05.06.2014 Views

Synthesis of Pheromones: Highlights from 2005 ... - IngentaConnect

Synthesis of Pheromones: Highlights from 2005 ... - IngentaConnect

Synthesis of Pheromones: Highlights from 2005 ... - IngentaConnect

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Current Organic Chemistry, 2009, 13, 683-719 683<br />

<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong>: <strong>Highlights</strong> <strong>from</strong> <strong>2005</strong>-2007<br />

J. Bergmann 1 , J.A.F.P. Villar 2 , M.F. Flores 1 and P.H.G. Zarbin 3,*<br />

1 Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso, Chile<br />

2 Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del Rei, 35501-296, Divinópolis- MG, Brazil<br />

3 Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990, Curitiba-PR, Brazil<br />

Abstract: The synthesis <strong>of</strong> insect pheromones published in the period <strong>2005</strong>-2007 is reviewed. A total <strong>of</strong> 66 compounds<br />

<strong>from</strong> different insect orders and belonging to different structural classes were included.<br />

1. INTRODUCTION<br />

<strong>Pheromones</strong> are naturally occurring chemicals which are<br />

produced and released by an organism in order to transmit<br />

information to another individual <strong>of</strong> the same specie. So far,<br />

the use <strong>of</strong> pheromones has been documented for many species<br />

belonging to different taxa, with the insects clearly<br />

standing out in terms <strong>of</strong> number <strong>of</strong> species studied. This is<br />

probably due to several factors, including the relatively simple<br />

behavior <strong>of</strong> insects (facilitating the design <strong>of</strong> bioassays),<br />

their occurrence in great numbers (easy access to material),<br />

and their importance as pests in agriculture.<br />

The study <strong>of</strong> insect pheromones is a fascinating research<br />

field. The prospect <strong>of</strong> unraveling the molecular basis <strong>of</strong><br />

chemical communication as well as the possibility <strong>of</strong> developing<br />

environmentally benign methods <strong>of</strong> pest control is<br />

driving many research activities. In this context, pheromones<br />

need to be synthesized for two reasons. First, to provide<br />

authentic reference material needed for unambiguous identification<br />

<strong>of</strong> the natural compound by comparing their analytical<br />

data. Second, to provide the material necessary for the<br />

evaluation <strong>of</strong> their effect on insect behavior in laboratory<br />

bioassays or under natural conditions in the field. In many<br />

cases, insect pheromones were found to occur as pure or as<br />

defined mixtures <strong>of</strong> stereoisomers, so synthetic routes have<br />

to be developed, which lead with high selectivity to the desired<br />

geometric and/or absolute configuration. The synthesis<br />

<strong>of</strong> insect pheromones has been reviewed in a number <strong>of</strong> articles.<br />

Mori provided comprehensive overviews in 1981 and<br />

1992 [1, 2] with a partial update in 2004 [3] and also published<br />

articles relating pheromone synthesis to specific topics<br />

[4-6]. The application <strong>of</strong> biocatalysis to pheromone synthesis<br />

has also been reviewed recently [7].<br />

The present article is a follow-up <strong>of</strong> our summary <strong>of</strong><br />

pheromone syntheses published <strong>from</strong> 2002-2004 [8]. Here,<br />

we review the most recent advances in the synthesis <strong>of</strong><br />

pheromones published in the triennium <strong>2005</strong>-2007.<br />

* Address correspondence to this author at the Departamento de Química,<br />

Universidade Federal do Paraná, CP 19081, 81531-990, Curitiba-PR, Brazil;<br />

Fax: +55 41 3361 3186; E-mail: pzarbin@quimica.ufpr.br<br />

2. SYNTHESIS OF ALKANES AS PHEROMONES<br />

2.1. meso-7,11-Dimethylheptadecane (1)<br />

The branched alkanes meso-7,11-dimethylheptadecane<br />

(1) and (S)-7-methylheptadecane constitute the female sex<br />

pheromones <strong>of</strong> the spring hemlock looper Lambdina<br />

athasaria and <strong>of</strong> the pitch pine looper L. pellucidaria [9, 10].<br />

Nagano et al. [11] presented a stereoselective synthesis<br />

<strong>of</strong> 1. Starting <strong>from</strong> ethyl bromomethacrylate (A), they prepared<br />

diethyl 4-benzyloxy-2,6-dimethyleneheptanedioate<br />

(B), which was used in a diastereoselective chelationcontrolled<br />

radical reaction with pentyl iodide in the key step<br />

(Scheme 1). Use <strong>of</strong> 6 equivalents <strong>of</strong> the Lewis acid<br />

MgBr 2·OEt 2 and low temperatures turned out to be crucial<br />

for the high diastereoselectivity <strong>of</strong> the reaction.<br />

2.2. 5,9-Dimethylpentadecane (2) and 5,9-dimethylhexadecane<br />

(3)<br />

5,9-Dimethylpentadecane (2) and 5,9-dimethylhexadecane<br />

(3) are components <strong>of</strong> the sex pheromone <strong>of</strong> the c<strong>of</strong>fee<br />

leaf miner Leucoptera c<strong>of</strong>feella [12].<br />

Racemic mixtures <strong>of</strong> both compounds were synthesized<br />

starting <strong>from</strong> citronellol by Doan et al. [13], using a sequence<br />

<strong>of</strong> ultrasound-assisted tosylation and alkylation reactions<br />

(Scheme 2). The overall yield was above 50 % over six<br />

steps in both cases, and the use <strong>of</strong> ultrasound shortened considerably<br />

the reaction times as compared to conventional<br />

procedures.<br />

3. SYNTHESIS OF ALKENES AS PHEROMONES<br />

3.1. (Z,Z)-5,25-Hentriacontadiene (4) and (Z,Z)-5,27-<br />

tritriacontadiene (5)<br />

(Z,Z)-5,25-Hentriacontadiene (4) and (Z,Z)-5,27-tritriacontadiene<br />

(5), have been identified as the major sex pheromone<br />

components <strong>from</strong> female cuticular extracts <strong>of</strong> Drosophila<br />

ananassae and D. pallidosa, respectively. The authors<br />

indicate that the major sex pheromone compounds are key<br />

factors in male recognition between D. ananassae and D.<br />

pallidosa, and that morphological differences are less important<br />

[14, 15].<br />

1385-2728/09 $55.00+.00 © 2009 Bentham Science Publishers Ltd.


684 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

EtO 2 C<br />

A<br />

Br<br />

1) H 2 C=O, H 2 O/EtOH (1:1), 79%<br />

2) PCC, AcONa, CH 2 Cl 2<br />

EtO 2 C<br />

O<br />

OH<br />

1) A, Zn, aq NH 4 Cl, 54%<br />

2) BnOC(=NH)CCl 3 , TfOH<br />

cyclohexane/CH 2 Cl 2 (2:1), 70%<br />

EtO 2 C<br />

OBn<br />

B<br />

CO 2 Et<br />

n-C 5 H 11 I, n-Bu 3 SnH, Et 3 B,<br />

6 equiv. MgBr 2 OEt 2 ,<br />

CH 2 Cl 2 , -60 o C, 59%<br />

4<br />

( )<br />

EtO 2 C<br />

OBn<br />

4<br />

( )<br />

CO 2 Et<br />

1) DIBAL-H, CH 2 Cl 2 , 96%<br />

HO<br />

OH<br />

OH<br />

1) MsCl, Py, CH 2 Cl 2 , 96%<br />

2) H 2 , Pd/C, EtOH, 100%<br />

.<br />

( )<br />

5<br />

( )<br />

5<br />

2) LiAlH 4 , Et 2 O, 88%<br />

Scheme 1.<br />

1<br />

OH<br />

TsCl, Py, CHCl 3 ,<br />

OTs<br />

RMgBr, Li 2 CuCl 4 ,<br />

( )<br />

n<br />

ultrasound, 80 - 92%<br />

THF, -78 o C, ultrasound<br />

R = n - C 4 H 9<br />

R = n - C 5 H 11<br />

n = 4 or 5<br />

1) perphthalic acid<br />

2) HIO 4 , THF<br />

H<br />

O<br />

1) NaBH 4 , MeOH,<br />

( )<br />

n 2) TsCl, Py, CHCl 3 ,<br />

TsO<br />

ultrasound<br />

n = 4 or 5 n = 4 or 5<br />

( )<br />

n<br />

Scheme 2.<br />

2-hexylMgBr, Li 2 CuCl 4 ,<br />

THF, -78 o C, ultrasound<br />

( )<br />

3<br />

n = 4, (2)<br />

n = 5, (3)<br />

( )<br />

n<br />

Br OH<br />

( )<br />

n<br />

n = 8<br />

n = 10<br />

1) PhSO 2 Me, n-BuLi,<br />

THF/HMPA<br />

(n = 8, 97%; n = 10, 88%)<br />

2) DMSO, (COCl) 2 , Et 3 N,<br />

CH 2 Cl 2 (n = 8, quant; n = 10, 99%)<br />

PhO 2 S<br />

O<br />

( )<br />

n<br />

8<br />

n = 10<br />

H<br />

[CH 3 (CH 2 ) 5 PPh 3 ] + Br - , KHMDS,<br />

THF/HMPA (n = 8, 92%; n = 10, 99%)<br />

Scheme 3.<br />

PhO 2 S<br />

1) n-BuLi, A, THF/HMPA<br />

(n = 8, 70%; n = 10, 88%)<br />

( ) ( ) ( )<br />

n 4<br />

2) SmI 3<br />

2 , THF/HMPA<br />

( )<br />

n<br />

( )<br />

4<br />

(n = 18, 74%; n = 20, 76%)<br />

n = 8<br />

n = 10<br />

OH Br 2 , Ph 3 P, Py,<br />

Br<br />

( ) ( ) ( ) ( )<br />

3 10<br />

3 10<br />

CH 2 Cl 2 , 96%<br />

A<br />

Morita et al. [16] described a synthesis <strong>of</strong> these two<br />

compounds employing Wittig olefination followed by a sulfone<br />

coupling (Scheme 3).<br />

n = 18 (4)<br />

n = 20 (5)<br />

3.2. 9-Methylgermacrene-B (6)<br />

The structure <strong>of</strong> the sex pheromone produced by the<br />

males <strong>of</strong> the sandfly Lutzomyia longipalpis, <strong>from</strong> the Lap-


