7% for columns and 1.0% for piles<br />

• #7 - #11 rebar (≤75 ksi); 7/8” to 1-1/2” bolts (≤ 150 ksi)<br />

• min. of 4 connectors per column and 3 per pile<br />

• grout pocket<br />

– connector placement tolerance of ± 1” long, ± 2” trans, ± 1” vert<br />

– trapezoidal cross-section <strong>with</strong> a downward narrowing 2° taper<br />

– min. clear connector spacing the larger of d b and 1”<br />

• vertical ducts and bolted connections<br />

– connector placement tolerance of ± 1” long, trans, and vert<br />

– max 5” duct dia.<br />

– duct length ≥ connector embedment + 3”<br />

– min. clear duct spacing the larger of 1-1/2” and 4/3 x max. aggr.


Connection Details (cont’d)<br />

• connection embedment (top of column or pile)<br />

– surface-flush: bedding layer thickness of 1-1/2” to 4”<br />

– embedded: 2” to 5” from bottom surface of cap<br />

• confinement<br />

– spirals or closed ties required (ACI mins for shear)<br />

– vertical spacing of 2” to 6”<br />

• development length<br />

0.022dbfy<br />

– grout pocket………………….l d =<br />

f '<br />

c<br />

– grouted vertical duct…………l d =<br />

0.024d<br />

f '<br />

c<br />

b<br />

f<br />

y<br />

– 50% increase for close connector/duct spacings


Research Report 1748-2<br />

• Contains Full Description of<br />

– Research<br />

– Testing<br />

– Design Procedures and Recommendations<br />

• Availability<br />

– Center for Transportation Research Library<br />

• Phone 512-232-3126<br />

• ctrlib@utexas.edu


Research Project 4176<br />

“Development of Precast <strong>Bridge</strong> Construction<br />

Systems” – Report to be Published 3-2006<br />

• Investigation of:<br />

– Metal vs Plastic Ducts (25% Cap. Reduction)<br />

– Misplaced Connectors in Ducts (Off Center –<br />

20% Cap. Reduction)<br />

– Connector Embedment Depth<br />

• Availability<br />

– Center for Transportation Research Library<br />

• Phone 512-232-3126<br />

• ctrlib@utexas.edu


Lake Ray Hubbard<br />

Precast Caps<br />

Rockwall County<br />

SH 66<br />

(2002)


Lake Belton<br />

Precast<br />

Hammer Head Caps<br />

Bell County<br />

SH 36<br />

(2004)


Plan View of Project<br />

PHASE 1 CONSTRUCTION<br />

PHASE 2 CONSTRUCTION


New Structure<br />

• Construction Began Sept. 2002<br />

• Phase I: $20.0M ($47/SF)<br />

• 3840 ft Total Length<br />

• Twin 40 ft Roadways<br />

• Phased Construction<br />

• 32 ~ 120 ft Prestressed<br />

Concrete U54 Beam Spans<br />

• 8” Composite Slab: 4” CIP<br />

Topping & PCP SIP Forms<br />

• Twin Independent Substructures


Cross-Section of New Structure


Overall Bent Design


Bent Cap Design


Precast<br />

Connection<br />

Forces


Service Level<br />

Section Behavior<br />

Critical Bar<br />

Neutral Axis<br />

Service Stress


Precast Connection Design


Precast Connection Design


Research Project 4085<br />

“Preventing Premature Concrete Deterioration<br />

Due to ASR/DEF in New Concrete”<br />

Report Pending<br />

• Investigation and Report Include:<br />

– Causes (Materials Evaluation)<br />

– Mitigation (Materials Selection, Construction)<br />

– Specifications and Recommended Practice<br />

• Availability<br />

– Center for Transportation Research Library<br />

• Phone 512-232-3126<br />

• ctrlib@utexas.edu


Cap Fabrication<br />

• Construction according<br />

to Item 420<br />

• Mass concrete placement<br />

– Max 160 deg F absolute<br />

and 35 deg F differential<br />

• Off-the-form finish<br />

160<br />

• Approved grout tubes<br />

140<br />

• Full curing w/ interruption 120<br />

allowance to turn over 100<br />

forms (3000 psi)<br />

80<br />

• Avoid damaging members 60<br />

Absolute Temp (F)<br />

Core<br />

Surface<br />

Differential<br />

0 50 100 150<br />

Time (Hours)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Temp Differential (F)