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 685<br />

Geranium macrorrhizum<br />

essential oil<br />

(Zdravets oil)<br />

recrystallisation<br />

<strong>from</strong> EtOH<br />

O<br />

LDA, MeI, HMPA<br />

-78 o C, 54%<br />

O<br />

LiAlH 4<br />

OH<br />

Ac 2 O, DMAP,<br />

OAc<br />

Py, 93% (2 steps)<br />

n-BuLi, CS 2 , MeI Li, HNEt 2 , -10 o C,<br />

10% on 1g scale<br />

CS 2 Me<br />

O<br />

Bu 3 SnH, BEt 3 , O 2 ,<br />

35% on 1g scale<br />

over 2 steps<br />

Scheme 4.<br />

6<br />

O<br />

LiAlH 4 , THF,<br />

0 o C to rt.<br />

OH<br />

( )<br />

8<br />

TsCl, Py,<br />

( )<br />

OTs<br />

8<br />

OCH 3<br />

7<br />

Me 2 CuLi,<br />

CH 2 Cl 2 , 0 o C<br />

THF, 0 o C<br />

Scheme 5.<br />

inha Cave (Minas Gerais State) region <strong>of</strong> Brazil, has been<br />

proposed as the novel homosesquiterpene 9-methylgermacrene-B<br />

[17]. The structure and absolute configuration<br />

was defined as (S) by comparing analytical data and biological<br />

activity <strong>of</strong> the synthetic enantiomers with the natural<br />

product [18].<br />

Hooper et al. [19] described a synthesis <strong>of</strong> 6 starting <strong>from</strong><br />

germacrone, which is the main component <strong>of</strong> the essential oil<br />

<strong>of</strong> the cranesbill Geranium macrorrhizum (Zdravets oil) and<br />

was obtained in pure form by recrystallization. Subsequent<br />

methylation and deoxygenation afforded the racemic pheromone<br />

over 4 steps (Scheme 4).<br />

3.3. (3Z,6Z,9Z)-3,6,9-Nonadecatriene (7)<br />

(3Z,6Z,9Z)-3,6,9-Nonadecatriene is the pheromone <strong>of</strong> a<br />

number <strong>of</strong> geometrid and noctuid moths, for example it has<br />

been identified in the autumn gum moth Mnesampela privata<br />

[20].<br />

The use <strong>of</strong> butylated hydroxytoluene as an antioxidant to<br />

prevent loss <strong>of</strong> product was the key factor in the short synthesis<br />

presented by Davies et al. [21]. Methyl linoleate (either<br />

enriched <strong>from</strong> linseed oil or pure) was reduced to the<br />

alcohol, which was converted to the tosylate. Reaction with<br />

lithium dimethyl cuprate afforded 7 without C19 contaminants<br />

in 65 % (starting <strong>from</strong> enriched methyl linoleate) and<br />

85 % (starting <strong>from</strong> pure methyl linoleate) yield, respectively<br />

(Scheme 5). All steps were carried out in the presence <strong>of</strong> 1 %<br />

the antioxidant, which was carried through the synthesis and<br />

assured an improved yield as compared to previous methods.<br />

4. SYNTHESIS OF EPOXY PHEROMONES<br />

4.1. (3Z,6Z,9S,10R)-9,10-Epoxy-1,3,6-heneicosatriene (8)<br />

and (3Z,6Z,9S,10R)-9,10-epoxy-3,6-heneicosadiene (9)<br />

(3Z,6Z)-9,10-Epoxy-1,3,6-heneicosatriene (8) and (3Z,<br />

6Z)-9,10-epoxy-3,6-heneicosadiene (9) were identified in the<br />

sex pheromone gland <strong>of</strong> the arctiid moth, Hyphantria cunea.<br />

Of the synthesized enantiomers, the (9S,10R) alkenes were<br />

biologically active, while the (9R,10S) forms were inactive<br />

[22].<br />

Diacrisia obliqua is a polyphagous insect attacking many<br />

crops, particularly oil seed crops in India and Bangladesh<br />

[23]. Persoons et al. showed that the pheromone <strong>of</strong> D. obliqua<br />

is a five component blend consisting <strong>of</strong> 8, 9, (9Z,12Z)-<br />

octadecadienal, (9Z,12Z,15Z)-octadecatrienal and (3Z,6Z,<br />

9Z)-heneicosatriene [24].<br />

Che and Zhang [25] described an enantioselective synthesis<br />

<strong>of</strong> 8 utilizing a coupling reaction between a 1,4-diyne<br />

and the chiral epoxy tosylate A (Scheme 6).


686 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

HO<br />

( )<br />

10<br />

4Å MS, D-(-)-DCHT, Ti(O-i-Pr) 4 ,<br />

TBHP, CH 2 Cl 2 , -20 oC<br />

HO<br />

( )<br />

10<br />

+<br />

HO<br />

O<br />

( )<br />

10<br />

1) m-CPBA, CH 2 Cl 2 , rt., 24 h<br />

2) (i) TsCl, powdered KOH, Et 2 O,<br />

-5 o C to 0 o C, 3 h<br />

(ii) flash chromatography employed<br />

to separate diastereoisomer<br />

1) AcOH, PPh 3 , DIAD, THF, rt., 24 h<br />

2) K 2 CO 3 , CH 3 OH, 0 o C, 1 h. D-(-)-DCHT,<br />

dicyclohexyl D-(-)-tartrate; TBHP, tert-butyl<br />

hydroperoxide; DIAD, diisopropyl<br />

azodicarboxylate.<br />

O<br />

O<br />

TsO<br />

( )<br />

10<br />

(2S,3S)-A<br />

3) (i) TsCl, powered KOH, Et 2 O,<br />

-5 o C to 0 o C, 3 h<br />

(ii) flash chromatography employed<br />

to separate diastereoisomer<br />

HO<br />

( )<br />

10<br />

OTHP<br />

1) n-BuLi, -78 o C, 20 min<br />

2) BF 3<br />

. Et 2 O, -78 o C, 10 min<br />

3) (2S,3S)-A, -78 o C, 3h<br />

HO<br />

OTHP<br />

1) PTSA, CH 3 OH, rt., 5 h<br />

TsO<br />

( )<br />

10<br />

2) K 2 CO 3 , CH 3 OH, rt., 30 min<br />

O<br />

Scheme 6.<br />

( )<br />

10<br />

OH<br />

1) H 2 , Pd-CaCO 3 , quinoline, CH 3 OH, rt.<br />

2) (i) MsCl, Et 3 N, CH 2 Cl 2 , 0 o C to rt. , 1 h<br />

(ii) LiBr, NaHCO 3 , THF, 8 h.<br />

3) K 2 CO 3 , CH 3 OH, rt., 48 h.<br />

O<br />

8<br />

Nakanishi and Mori [26] described a new and more practical<br />

synthesis <strong>of</strong> 8 and 9 to furnish these compounds in a<br />

suitable quantity (Scheme 7). The synthesis <strong>of</strong> both pheromones<br />

was performed employing the chiral epoxide A obtained<br />

in 84-87% e.e. <strong>from</strong> lipase-catalyzed asymmetric acetylation<br />

<strong>of</strong> the racemic epoxide in the key step. (2S,3R)-A<br />

was converted to the triflate and alkylated with diynes D<br />

(synthesis <strong>of</strong> 8) and E (synthesis <strong>of</strong> 9), respectively. The<br />

resulting epoxy diynes were further transformed to 8 and 9,<br />

respectively, including Lindlar semihydrogenation and a<br />

final alkylation step.<br />

4.2. (7R,8S)-(+)-7,8-Epoxy-2-methyloctadecane (10) (disparlure)<br />

Disparlure (2-methyl-7,8-epoxyoctadecane, 10) is the<br />

single sex attractant pheromone emitted by the female gypsy<br />

moth, Lymantria (Porthetria) dispar [27]. Iwaki et al. [28]<br />

established the configuration <strong>of</strong> natural 10 to be (7R,8S) by<br />

synthesis, and also observed that this isomer is attractive<br />

while the enantiomer results in an inhibitory response.<br />

Koumbis and Chronopoulos [29] described a short route<br />

to obtain both enantiomers <strong>of</strong> disparlure, starting <strong>from</strong> isopropylidene<br />

D- and L-erythrose (both available in multigram<br />

quantities <strong>from</strong> D- and L-arabinose), respectively, which<br />

were subjected to two Wittig olefinations. The saturated acetonide<br />

obtained after hydrogenation with Raney-Ni was<br />

transformed to the epoxide via the diol (Scheme 8).<br />

An enantiodivergent route to both enantiomers <strong>of</strong> disparlure<br />

was developed by Prasad and Anbarasan [30]. The common<br />

precursor for both enantiomers was the homoallylic<br />

alcohol A, obtained in 5 steps <strong>from</strong> the bis-Weinreb amide <strong>of</strong><br />

L-tartaric acid. The hydroxy group <strong>of</strong> A was either protected<br />

as tosylate (synthesis <strong>of</strong> (-)-10) or as tert-butyldimethylsilyl<br />

ether (synthesis <strong>of</strong> (+)-10). Building up <strong>of</strong> the carbon skeleton<br />

by cross metathesis reactions and subsequent partial deprotection<br />

and cyclization furnished the enantiomers in a<br />

high overall yield (Scheme 9).<br />

4.3. (6Z,9Z,11S,12S)-trans-11,12-Epoxy-6,9-heneicosadiene<br />

(11) (posticlure)<br />

Posticlure [(6Z,9Z,11S,12S)-trans-11,12-epoxy-6,9-<br />

heneicosadiene (11)] is the pheromone <strong>of</strong> the tussock moth<br />

Orgyia postica, a pest <strong>of</strong> mango and litchi trees in Japan<br />

[31]. A multigram synthesis <strong>of</strong> the trans-epoxide pheromone,<br />

starting <strong>from</strong> diethyl L-tartrate was carried out by<br />

Fernandes [32], employing Wittig olefinations and the<br />

stereoselective conversion <strong>of</strong> an intermediate diol to the epoxide<br />

(Scheme 10).


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 687<br />

HO<br />

OH<br />

1) NaH, TBSCl, THF<br />

2) m-CPBA, CH 2 Cl 2 , 81% (2 steps)<br />

TBSO<br />

O<br />

OH<br />

Lipase PS-C,<br />

CH 2 =CHOAc, Et 2 O, 3 h<br />

TBSO<br />

O<br />

OH<br />

+<br />

TBSO<br />

O<br />

OAc<br />

(2R,3S)-A<br />

47%, 81% e.e.<br />

(2S,3R)-B<br />

49%, 84-87% e.e.<br />

1) K 2 CO 3 , MeOH, quant.<br />

TBSO<br />

O<br />

OH<br />

1) EtMgBr, Cu 2 Cl 2<br />

(2S,3R)-A<br />

OH<br />

CH<br />

CCH 2 Br, THF, 55%<br />

2) TMSCl, Et 3 N, DMAP,<br />

CH 2 Cl 2 , 93%<br />

D<br />

OTMS<br />

(2R,3S)-A<br />

1) n-BuLi, Tf 2 O, THF/HMPA, -78 o C<br />

2) n-BuLi, D, THF, -78 o C<br />

3) K 2 CO 3 , MeOH<br />

[3 steps, 73% (average 60%)]<br />

O<br />

OTBS<br />

OH<br />

1) H 2 , Lindlar Pd-CaCO 3 -Pb 2 + ,<br />

cyclohexane, cyclohexene, 83%<br />

2) CBr 4 , PPh 3 , CH 2 Cl 2 , 96%<br />

O<br />

OTBS<br />

Br<br />

1) t-BuOK, 18-crown-6,<br />

hexane, 77%<br />

2) TBAF, THF, 90%<br />

O<br />

OH<br />

1) TsCl, Py<br />

2) (n-C 10 H 21 ) 2 CuLi,<br />

Et 2 O (65%, 2 steps)<br />

O<br />

8<br />

EtMgBr, Cu 2 Cl 2<br />

CH<br />

CCH 2 Br, THF, 55%<br />

E<br />

(2R,3S)-A<br />

1) n-BuLi, Tf 2 O, THF/HMPA, -78 o C<br />

2) n-BuLi, E, THF, -78 o C (67%, 2 steps)<br />

O<br />

1) H 2 , Lindlar Pd-CaCO 3 -Pb 2 + ,<br />

cyclohexane, 77%<br />

2) TBAF, THF, 96%<br />

OTBS<br />

O<br />

Scheme 7.<br />

OH<br />

1) TsCl, Py<br />

2) (n-C 10 H 21 ) 2 CuLi,<br />

Et 2 O (62%, 2 steps)<br />

O<br />

9<br />

5. SYNTHESIS OF NON-ISOPRENOIDAL PHERO-<br />

MONE ALCOHOLS AND THEIR ESTERS<br />

5.1. (2S,3S,7S)-3,7-Dimethylpentadecan-2-ol (12) and<br />

(2S,3S,7S)-3,7-dimethylpentadec-2-yl acetate (13)<br />

Since the pioneering work <strong>of</strong> Coppel, Jewett and coworkers<br />

[33, 34], it is known that the sex pheromones <strong>of</strong><br />

several species <strong>of</strong> pine sawflies are esters that share a common<br />

alcohol moiety, namely 3,7-dimethylpentadecan-2-ol<br />

(12). Neodiprion lecontei and N. sertifer produce the acetate<br />

13 as the major component <strong>of</strong> their pheromones, whereas<br />

Diprion similis uses the propionate [33]. Later studies revealed<br />

that the (2S,3S,7S) stereoisomers showed the highest<br />

activity for all Neodiprion species [35, 36].


688 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

O<br />

O<br />

O<br />

OH<br />

[CH 3 (CH 2 ) 8 Ph 3 P] + Br - , n-BuLi,<br />

THF, 0 o C to rt., 95%<br />

HO<br />

O<br />

O<br />

( )<br />

7<br />

1) (COCl) 2 , DMSO,<br />

CH 2 Cl 2 then Et 3 N, -55 o C to rt.<br />

2) [(CH 3 ) 2 CH(CH 2 ) 3 Ph 3 P + ]Br - ,<br />

n-BuLi, THF, 0 o C to rt., 91% (2 steps)<br />

( )<br />

2<br />

O<br />

O<br />

( ) 7<br />

1) H 2 , Raney-Ni, MeOH, rt., 98%<br />

2) 37% HCl, THF/H 2 O (2:1), rt., 98%<br />

HO<br />

HO<br />

1) CH 3 C(OEt) 3 , PPTS, toluene, 110 o C<br />

2) TMSCl, CH 2 Cl 2 , rt.<br />

3) 1 N KOH in MeOH,<br />

THF, 0 o C to rt., 90%<br />

O<br />

(+)-10<br />

O<br />

OH<br />

Similarly<br />

O<br />

O<br />

O<br />

Scheme 8.<br />

OH<br />

A<br />

OBn<br />

9<br />

( )<br />

TsCl, DMAP,<br />

CH 2 Cl 2 , rt., 5 h, 87%<br />

OTs<br />

OBn<br />

9<br />

( )<br />

(-)-10<br />

4-methyl-1-pentene,<br />

Grubbs 2nd gen. catalyst (5 mol%),<br />

CH 2 Cl 2 , reflux 6 h, 92%<br />

OTs<br />

OBn<br />

9<br />

( )<br />

H 2 , Pd/C, MeOH,<br />

rt., 3 h, 90%<br />

OTs<br />

OH<br />

9<br />

( )<br />

K 2 CO 3 , MeOH,<br />

rt., 1 h, 89%<br />

O<br />

(-)-10<br />

OH<br />

( ) 9<br />

OBn<br />

A<br />

TBDMSOTf, Py,<br />

CH 2 Cl 2 , 0 o C, 1 h, 98%<br />

OTBDMS<br />

( ) 9<br />

OBn<br />

4-methyl-1-pentene,<br />

Grubbs 2nd gen. catalyst (5 mol%),<br />

CH 2 Cl 2 , reflux 8 h<br />

OTBDMS<br />

9<br />

( )<br />

OBn<br />

H 2 , Pd/C, MeOH,<br />

rt., 3 h, 81%<br />

OTBDMS<br />

9<br />

( )<br />

OH<br />

TsCl, DMAP, CH 2 Cl 2<br />

rt., 8 h, 90%<br />

OTBDMS<br />

9<br />

( )<br />

OTs<br />

TBAF, THF, rt.,<br />

10 h, 89%<br />

O<br />

Scheme 9.<br />

(+)-10<br />

Bekish et al. [37] reported a stereoselective synthesis <strong>of</strong><br />

alcohol 12 and acetate 13 based on the creation <strong>of</strong> methyl<br />

branches in the carbon chain using the transformation <strong>of</strong><br />

carboxylic esters into 2-substituted allyl halides via sulfonates<br />

<strong>of</strong> tertiary cyclopropanols (Scheme 11).<br />

5.2. 7-Methyloctyl 5-methylhexanoate (14), 7-methyloctyl<br />

octanoate (15), 7-methyloctyl 7-methyloctanoate (16), and<br />

7-methyloctyl (Z)-4-decenoate (17)<br />

7-Methyloctyl 5-methylhexanoate (14), 7-methyloctyl<br />

octanoate (15), 7-methyloctyl 7-methyloctanoate (16), 7-


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 689<br />

HO<br />

CO 2 Et<br />

(CH 3 ) 2 C(OCH 3 ) 2 , PTSA,<br />

O<br />

CO 2 Et<br />

1) LiAlH 4 , THF, reflux, 4 h.<br />

HO<br />

CO 2 Et<br />

benzene, reflux, 8 h, quant.<br />

O<br />

CO 2 Et<br />

2) NaH, DMF, -15 o C, 30 min,<br />

BnBr, 1 h, rt., 82%<br />

O<br />

O<br />

A<br />

OH<br />

OBn<br />

1) (COCl) 2 , DMSO, -78 o C, 30 min, rt., 1h<br />

2) [n-C 7 H 15 CH 2 PPh 3 ] + Br - , n-BuLi, rt., 30 min<br />

-80 o C, aldehyde "<strong>from</strong> A", 2 h, rt.,<br />

overnight, 80%<br />

O<br />

O<br />

B<br />

( )<br />

6<br />

OBn<br />

4N HCl, MeOH<br />

rt., 8 h, 93%<br />

HO<br />

HO<br />

( )<br />

6<br />

OBn<br />

1) CH 3 C(OCH 3 ) 3 , PTSA, CH 2 Cl 2 , rt., 30 min<br />

2) CH 3 COBr, CH 2 Cl 2 , rt., 1.5 h<br />

3) K 2 CO 3 , MeOH, rt., 2.5 h, 90% overall<br />

( )<br />

6<br />

O<br />

H<br />

H<br />

OBn<br />

Scheme 10.<br />

B<br />

Pd(OH) 2 /C 20%, H 2 (80 psi)<br />

MeOH/EtOAc (1:5), rt.,<br />

12 h, 94%<br />

( )<br />

6<br />

OTHP<br />

O<br />

O<br />

CO 2 Et<br />

O<br />

H<br />

1) Zn, CuCl, 1,2-dibromoethane,<br />

ClCO 2 Et, reflux<br />

2) MeOH, THF, HCl, reflux<br />

3) Et 3 N, reflux. (74%, 3 steps)<br />

1) morpholine, 100 o C, 24 h<br />

2) recrystallization<br />

H<br />

(-)-11<br />

Pd(OH) 2 /C (20%),<br />

H 2 (80 psi),<br />

MeOH/EtOAc, rt.,<br />

12 h, 95%<br />

( )<br />

8<br />

( )<br />

4<br />

1) CH 3 C(OCH 3 ) 3 , PTSA, CH 2 Cl 2 ,<br />

rt., 20 min<br />

2) CH 3 COBr, CH 2 Cl 2 , rt., 1.5 h<br />

3) K 2 CO 3 , MeOH, rt., 2.5 h, 89%<br />

1) DHP, PPTS, CH 2 Cl 2 , reflux<br />

2) EtMgBr, Ti(O-i-Pr) 4 , Et 2 O/THF<br />

OH<br />

( )<br />

4<br />

( )<br />

6<br />

O<br />

O<br />

N<br />

O<br />

cis/trans = 99:1<br />

O<br />

H<br />

C<br />

D<br />

( )<br />

8<br />

OH<br />

O<br />

H<br />

O<br />

O<br />

H<br />

OH<br />

4 N HCl, MeOH,<br />

rt., 8 h, 92%<br />

( )<br />

6<br />

H<br />

(-)-11<br />

OH<br />

OTHP<br />

O<br />

1) PCC, NaHCO 3 , CH 2 Cl 2 , 0 o C, 4 h<br />

2) [(Z)-n-C 5 H 11 CH=CHCH 2 CH 2 PPh 3 ] + I - ,<br />

n-BuLi, rt., 30 min, -80 o C,<br />

aldehyde "<strong>from</strong> C" , 1 h, rt., overnight, 77%<br />

1) (COCl) 2 , DMSO, -78 o C, "20 min, B", 45 min,<br />

Et 3 N, -78 o C, 30 min, rt., 1 h<br />

2) [(Z)-n-C 5 H 11 CH=CHCH 2 CH 2 PPh 3 ] + I - , n-BuLi,<br />

r.t., 30 min, -80 o C, aldehyde "<strong>from</strong> D", 1 h, rt.<br />

overnight, 79%<br />

HO<br />

HO<br />

( )<br />

8<br />

( )<br />

4<br />

1) MsCl, Et 3 N, Et 2 O<br />

NaBH 4 , NiCl 2 ,<br />

B(OH) 3 , H 2 O, 98%<br />

1) DHP, PPTS, CH 2 Cl 2<br />

2) MgBr 2 , Et 2 O/CHCl 3 , reflux<br />

(57%, 4 steps)<br />

2) (2R)-2-methyldecyllithium,<br />

Et 2 O/THF, -78 o C<br />

( )<br />

4<br />

O O<br />

A<br />

cis/trans = 10:1<br />

OTHP<br />

OTHP<br />

O<br />

Br<br />

( )<br />

7<br />

Scheme 11.<br />

1) N 2 H 4 , KOH, triethylene<br />

glycol, 180 - 210 o C<br />

2) MeOH, PPTS, reflux<br />

OH<br />

12<br />

( )<br />

7<br />

CH 3 COCl, Et 3 N, Et 2 O<br />

OCOCH 3<br />

13<br />

( )<br />

7


690 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

BnO<br />

OH<br />

(COCl) 2 /DMSO/Et 3 N<br />

CH 2 Cl 2<br />

BnO<br />

H<br />

O<br />

[(CH 3 ) 2 CHCH 2 PPh 3 ] + Br -<br />

BuLi/THF<br />

BnO<br />

O<br />

H 2 , Pd/C<br />

HO<br />

A<br />

Py /Et 2 O, H 3 C(CH 2 ) 6 COCl<br />

O<br />

15<br />

A<br />

Jones<br />

acetone<br />

HO<br />

O<br />

(COCl) 2 /CH 2 Cl 2 , A/Py<br />

O<br />

16<br />

O<br />

OH<br />

Jones<br />

acetone<br />

O<br />

OH<br />

(COCl) 2 /CH 2 Cl 2 ,<br />

A/Py<br />

O<br />

O<br />

14<br />

OH<br />

Jones, acetone,<br />

(COCl) 2 /CH 2 Cl 2 , A/py<br />

O<br />

O<br />

Scheme 12.<br />

methyloctyl (Z)-4-decenoate (17) were identified by Tolasch<br />

et al. as components <strong>of</strong> the sex pheromone produced by females<br />