Cap Fabrication<br />

• Concrete Specifications<br />

• Fabricator Requirements<br />

• Concrete Work Plan


Concrete Specification<br />

Requirements<br />

• 7 % Entrained Air<br />

• 160° F Max. Temperature [+/-]<br />

•35° F Max. Differential<br />

Temperature<br />

• Concrete Appearance Specification


Fabricator Concrete<br />

Requirements<br />

• Workable Concrete, 7 1/2” to 8”<br />

Slump<br />

• High-Early Strengths<br />

• Rotate the Casting Bed <strong>with</strong>in<br />

24 hours


Concrete Work Plan<br />

• Type III Portland Cement- 6 sacks/ CY<br />

• Class C Fly Ash - 20% Replacement<br />

• Grade I River Sand<br />

• Grade 5 Crushed Limestone - CA Factor<br />

0.81<br />

• Water Cement Ratio - 4.0 gal/sack<br />

• Air Entrainment, Water Reducing and<br />

Retarding Agents used.


Connection Mock-Up and<br />

Grouting Tests


5’x5’ Connection Block Mock-Up<br />

• Record<br />

Temperatures<br />

• Concrete Finish -<br />

Appearance<br />

• Placement of<br />

Grouting Hardware<br />

• Grouting Test -<br />

Contractor


Connection Block Mock-Up


Concrete Mix Results<br />

• 8” Slump Achieved<br />

• 20 Hr. Strength = 4,822 psi >3.0 ksi<br />

• 7- Day fc = 9,125 psi<br />

• 28- Day fc = 9,960 psi >3.6 ksi<br />

• Max. Temp. = 154° F


Bedding Layer and Connection Bars<br />

Mock-Up


Grout Mixing


Grout Pumping


Flow<br />

Cone<br />

Test


2” x 2”<br />

Grout Cubes<br />

3” x 6”<br />

Cylinders


Bedding<br />

Layer<br />

Evaluation


<strong>Bridge</strong> Construction


Storage


Cap Transport<br />

• Reverses in-place load condition<br />

• Heavy (75 tons) & Short/ special permit req’d.


Cap<br />

Placement


On the Right Track


LP340/SH6 at IH35<br />

Complete <strong>Prefabricated</strong><br />

Superstructure and<br />

Substructure<br />

Bell, McLennan & Bosque Counties<br />

IH 35<br />

(2004)


Typical Superstructure and Interior Bent


Construction<br />

Sequence


Pretopped Steel Tub Girder<br />

38 in depth=115 ft span 46 in depth=130 ft span


Closure Strip


LP340/SH6 at IH-35<br />

<strong>Prefabricated</strong> Concrete Superstructure<br />

40 in depth=115 ft span


Simulated<br />

Bearing Seats


Pre-topped Slab


Transverse<br />

Screed


Reinforcing Steel Placement


Forming Closure Strips


Slab Pour


Remove<br />

Form


Transportation to and Erection at<br />

<strong>Bridge</strong> Site


Research Project 4122<br />

“Development of CIP Slabs Connecting<br />

Precast Slab and Steel Girder Assemblies”<br />

Report to be Published 3-2006<br />

• Investigation of:<br />

– Closure Strip Behavior<br />

• Service Load<br />

• Ultimate Strength<br />

• Availability<br />

– Center for Transportation Research Library<br />

• Phone 512-232-3126<br />

• ctrlib@utexas.edu


STEEL BEAMS<br />

ON SINGLE COLUMN BENTS<br />

46' ROADWAY<br />

56' ROADWAY


<strong>Prefabricated</strong> Columns


Setting <strong>Prefabricated</strong> Column Shell


Elevation<br />

Control


Casting<br />

Concrete<br />

Core


<strong>Texas</strong> State<br />

Historic Railroad<br />

<strong>Bridge</strong> Replacements<br />

From Palestine to Rusk<br />

in conjunction <strong>with</strong><br />

<strong>Texas</strong> Parks and Wildlife Department<br />

(1996 and 2003)


Dry Creek <strong>Bridge</strong>


Double Tee Connection


Thank You<br />

Lloyd M. Wolf, PE<br />

lwolf@dot.state.tx.us<br />

512-416-2279

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!