<strong>of</strong> the click beetle Elater ferrugineus [38]. The same<br />

authors described a simple synthesis to obtain all four compounds.<br />

The alcohol moiety A common to all esters was obtained<br />

in four steps <strong>from</strong> 1,5-pentanediol, involving monoprotection,<br />

partial oxidation, Wittig olefination and hydrogenation<br />

reactions. The acid moieties were either commercially<br />

available or synthesized <strong>from</strong> the corresponding alcohols<br />

by Jones oxidation (Scheme 12).<br />

5.3. (2S,10S)-2,10-Diacetoxyundecane (18)<br />

(2S,10S)-2,10-Diacetoxyundecane (18) constitutes, together<br />

with (2S,9S)-2,9-diacetoxyundecane and (S)-2-<br />

acetoxyundecane, the sex pheromone <strong>of</strong> the swede midge<br />

Contarinia nasturtii [39].<br />

A novel approach for a remote asymmetric induction to<br />

obtain 1,9-anti diols was presented by Cahill et al. [40]. The<br />

diastereoselective synthesis <strong>of</strong> the furanyl spiroacetal A allowed<br />

the preparation <strong>of</strong> spiroacetal fluit fly pheromones B<br />

and C, which were used in the synthesis <strong>of</strong> the diastereomerically<br />

pure mixture <strong>of</strong> (R,R) and (S,S) isomers <strong>of</strong> 1,9-anti<br />

diol D by transacetalisation. Kinetic resolution <strong>of</strong> (±)-D using<br />

Candida antarctica lipase B afforded the (R,R)-diacetate<br />

and the (S,S)-diol, which was converted to 18 with acetic<br />

anhydride (Scheme 13).<br />

5.4. (2S,7S)-2,7-Dibutyroxynonane (19)<br />

The orange wheat blossom midge Sitodiplosis mosellana<br />

is a worldwide pest <strong>of</strong> wheat crops. The sex pheromone has<br />

been identified as (2S,7S)-2,7-dibutyroxynonane (19) [41],<br />

and a mixture <strong>of</strong> isomers is effective in monitoring the pest.<br />

17<br />

The stereoselective synthesis <strong>of</strong> (2S,7S)-19 was achieved<br />

by Hooper et al. [42] using a diastereoselective ring closure<br />

metathesis reaction <strong>of</strong> the mixed silaketal A in the key step<br />

(Scheme 14). The other stereogenic center had been defined<br />

by the use <strong>of</strong> (S)-5-hexen-2-ol during preparation <strong>of</strong> A.<br />

5.5. (4E,7Z)-4,7-Tridecadienyl acetate (20)<br />

(4E,7Z)-4,7-Tridecadienyl acetate (20) is a component <strong>of</strong><br />

the pheromone <strong>of</strong> the potato moth Phthorimaea opercucella<br />

[43].<br />

Starting <strong>from</strong> acrolein, Vakhidov and Musina [44] obtained<br />

the allylic alcohol A by Grignard reation. The key<br />

step was a stereoselective Claisen rearrangement <strong>of</strong> A with<br />

triethylorthoacetate in the presence <strong>of</strong> propanoic acid. Oxidation<br />

<strong>of</strong> the resulting hydroxy ester and stereoselective Wittig<br />

reaction completed the carbon chain and was followed by<br />

reduction and acetylation to obtain 20 in high purity<br />

(Scheme 15).<br />

5.6. (4E,6Z,10Z)-4,6,10-Hexadecatrien-1-ol (21)<br />

(4E,6Z,10Z)-4,6,10-Hexadecatrien-1-ol (21) is the one <strong>of</strong><br />

five components <strong>of</strong> the pheromone bouquet <strong>of</strong> the cocoa pod<br />

borer Conopomorpha cramerella [45].<br />

Pereira and Cabezas [46] described a new method <strong>of</strong><br />

preparation <strong>of</strong> 1,5-diynes, by reaction <strong>of</strong> 1,3-dilithiopropyne<br />

and propargylic chlorides. Two methodologies were used for<br />

the synthesis <strong>of</strong> endiyne C. In the first, the authors coupled<br />

the lithiated 1,5-dialkyne A with the vinylic iodide obtained<br />

<strong>from</strong> alkyne B by hydroboration and reaction with iodine.<br />

Alternatively, the vinylic bromide obtained <strong>from</strong> B by<br />

hidrozirconation and reaction with NBS, was coupled to A<br />

using Sonogashira’s palladium cross coupling reaction<br />

(Scheme 16).


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 691<br />

OTMS<br />

O<br />

+<br />

O<br />

O<br />

1) n-BuLi, THF, -78 o C to 0 o C<br />

2) H 2 , Pd/C, EtOAc, rt.<br />

3) TBAF, CH 2 Cl 2 , rt.<br />

4) PTSA, H 2 O, CH 2 Cl 2 , rt.<br />

A<br />

O<br />

O<br />

RuCl 3 , NaIO 4 ,<br />

H 2 O-MeCN-CH 2 Cl 2<br />

O<br />

O<br />

MeI, K 2 CO 3 ,<br />

O<br />

NaBH 4 , t-BuOH,<br />

O<br />

O<br />

DMF, 70 o C<br />

O<br />

MeOH, reflux<br />

O<br />

O<br />

OH<br />

O<br />

OMe<br />

HO<br />

B<br />

C<br />

ethanedithiol, BF 3<br />

. Et 2 O<br />

CH 2 Cl 2 , rt., 94%<br />

OH<br />

S<br />

S<br />

OH<br />

OH<br />

TsCl, Et 3 N, CH 2 Cl 2 ,<br />

0 o C, 89%<br />

OH<br />

S<br />

S<br />

OH<br />

OTs<br />

NaBH 4 , DMSO,<br />

80 o C, 87%<br />

O<br />

O<br />

ethanedithiol, BF 3<br />

. Et 2 O<br />

CH 2 Cl 2 , rt., 71%<br />

OH<br />

S<br />

S<br />

OH<br />

Raney-Ni, EtOH,<br />

reflux, 90%<br />

OH<br />

(+/-)<br />

OH<br />

C (obtained <strong>from</strong> B in two steps)<br />

D<br />

polyacrylamide-bound Novozym 435<br />

OH<br />

(S,S)-D<br />

OH<br />

Ac 2 O, DMAP,<br />

10 equiv vinyl acetate, toluene,<br />

rt., 18 h, 50%<br />

+<br />

CH 2 Cl 2 , rt., quant.<br />

OAc<br />

OAc<br />

OAc<br />

(R,R)-19<br />

OAc<br />

(S,S)-19<br />

Scheme 13.<br />

TfO<br />

Si<br />

OTf<br />

THF, Py, DMAP,<br />

0 o C, cool to -78 o C,<br />

(S)-5-hexen-2-ol, warm to rt.,<br />

1,4-pentadien-3-ol<br />

O<br />

Si<br />

O<br />

Grubbs' catalyst, CH 2 Cl 2<br />

40 o C, 70 %<br />

O<br />

Si<br />

O<br />

1) 10 equiv TBAF, 4 Å mol sieves,<br />

reflux 18 h, 78%<br />

2) H 2 , PtO 2 , MeOH, 83%<br />

3) butyric anhydride, Py, 85%<br />

A<br />

O<br />

O<br />

O<br />

Scheme 14.<br />

19<br />

O


692 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

O<br />

H<br />

THPO<br />

81%<br />

MgBr<br />

THPO<br />

A<br />

OH<br />

1) triethylorthoacetate,<br />

propionic acid, 138 o C<br />

2) PTSA, rt., 56%<br />

HO<br />

COOEt<br />

pyridinium chromate,<br />

CHCl 3 , 62%<br />

O<br />

H<br />

COOEt<br />

[hexyl-PPh 3 ] + Br - ,<br />

t-BuOK, 64%<br />

COOEt<br />

OAc<br />

Scheme 15.<br />

20<br />

Br<br />

n-BuLi, TMEDA<br />

Li<br />

Li<br />

n-BuLi<br />

H<br />

H<br />

H<br />

H<br />

Cl<br />

81%<br />

A<br />

HO<br />

A<br />

TBDMSCl<br />

99%<br />

TBDMSO<br />

B<br />

Cp 2 Zr(H)Cl,<br />

NBS, 79%<br />

TBDMSO<br />

Pd(PPh 3 ) 4 , A,<br />

Br<br />

n-BuLi<br />

Et 2 NH, CuI, 94%<br />

Sia 2 BH, I 2 ,<br />

NaOH/H 2 O 2 , 86%<br />

TBDMSO<br />

Li<br />

1) Sia 2 BH, HOAc, 60%<br />

2) Bu 4 NF, 99%<br />

C<br />

Scheme 16.<br />

HO<br />

21<br />

6. SYNTHESIS OF NON-ISOPRENOIDAL ALDE-<br />

HYDES, KETONES, ACIDS, AND ESTERS AS<br />

PHEROMONES<br />

6.1. 4,8-Dimethyldecanal (22)<br />

The aggregation pheromone <strong>of</strong> the stored foodstuffs pests<br />

Tribolium castaneum and T. confusum was isolated and identified<br />

by Suzuki as 4,8-dimethyldecanal (22) [47, 48]. Mori<br />

and co-workers [49] developed the first total synthesis <strong>of</strong> all<br />

<strong>of</strong> the four possible isomers <strong>of</strong> 22, establishing the absolute<br />

configuration <strong>of</strong> the natural pheromone as (4R,8R)-22. Later,<br />

bioassays showed that a 8:2 mixture <strong>of</strong> the isomers (4R,8R)<br />

and (4R,8S) was about 10 times more active than (4R,8R)<br />

alone [50].<br />

Zarbin et al. [51] described a synthesis <strong>of</strong> (4R,8R)- and<br />

(4S,8R)-22, coupling the Grignard reagent obtained <strong>from</strong><br />

(R)-2-methyl-1-bromobutane A and the tosylate <strong>of</strong> (R)- and<br />

(S)-citronellol, respectively (Scheme 17), followed by ozonolysis<br />

<strong>of</strong> the double bond <strong>of</strong> the resulting alkene. The key<br />

intermediate A was obtained optically pure in five steps <strong>from</strong><br />

methyl (S)-3-hydroxy-2-methylpropionate [52, 53].<br />

Another methodology was described by Kameda and Nagano<br />

[54]. Starting <strong>from</strong> (R)-2,3-O-isopropylideneglyceraldehyde,<br />

they obtained 22 in 11 steps and 7% overall yield


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 693<br />

HO<br />

O<br />

OMe<br />

[53]<br />

THPO<br />

PPh 3 , Br 2 ,<br />

CH 2 Cl 2 , 75%<br />

Br<br />

(R)-A<br />

*<br />

OH<br />

TsCl, Py, 0 o C<br />

OTs<br />

(R)-A, Mg, THF,<br />

(R)-citronellol; 97% e.e.<br />

(S)-citronellol; 67% e.e.<br />

CHCl 3 , 86%<br />

Li 2 CuCl 4 , 82%<br />

*<br />

O 3 , CH 2 Cl 2 ,<br />

DMS, 83%<br />

O<br />

*<br />

Scheme 17.<br />

(4R,8R)-22 (58% overall yield; 96% e.e.)<br />

(4S,8R)-22 (66% e.e.)<br />

O<br />

O<br />

O<br />

H<br />

+<br />

Br<br />

CO 2 Et<br />

1) Zn, THF, aq NH 4 Cl<br />

2) BnBr, Ag 2 O, toluene<br />

O<br />

O<br />

OBn<br />

CO 2 Et<br />

+<br />

O<br />

O<br />

OBn<br />

CO 2 Et<br />

A<br />

2.8:1<br />

Recrystallisation,<br />

26% <strong>from</strong> A<br />

O<br />

O<br />

OBn<br />

CO 2 Et<br />

CO 2 Et<br />

I<br />

.<br />

n-Bu 3 SnH, Et 3 B,<br />

MgBr 2 OEt 2 , CH 2 Cl 2<br />

O<br />

O<br />

OBn<br />

CO 2 Et<br />

CO 2 Et<br />

1) LiAlH 4 , Et 2 O<br />

OBn<br />

1) H 2 , Pd/C, EtOH<br />

2) TsCl, Py, CH 2 Cl 2<br />

3) LiAlH 4 , Et 2 O<br />

O<br />

O<br />

2) PhOC(=S)Cl, Py, CH 2 Cl 2<br />

3) n-Bu 3 SnH, AIBN,<br />

toluene, 85 o C<br />

O<br />

O<br />

1) HCl, THF/H 2 O (1:1);<br />

H<br />

2) NaIO 4 , aq. CH 3 CN.<br />

O<br />

(4R,8R)-22<br />

Scheme 18.<br />

(Scheme 18). The key step in the synthesis was the highly<br />

diastereoselective chelation-controlled radical reaction <strong>of</strong><br />

ethyl (4S,5R)-4-benzyloxy-5,6-(isopropylidenedioxy)-2-methylenehexanoate<br />

with ethyl (R)-5-iodo-3-methylpentanoate<br />

performed in the presence <strong>of</strong> 7 equivalents <strong>of</strong> MgBr 2 OEt 2 .<br />

6.2. (E)-4-Oxo-2-hexenal (23), (E)-4-oxo-2-octenal (24),<br />

and (E)-4-oxo-2-decenal (25)<br />

Defensive secretions <strong>of</strong> stink bugs (Heteroptera: Pentatomidae)<br />

are characterized by the presence <strong>of</strong> (E)-4-oxo-2-<br />

alkenals with chain lenghts <strong>of</strong> 6, 8, and 10 carbon atoms [55,<br />

56]. More recently, these compounds also have been identified<br />

as pheromone components <strong>of</strong> nymphal [57] and adult<br />

bugs [56, 58].<br />

Moreira and Millar [59] described a simple one step syntheses<br />

<strong>of</strong> (E)-4-oxo-2-hexenal (23) and (E)-4-oxo-2-octenal<br />

(24) <strong>from</strong> commercially available 2-ethyl- and 2-butylfurans<br />

respectively, and a two step synthesis <strong>of</strong> (E)-4-oxo-2-decenal<br />

(25) (Scheme 19).<br />

6.3. 3,11-Dimethylnonacosan-2-one (26)<br />

In 1974, Nishida et al. [60] isolated and identified 3,11-<br />

dimethyl-2-nonacosanone (26) as the major component <strong>of</strong><br />

the female-produced contact sex pheromone <strong>of</strong> the German<br />

cockroach, Blattella germanica.<br />

Ahn et al. [61] described a simple synthesis <strong>of</strong> 26, starting<br />

<strong>from</strong> 1,8-octanediol. The key steps are the alkylation <strong>of</strong><br />

the methyl ketone A (obtained <strong>from</strong> methylation <strong>of</strong> 8-<br />

bromooctanoic acid) to yield bromoalcohol B, and coupling<br />

<strong>of</strong> B with the anion <strong>of</strong> the commercially available ethyl 2-<br />

methylacetoacetate. The final decarboxylation step yielded<br />

26 (Scheme 20).


694 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

O<br />

n-BuLi, THF,<br />

1-iodohexane, 89,8%<br />

Commercially<br />

available<br />

O<br />

O<br />

O<br />

( )<br />

4<br />

( )<br />

2<br />

NBS, Py<br />

THF/acetone/H 2 O, 48%<br />

O<br />

( )<br />

H<br />

4<br />

O<br />

4-oxo-(E)-2-decenal (23)<br />

O<br />

( )<br />

H<br />

2<br />

O<br />

4-oxo-(E)-2-octenal (24)<br />

O<br />

Scheme 19.<br />

HO<br />

O<br />

H<br />

4-oxo-(E)-2-hexenal (25)<br />

1) HBr (48% aq)/benzene,<br />

O<br />

O<br />

reflux, 18 h, 72%<br />

CH 3 Li, THF,<br />

( ) OH<br />

( ) Br<br />

( )<br />

6 2) Jones reagent, acetone,<br />

HO 5<br />

5<br />

-78 o C to 0 o C, 1 h, 64%<br />

0 o A<br />

C to rt., 1 h, 80%<br />

Br<br />

( )<br />

16<br />

OH<br />

1) PBr 3 /Et 2 O, reflux, 2 h, 95%<br />

2) Li/Et 2 O, rt., 30 min<br />

A<br />

( ) Li<br />

( )<br />

16<br />

Et 16 HO<br />

2 O, 0 o C, 3h, 60%<br />

B<br />

( )<br />

6<br />

Br<br />

B<br />

1) Et 3 SiH, BF 3<br />

. Et 2 O/CH 2 Cl 2 ,<br />

0 o C, 2 h, 95%<br />

2) ethyl-2-methyl acetoacetate,<br />

K 2 CO 3 , KI/acetone, reflux, 20 h, 93%<br />

( )<br />

16<br />

( )<br />

7<br />

O<br />

CO 2 Et<br />

15% NaOH, (n-Bu) 4 NOH<br />

THF, rt., 2 h, 73%<br />

O<br />

( )<br />

16<br />

Scheme 20.<br />

H<br />

O<br />

O<br />

26<br />

n-C 5 H 11 MgBr<br />

( )<br />

4<br />

OH<br />

O<br />

1) t-BuLi<br />

2) 1-iododecane<br />

3) H+<br />

O<br />

9 ( )<br />

O<br />

( )<br />

4<br />

(endo:exo 7:3)<br />

Scheme 21.<br />

AcCl, NaI, AcOH<br />

( )<br />

8<br />

O<br />

27 (E:Z 7:3)<br />

( )<br />

4<br />

6.4. (Z)-6-Heneicosen-11-one (27)<br />

(Z)-6-Heneicosen-11-one (27) was first reported in 1975<br />

as the pheromone <strong>of</strong> the Douglas-fir tussock moth Orgyia<br />

pseudotsugata [62]. It has also been found that a 60:40 (E/Z)<br />

mixture <strong>of</strong> 27 was considerably more active than pure (Z)-27<br />

[63].<br />

Shin et al. [64] developed a selective method for the<br />

transformation <strong>of</strong> 6,8-dioxabicyclo[3.2.1]octanes to ,enones<br />

by Lewis acid-induced C–O bond cleavage. The use<br />

<strong>of</strong> AcCl–NaI was crucial for the selectivity <strong>of</strong> the reaction.<br />

The method was applied to the synthesis <strong>of</strong> 27, employing 5-<br />

decyl-7-pentyl-6,8-dioxabicyclo[3.2.1]octane, which was<br />

prepared by the reaction <strong>of</strong> the dimer <strong>of</strong> acrolein with n-<br />

pentylmagnesium bromide, with subsequent alkylation and<br />

cyclization steps (Scheme 21).<br />

6.5. (4S,6S,7S)-7-Hydroxy-4,6-dimethyl-3-nonanone (28)<br />

(serricornin)<br />

Serricornin [(4S,6S,7S)-7-hydroxy-4,6-dimethyl-3-nonanone,<br />

(4S,6S,7S)-28] is the sex pheromone produced by females<br />

<strong>of</strong> the cigarette beetle, Lasioderma serricorne [65-69].


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 695<br />

O<br />

S<br />

+<br />

H<br />

O<br />

O<br />

S<br />

O<br />

wet<br />

DMSO<br />

H N N<br />

N N N<br />

H H<br />

O OH<br />

O O<br />

S<br />

S<br />

75% (> 98% e.e.)<br />

Li s Bu 3 BH, THF,<br />

-78 o C, 83%<br />

OH<br />

OH<br />

O<br />

O<br />

1) Et 3 SiOTf, 2,6-lutidine,<br />

CH 2 Cl 2 , 0 o C, 97%<br />

OSiEt 3<br />

O<br />

O<br />

1) Raney-Ni, EtOH, reflux, 82%<br />

S<br />

S<br />

2) NaH, CS 2 , MeI, 93%<br />

3) Bu 3 SnH, AIBN, PhMe,<br />

110 o C, 91-97%<br />

S<br />

S<br />

2) HOAc, CH 2 Cl 2<br />

OH<br />

O<br />

AcCl, DMAP,<br />

OAc<br />

O<br />

CH 2 Cl 2 (72% 2 Steps)<br />

28<br />

29<br />

Scheme 22.<br />

O<br />

O<br />

K 2 CO 3 , MeI<br />

Acetone, 95%<br />

O<br />

O OH O OH O<br />

Table 1<br />

30 A<br />

(4S,5R)-30 B<br />

OH<br />

O<br />

OH<br />

O<br />

Scheme 23.<br />

30 C<br />

(4S,5S)-30 D<br />

Ward et al. [70] described a synthesis <strong>of</strong> serricornin in 7<br />

steps and 31% overall yield, employing an enantioselective<br />

direct aldol reaction with a chiral tetrazole catalyst derived<br />

<strong>from</strong> L-proline in the key step. The keto group <strong>of</strong> the aldol<br />

adduct was stereoselectively reduced using Li(sec-Bu) 3 BH,<br />

and the resulting diol A was monosilylated and submitted to<br />

Barton-McCombie deoxygenation followed by desulfurization<br />

and deprotection to afford 28, which was isolated and<br />

characterized as the acetate 29 (Scheme 22).<br />

6.6. 5-Hydroxy-4-methyl-3-heptanone (30) (sitophilure)<br />

Sitophilure (5-hydroxy-4-methyl-3-heptanone, 30) was<br />

identified in 1984 by Phillips et al. [71, 72] as the maleproduced<br />

aggregation pheromone <strong>of</strong> the rice weevil, Sitophilus<br />

oryzae and <strong>of</strong> the maize weevil, Sitophilus zeamais. The<br />

synthesis <strong>of</strong> the four possible stereoisomers <strong>of</strong> 30 followed<br />

by indoor bioassays, revealed the (4S,5R) isomer to be the<br />

active form <strong>of</strong> the pheromone [73, 74].<br />

Kalaitzakis et al. [75] described a chemoenzymatic synthesis<br />

<strong>of</strong> sitophilure in two steps and an overall yield <strong>of</strong> 81%,<br />

starting <strong>from</strong> commercially available 3,5-heptanedione<br />

(Scheme 23). The key step <strong>of</strong> this synthesis relies on the<br />

stereoselective reduction <strong>of</strong> the chemically synthesized precursor<br />

<strong>of</strong> (+)-sitophilure, 4-methyl-3,5-heptanedione, by isolated<br />

NADPH-dependent ketoreductases (KRED) (Table 1).<br />

The absolute stereochemistry <strong>of</strong> products 30 B and 30 D was<br />

determined by the use <strong>of</strong> chiral derivatizing agents.<br />

6.7. 1-Ethylpropyl 3-hydroxy-2-methylpentanoate (31)<br />

(sitophilate)<br />

Sitophilate (1-ethylpropyl 2-methyl-3-hydroxypentanoate,<br />

31) was identified by Phillips et al. [76] as the maleproduced<br />

aggregation pheromone <strong>of</strong> the granary weevil Sitophilus<br />

granarius. Bioassays employing all <strong>of</strong> the synthetic<br />

isomers revealed (2S,3R)-31 to be the natural pheromone<br />

[77].<br />

Kalaitzakis et al. [78] worked out a chemoenzymatic synthesis<br />

using a ketoreductase (KRED) for the selective reduction<br />

<strong>of</strong> -ketoester A. Of over 100 enzymes tested, the<br />

KRED-A1B gave the best selectivity towards the desired<br />

(2S,3R) configuration. The diastereomeric purity <strong>of</strong> sitophilate<br />

was improved either by chromatographic separation after<br />

transesterification (Scheme 24, pathway 1) or by use <strong>of</strong> an<br />

enzymatic hydrolysis <strong>of</strong> the resulting -hydroxyester B<br />

(pathway 2) and subsequent esterification with 3-bromopentane.<br />

Gil et al. [79] described a two-step synthesis <strong>of</strong> 31 employing<br />

the condensation <strong>of</strong> the dianion <strong>of</strong> propanoic acid<br />

and propanal, and subsequent esterification with 3-pentanol<br />

(Scheme 25). Different bases, reaction conditions and chiral


696 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

Table 1.<br />

Substrate<br />

KRED<br />

Diastereomeric Ratio % (30)<br />

A B C D<br />

Conversion<br />

(time)<br />

U/mg<br />

Product<br />

101 3 - 6 91 100% (6h) 0.042<br />

114 8 4 - 88 90% (24h) 0.042<br />

115 4 - 4 92 100% (6h) 0.016<br />

O<br />

O<br />

118 4 - - 96 93% (24h) 0.069<br />

OH<br />

O<br />

119 99 100% (12h) 0.204<br />

123 20 - - 80 100% (6h) 0.032<br />

128 3 - 1 96 100% (3h) 0.180<br />

130 6 - - 94 100% (16h) 0.046<br />

A1A 98 20% (24h) 0.058<br />

A1B - 97 3 - 100% (40min) 0.184<br />

A1C - 98 2 - 100% (1h) 0.168<br />

A1D - 97 3 - 100% (1h) 0.131<br />

O<br />

O<br />

K 2 CO 3 , MeI,<br />

O<br />

O<br />

O<br />

acetone, reflux, 99%<br />

O<br />

pathway 1:<br />

A<br />

KRED-EXP-A1B,<br />

NADPH, pH 8.0,<br />

0 o C (12 h),<br />

25 o C (12 h), 90%<br />

A<br />

OH O<br />

O<br />

90% d.e., >99% e.e.<br />

1) NaOH, MeOH/H 2 O, (1:1)<br />

2) 3-bromopentane, DMF, 50 o C,<br />

chromatography, 65%<br />

98% d.e. >99% e.e.<br />

OH<br />

31<br />

O<br />

O<br />

pathway 2:<br />

KOH, 3-bromopentane, DMF<br />

50 o C, 80%, 99% d.e., >99% e.e.<br />

A<br />

KRED-EXP-A1B,<br />

NADPH, pH 6.9<br />

25 o C, 95%<br />

OH<br />

O<br />

O<br />

ICR-112, 25 o C, 83%<br />

OH<br />

O<br />

OH<br />

Scheme 24.<br />

B<br />

82% d.e., >99% e.e.<br />

98% d.e., >99%e.e.<br />

O<br />

OH<br />

Base<br />

OLi<br />

OLi<br />

H<br />

O<br />

OH<br />

O<br />

OH<br />

+<br />

OH<br />

O<br />

OH<br />

OH<br />

H +<br />

OH<br />

O<br />

OH<br />

O<br />

O<br />

+<br />

O<br />

Scheme 25.<br />

31


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 697<br />

O<br />

H<br />

(CH 3 ) 2 NH HCl, 37% formaldehyde,<br />

70 o C, 24 h, 88%<br />

O<br />

H<br />

NaBH 4 , 5% NaHCO 3<br />

MeOH, 5 o C, 1 h, 90%<br />

OH<br />

CH 3 C(OC 2 H 5 ) 3 , propanoic acid,<br />

138 o C, 5 h, 76%<br />

COOEt<br />

H 2 , 10% Pd/C,<br />

EtOH, 3 h, 92%<br />

COOEt<br />

KOH/EtOH/H 2 O<br />

reflux 2.5 h, 95%<br />

COOH<br />

Scheme 26.<br />

33<br />

32<br />

A<br />

A<br />

Ac 2 O, Py, DMAP,<br />

rt., 100%<br />

m-CPBA, CH 2 Cl 2 ,<br />

NaHCO 3 , rt., 82-85%<br />

O O OH O OH O<br />

L-proline (30 mol %),<br />

H +<br />

( ) ( )<br />

CHCl<br />

+ 9<br />

3 , 24 h, 80%<br />

9<br />

A<br />

B<br />

OAc O<br />

85:15. 96% e.e. syn<br />

m-CPBA, CH 2 Cl 2 ,<br />

( )<br />

9<br />

NaHCO 3 , rt., 82-85%<br />

OAc<br />

O O<br />

( )<br />

9<br />

OH<br />

O O Ac 2 O, Py, DMAP,<br />

( )<br />

9<br />

rt., 100%<br />

(-)-(5R,6S)-34<br />

Scheme 27.<br />

amines as bases were tested, but only a modest diastereoselectivity<br />

and a modest degree <strong>of</strong> asymmetric induction was<br />

obtained.<br />

6.8. 4-Methyloctanoic acid (32)<br />

4-Methyloctanoic acid (32) and its ethyl ester (33) are<br />

aggregation pheromones <strong>of</strong> Oryctes rhinoceros beetles, pests<br />

<strong>of</strong> coconut and date palm crops in Southeast Asia and North<br />

Africa [80-82].<br />

A five-step synthesis with high overall yield was developed<br />

by Ragoussis et al. [83]. The key step is a Claisen orthoester<br />

rearrangement <strong>of</strong> the intermediate formed by reaction<br />

<strong>of</strong> 2-methylene-1-hexanol and triethylorthoacetate, resulting<br />

in chain elongation and completion <strong>of</strong> the carbon<br />

skeleton (Scheme 26).<br />

7. SYNTHESIS OF LACTONES AS PHEROMONES<br />

7.1. (5R,6S)-6-Acetoxyhexadecan-5-olide (34)<br />

The major component <strong>of</strong> the oviposition attractant<br />

pheromone <strong>of</strong> the mosquito Culex pipiens fatigans was identified<br />

by Laurence and Pickett [84] in 1982 as erythro-6-<br />

acetoxy-5-hexadecanolide (34). The absolute configuration<br />

was established as (-)-(5R,6S) by comparative chromatography<br />

<strong>of</strong> the 6-trifluoroacetoxy derivatives <strong>of</strong> the natural<br />

pheromone and <strong>of</strong> the synthetic (–)-(5R,6S) and (+)-(5S,6R)<br />

enantiomers [85].<br />

Sun et al. [86] described a synthesis <strong>of</strong> (5R,6S)-34 employing<br />

a L-proline-catalyzed asymmetric aldol reaction in<br />

the key step, giving diastereomeric intermediates A and B in<br />

a 85:15 ratio. A was obtained in 96% e.e., but it was not<br />

stated if or how the diastereomers were separated. Transformation<br />

<strong>of</strong> A by Baeyer-Villiger oxidation followed by acetylation<br />

(or the inverse sequence) yielded 34 (Scheme 27).<br />

In a similar approach, Ikishima et al. [87] obtained the<br />

aldol adducts B and C (75:25) by L-proline-catalyzed aldol<br />

condensation between 1,3-dithiane A and cyclopentanone.<br />

Adduct B was obtained in 83% e.e. and separated <strong>from</strong> C by<br />

chromatography. Desulfurization <strong>of</strong> B followed by Baeyer-<br />

Villiger oxidation and acetylation yielded 34 (Scheme 28).<br />

Dhotare et al. [88] reported the synthesis <strong>of</strong> (5R,6S)-34<br />

by a stereoselective addition <strong>of</strong> n-decyllithium to (R)-2,3-<br />

cyclohexylideneglyceraldehyde A in the key step. The adduct<br />

was straightforwardly converted to 34 in 8 steps<br />

(Scheme 29).<br />

The stereoselective synthesis developed by Prasad and<br />

Anbarasan [89] started <strong>from</strong> the bis-Weinreb amide <strong>of</strong> L-<br />

tartaric acid which was converted to the benzyloxy aldehyde<br />

A. Allylation <strong>of</strong> A and acetalisation <strong>of</strong> the resulting homoallylic<br />

alcohol with acrolein diethyl acetal afforded key intermediate<br />

B, which was subjected to a ring closure metathesis<br />

reaction. Mitsunobu inversion and a final lactol oxidation are<br />

further key steps in this synthesis (Scheme 30).


698 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

O<br />

COOEt<br />

LDA (2 eq.) THF, -78 o C<br />

C 7 H 15 Br, 0 o C, 1 h, 60%<br />

O<br />

( )<br />

7<br />

O<br />

COOEt<br />

1) HS(CH 2 ) 3 SH, BF 3 OEt 2 ,<br />

AcOH, rt. 3 h, 98%<br />

2) DIBAL-H, CH 2 Cl 2 ,<br />

-78 o C, 30 min, 99%<br />

S<br />

( )<br />

7<br />

S<br />

O<br />

H<br />

30 mol % L-proline<br />

13 o C, 20 h, 85% B/C 75:25<br />

O<br />

OH<br />

S<br />

S<br />

O OH S S<br />

+<br />

( ) ( )<br />

7<br />

7<br />

A<br />

B (83% e.e.)<br />

C (90% e.e.)<br />

Scheme 28.<br />

O OH<br />

1) m-CPBA, NaHCO 3 ,<br />

OAc<br />

Raney Ni (W-4),<br />

CH 2 Cl 2 , rt., 9 h, 90%<br />

O O<br />

B ( )<br />

( )<br />

AcOEt, rt., 1 h, 62%<br />

7 2) Ac 2 O, DMAP, Py,<br />

7<br />

rt. 4 h, 100%<br />

34<br />

O<br />

A<br />

O<br />

O<br />

H<br />

A) n-decyllithium, hexane,<br />

- 40 o C to rt., 75%<br />

or B) n-decyllithium, Et 2 O,<br />

- 40 to 0 o C, 78%<br />

O<br />

O<br />

O O<br />

+<br />

( ) 9<br />

( ) 9<br />

OH<br />

Method A: syn/anti 7:93<br />

Method B: syn/anti 5:95<br />

OH<br />

1) TBDPSCl, imidazole, rt.<br />

2) CF 3 CO 2 H, H 2 O,<br />

0 o C, 91% (2 steps)<br />

HO<br />

OH<br />

9<br />

( )<br />

1) TsCl, Py, 0 o C<br />

O<br />

( ) 9<br />

1) 3-butenyl-MgBr, CuBr,<br />

- 40 o C to rt., 77%<br />

OTBDPS<br />

2) K 2 CO 3 , MeOH, rt.,<br />

89% (2 steps)<br />

OTBDPS<br />

2) O 3 , MeOH, NaOH,<br />

-15 o C, 77%<br />

O<br />

Scheme 29.<br />

O<br />

H<br />

9 1) TBAF, THF, rt., 69%<br />

( ) ( )<br />

9<br />

O O<br />

2) Ac 2 O, Py, 0 to -10 o C, 79%.<br />

H<br />

OTBDPS<br />

OAc<br />

34<br />

7.2. (4R,9Z)-Octadec-9-en-4-olide (35)<br />

In 2001 Cossé et al. [90] isolated and identified (Z)-<br />

octadec-9-en-4-olide (35) as a female-specific and antennally<br />

active compound <strong>from</strong> the female currant stem girdler, Janus<br />

integer, a pest <strong>of</strong> red currant in North America. The absolute<br />

configuration has been established as (R) by synthesis [91]<br />

and bioassays [92].<br />

Mori [93] described a synthesis <strong>of</strong> 35 in a gram quantities<br />

using a Sharpless asymmetric dihydroxylation obtaining the<br />

chiral diol A, which was converted to epoxide B presenting<br />

87% e.e. Jacobsen hydrolytic kinetic resolution improved the<br />

optical purity to 96% e.e. Meyer’s oxazoline alkylation<br />

method [94, 95] was adopted to convert (R)-B to (R)-<br />

octadec-9-yn-4-olide, which was partially hydrogenated to<br />

yield 35 (Scheme 31).<br />

A stereoselective synthesis <strong>of</strong> 35 was presented by<br />

Sabitha et al. [96]. Base-induced ring opening <strong>of</strong> the chiral<br />

epoxy chloride A and subsequent treatment with butyl bromide,<br />

gave the acetylenic diol B, which was subjected to a<br />

zipper isomerization by treatment with 1,3-diaminopropane<br />

and sodium amide in the key step (Scheme 32). The resulting<br />

terminal alkyne was chain elongated and transformed to 35<br />

in 4 further steps.<br />

Another sequence, using similiar intermediates, was presented<br />

by the same author [97] (Scheme 33). The chiral epoxy<br />

chloride A was prepared in several steps, including a<br />

Sharpless asymmetric epoxidation. The resulting alkynol B<br />

was methoxycarbonylated at the triple bond after protection<br />

<strong>of</strong> the hydroxyl group, while the other extreme was subjected<br />

to deprotection, oxidation, and stereoselective Wittig reaction<br />

resulting in chain-elongation; followed by the final deprotection<br />

and cyclization steps.


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 699<br />

OEt<br />

H<br />

O<br />

OBn<br />

A<br />

( )<br />

9<br />

SnBu 3<br />

HO<br />

( )<br />

9<br />

OBn<br />

OEt<br />

PPTS, benzene<br />

reflux, 3 h, 62%<br />

EtO<br />

O<br />

B<br />

OBn<br />

( )<br />

9<br />

Grubbs 1st gen, cat. (5 mol%)<br />

toluene, 60 o C, 8 h, 86%<br />

EtO<br />

O<br />

OBn<br />

( )<br />

9<br />

H 2 , 10% Pd/C,<br />

MeOH, 3 h, 99%<br />

EtO<br />

O<br />

OH<br />

( )<br />

9<br />

1) DIAD, PNBA, PPh 3 , THF<br />

0 o C, rt., 6 h<br />

2) K 2 CO 3 , MeOH, rt., 2 h<br />

86% (two steps)<br />

EtO<br />

O<br />

( )<br />

9<br />

OH<br />

Ac 2 O, Et 3 N<br />

DMAP, CH 2 Cl 2<br />

rt., 2.5 h, 94%<br />

EtO<br />

O<br />

( )<br />

9<br />

OAc<br />

1) 3M HCl-THF, rt., 3.5 h<br />

2) PCC, NaOAc, Celite<br />

CH 2 Cl 2 , rt., 2.5 h<br />

72% for two steps<br />

O<br />

O<br />

34<br />

( )<br />

9<br />

OAc<br />

Scheme 30.<br />

OH<br />

1) TsCl, Py<br />

2) NaI, DMF, 92% (2 steps)<br />

I<br />

1) n-C 8 H 17 C CH, n-BuLi, THF, 71 %<br />

2) AD-mix , t-BuOH, H 2 O, 0-5 o C, 6 h,<br />

then rt. overnight<br />

( )<br />

7<br />

(R)-A<br />

OH<br />

recrystallization <strong>from</strong> hexane<br />

[1x(84%) for (R)-A <strong>of</strong> 75% e.e;<br />

2x(60%) for (R)-A <strong>of</strong> 87% e.e.*;<br />

5x(20%) for (R)-A <strong>of</strong> 98% e.e.]<br />

OH<br />

MeC(OMe) 3 ,<br />

PPTS, CH 2 Cl 2<br />

* Used in the next step<br />

7<br />

O<br />

O<br />

OMe<br />

AcBr,<br />

CH 2 Cl 2<br />

7<br />

Br<br />

OAc<br />

K 2 CO 3 , MeOH,<br />

87% (3 steps)<br />

O<br />

Jacobsen's (R,R)-salen<br />

cobalt catalyst, 0.4 equiv.<br />

( )<br />

7<br />

H 2 O, THF, 72%<br />

( )<br />

7<br />

(R)-B (87% e.e.)<br />

(R)-B (96% e.e.)<br />

O<br />

1) 2,4,4-trimethyl-2-oxazoline,<br />

n-BuLi, THF, -78 o C to rt.<br />

O<br />

O<br />

H 2 , Lindlar Pd-CaCO 3 -Pb 2+ ,<br />

O<br />

O<br />

2) dil. HCl, THF, 60 o C,<br />

30 min (58%, 2 steps)<br />

( )<br />

7<br />

hexane, -5 to 0 o C, 94 %<br />

( )<br />

7<br />

35<br />

Scheme 31.<br />

7.3. (S)-5-Hexadecanolide (36)<br />

(S)-5-Hexadecanolide (36) was isolated <strong>from</strong> mandibular<br />

glands <strong>of</strong> the queens <strong>of</strong> the oriental hornet, Vespa orientalis<br />

[98] where it functions as a pheromone to stimulate the<br />

workers to construct queen cells.<br />

Sabitha et al. [99, 100] described two similar approaches<br />

to the synthesis <strong>of</strong> this pheromone. In both syntheses the key<br />

step was the base-induced opening <strong>of</strong> a chiral epoxide by<br />

lithium amide in liquid ammonia at -78 °C, and subsequent<br />

treatment with 1-bromononane to give the chiral alkynols A<br />

and B, which finally were converted to 36 (Scheme 34).<br />

7.4. (R)-4-Dodecanolide (37)<br />

(R)-4-Dodecanolide (37) is a defensive secretion isolated<br />

<strong>from</strong> the pygidial glands <strong>of</strong> rove beetles, Bledius mandibularis<br />

and Bledius spectabilis [101].<br />

The synthesis <strong>of</strong> Sabitha et al. [99] started with the chiral<br />

propargylic alcohol A [102], which was methoxycarbony-


700 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

THPO<br />

O<br />

Cl<br />

1) Li/Liq NH 3 , Fe(NO 3 ) 3 , -78 o C, THF, 2 h<br />

THPO<br />

OH<br />

A<br />

2) n-C 4 H 9 Br, THF, 4 h, 70%<br />

B<br />

1) NaNH 2 , 1,3-diaminopropane<br />

60 o C, 6 h, 60%<br />

2) MOMCl, Hunigís base, CH 2 Cl 2 ,<br />

0 o C to rt., 2 h, 85%<br />

THPO<br />

OMOM<br />

1) n-BuLi, n-C 8 H 17 Br<br />

THF, -78 o C, 2 h, 70%<br />

2) PPTS, MeOH, 12 h, rt., 72%<br />

HO<br />

OMOM<br />

1) IBX, DMSO,CH 2 Cl 2 ,<br />

rt., 2 h, 80%<br />

O<br />

OMOM<br />

( )<br />

7<br />

2) NaClO 2 , NaH 2 PO 4 2H 2 O,<br />

aq. DMSO, rt., 1 h, 74%<br />

OH<br />

( )<br />

7<br />

1) PTSA, MeOH, 12 h, 80%<br />

2) H 2 , Lindlar catalyst,<br />

quinoline, EtOAc, 2 h, 90%<br />

O<br />

O<br />

C 8 H 17<br />

35<br />

Scheme 32.<br />

THPO<br />

Br<br />

+<br />

OH<br />

Li/liq. NH 3 , Fe(NO 3 ) 3 ,<br />

THF, 6 h, 70%<br />

THPO<br />

OH<br />

LiAlH 4 , THF,<br />

0 o C to rt., 3 h, 90%<br />

THPO<br />

OH<br />

(-)-DET, Ti(O-i-Pr) 4 , cumenehydroperoxide,<br />

MS 4 Å, CH 2 Cl 2 , -24 o C, 6 h, 83<br />

THPO<br />

O<br />

OH<br />

PPh 3 , NaHCO 3 , CCl 4 ,<br />

reflux, 4 h, 80%<br />

THPO<br />

A<br />

O<br />

Cl<br />

Li/liq. NH 3 , Fe(NO 3 ) 3 ,<br />

THF, 6 h, 70%<br />

THPO<br />

OH<br />

1) MOMCl, Hunig's base,<br />

0 o C to rt., 2 h, 90%<br />

THPO<br />

OMOM<br />

B<br />

2) n-BuLi, methylchlor<strong>of</strong>ormate,<br />

THF, -78 o C, 30 min, 73%<br />

COOMe<br />

1) Pd/C, H 2 , MeOH, 6 h, 70%<br />

2) IBX, DMSO, CH 2 Cl 2 ,<br />

rt., 2 h, 75%<br />

O<br />

H<br />

O<br />

OMOM<br />

COOMe<br />

1) [C 9 H 19 PPh 3 ] + Br - , THF-HMPA,<br />

n-BuLi, -78 o C to rt., 75%<br />

2) PTSA, MeOH, 12 h, 80%<br />

O<br />

( )<br />

7<br />

Scheme 33.<br />

35<br />

lated after protection. Hydrogenation and deprotection gave<br />

directly 37 (Scheme 35).<br />

7.5. (4R,5Z)-5-Tetradecen-4-olide (38) (japonilure)<br />

(R)-Japonilure [(4R,5Z)-5-tetradecen-4-olide, (38)] is the<br />

female-produced pheromone <strong>of</strong> the Japanese beetle Popillia<br />

japonica [103].<br />

The synthesis <strong>of</strong> 38 presented by Sabitha et al. [97] involved<br />

the preparation <strong>of</strong> the chiral epoxy chloride A (by<br />

stereoselective reduction <strong>of</strong> a triple bond and asymmetric<br />

Sharpless epoxidation), which was subjected to a baseinduced<br />

ring opening followed by treatment with 1-<br />

bromooctane in a one-pot reaction to give alkynol B with the<br />

carbon skeleton already established. B was further transformed<br />

to 38 in five steps (Scheme 36).


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 701<br />

THPO<br />

( )<br />

8<br />

THPO<br />

OBn<br />

O<br />

Cl<br />

O<br />

Li/liq NH 3 , Fe(NO 3 ) 3 (cat.),<br />

Me(CH 2 ) 8 Br, dry THF, 70%<br />

CO 2 Et<br />

OH<br />

H 2 , 10% Pd/C (cat.),<br />

EtOH, 12 h, 70%.<br />

1) Ph 3 P, NaHCO 3 , CCl 4 ,<br />

reflux, 4 h, 80%<br />

2) Li/liq NH 3 , Fe(NO 3 ) 3 (cat.),<br />

THF, C 9 H 19 Br, 8 h, 60%<br />

( )<br />

8<br />

( )<br />

9<br />

36<br />

OH<br />

A<br />

O<br />

( )<br />

8<br />

O<br />

OTHP<br />

OH<br />

B<br />

1) NaH, BnBr, THF,<br />

0 o C to rt., 98%<br />

2) PPTS, MeOH, rt., 96%<br />

3) (COCl) 2 , DMSO, Et 3 N,<br />

Ph 3 P=CHCO 2 Et, CH 2 Cl 2 ,<br />

-78 o C, 70%<br />

OTHP<br />

1) MOMCl, i-Pr 2 NEt,<br />

0 o C to rt., 2 h, 98%<br />

2) H 2 , 10% Pd/C, EtOH,<br />

rt., 6 h, 80%<br />

( )<br />

10<br />

OMOM<br />

OH<br />

1) IBX, DMSO, CH 2 Cl 2 ,<br />

rt., 2 h, 77%<br />

2) NaClO 2 , NaH 2 PO 4 , aq DMSO,<br />

rt., 1 h, 71%;<br />

3) PTSA, MeOH, rt., 12 h, 80%.<br />

( )<br />

9<br />

36<br />

O<br />

O<br />

Scheme 34.<br />

OH<br />

1) MOMCl, i-Pr 2 NEt, CH 2 Cl 2 ,<br />

0 o C to r.t., 2 h, 90%<br />

OMOM<br />

A<br />

2) n-BuLi in hexane, ClCO 2 Me,<br />

THF, -78 o C, 30 min, 90%<br />

O<br />

OMe<br />

1) H 2 , Pd/C, EtOAc, 4 h, 90%<br />

2) PTSA, MeOH, rt., 12 h, 80%<br />

37<br />

O<br />

O<br />

Scheme 35.<br />

HO<br />

OTHP<br />

(-)-DET, Ti(O-i-Pr) 4 ,<br />

cumenehydroperoxide,<br />

MS 4 Å, CH 2 Cl 2 , -24 o C, 4 h, 77%<br />

HO<br />

O<br />

OTHP<br />

PPh 3 , NaHCO 3 , CCl 4 ,<br />

reflux, 4 h, 79%<br />

Cl<br />

O<br />

A<br />

OTHP<br />

1) Li/Liq NH 3 , Fe(NO 3 ) 3 ,<br />

-78 o C, THF, 2 h<br />

2) n-C 8 H 17 Br, THF, 70%<br />

( )<br />

7<br />

OH<br />

B<br />

OTHP<br />

1) TBDMSCl, imidazole,<br />

CH 2 Cl 2 , 0 o C to rt., 83%<br />

2) recrystallized PPTS, MeOH,<br />

rt., 2 h, 63%<br />

( )<br />

7<br />

OTBDMS<br />

OH<br />

1) Dess-Martin periodinane,<br />

CH 2 Cl 2 , 0 o C to rt., 2 h, 85%<br />

2) NaClO 2 , NaH 2 PO 4 H 2 O,<br />

DMSO, 0 o C to rt., 80%<br />

( )<br />

7<br />

OTBDMS<br />

COOH<br />

PTSA, MeOH, rt.,3 h, 85%<br />

O<br />

O<br />

Lindlar catalyst, H 2 , quinoline,<br />

O<br />

O<br />

EtOAc, 2 h, 85%<br />

38<br />

Scheme 36.


702 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

OH<br />

1) EtMgBr, CuI<br />

2) Prenyl-Br, 93%<br />

OH<br />

LiAlH 4 , 89%<br />

OH<br />

(-)-DIPT, Ti(O-i-Pr) 4 , TBHP,<br />

MS 4 Å, 75%<br />

A<br />

O<br />

OH<br />

Me 2 CuLi, 84%<br />

B<br />

OH<br />

OH<br />

+<br />

OH<br />

OH<br />

elimination <strong>of</strong> 1,2-diol,<br />

by reaction with NaIO 4<br />

Scheme 37.<br />

O<br />

HO<br />

O<br />

(R)-(-)-Pinononic acid<br />

<strong>from</strong> (R)-(+)--pinene<br />

O<br />

HO<br />

B<br />

1) TsCl, Et 3 N, DMAP<br />

2) NaCN, NaI, 75%<br />

1) MeLi/ether, 1.0 e.q.,<br />

THF, -20 o C, 15 min<br />

2) MeMgCl/THF, 1.6 e.q.,<br />

-10 o C, 30 min, rt., 1 h, 89%<br />

LiAlH 4 , Et 2 O, rt.,<br />

overnight, 88%<br />

HO<br />

HO<br />

O<br />

OH<br />

OH<br />

CN<br />

1) NaOH<br />

2) H 2 SO 4 , 86%<br />

1) POCl 3 , Py, rt., 24 h, 75%<br />

2) PTSA, benzene, reflux,<br />

24 h, 78%<br />

39<br />

O<br />

O<br />

(S)-(+)-pinononic acid<br />

<strong>from</strong> (S)-(-)-verbenone<br />

Similarly<br />

(R)-A (78% e.e.)<br />

(S)-A (70% e.e.)<br />

(S)-(+) or<br />

(R)-(-)-2-methylbutyric acid<br />

(COCl) 2 , DMF/benzene<br />

rt., 1.5 h, 79%<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

(R,S)-40<br />

(R,R)-40<br />

(S,S)-40<br />

(S,R)-40<br />

O<br />

O<br />

HO<br />

O<br />

O<br />

(R)-B<br />

(R,S)-41<br />

O<br />

(R,R)-41<br />

O<br />

HO<br />

O<br />

O<br />

Scheme 38.<br />

(S)-B<br />

(S,S)-41<br />

7.6. (3S,4R)-3,7-Dimethyl-6-octen-4-olide (39) (eldanolide)<br />

Eldanolide [(3S,4R)-3,7-dimethyl-6-octen-4-olide, (39)]<br />

is a male-produced monoterpenoid sex attractant for the African<br />

sugarcane stem borer Eldana sacharina [104].<br />

The synthesis <strong>of</strong> 39 presented by Kong et al. [105] involved<br />

the preparation <strong>of</strong> the chiral epoxy alcohol A (93.4%<br />

e.e.) in 4 steps <strong>from</strong> propargyl alcohol, including a Sharpless<br />

epoxidation (Scheme 37). Methylation <strong>of</strong> the epoxide provided<br />

a mixture <strong>of</strong> a 1,2- and a 1,3-diol B, which was resolved<br />

by cleavage <strong>of</strong> the 1,2-diol by reaction with NaIO 4<br />

(R,S)-41<br />

and subsequent chromatography, providing pure B. Chain<br />

elongation by reaction with cyanide, hydrolysis and lactonization<br />

finally provided 39 in 22 % overall yield.<br />

8. SYNTHESIS OF ISOPRENOIDS AS PHEROMONES<br />

8.1. <strong>Synthesis</strong> <strong>of</strong> Isoprenoidal Pheromone Alcohols and<br />

their Esters as <strong>Pheromones</strong><br />

8.1.1. Maconelliyl 2-methylbutanoate (40) and lavandulyl<br />

2-methylbutanoate (41)<br />

Maconelliyl 2-methylbutanoate (40) and lavandulyl 2-<br />

methylbutanoate (41) have been identified as constituents <strong>of</strong>


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 703<br />

O<br />

Lipase PS (Amano),<br />

CH 2 =CHOAc, Et 2 O, 0 o C, 4 h<br />

O<br />

+<br />

O<br />

OH<br />

OAc<br />

10 - 16%, 98.8% e.e. (2S,3R)-A 11 - 22%, 98.6% e.e. (2R,3S)-B<br />

OH<br />

A<br />

1) 60% HClO 4 , DMF, 0 o C to rt., 12 h<br />

then K 2 CO 3 , MeOH, rt., 20 h, 77-92%<br />

2) TBDPSCl, Et 3 N, DMAP,<br />

CH 2 Cl 2 , rt., 24 h, 93-97%<br />

OH<br />

OH<br />

OTBDPS<br />

1) SO 3 Py, DMSO, Et 3 N,<br />

CH 2 Cl 2 , 0 o C to rt., 24 h, 78-91%<br />

2) TBAF, THF, 0 o C, 5 min, 65%-quant.<br />

OH<br />

OH<br />

(S)-42<br />

O<br />

O<br />

OH<br />

Ac 2 O, DMAP, Py,<br />

30 min, 86-92%<br />

O<br />

OAc<br />

Similarly<br />

OH<br />

O<br />

(R)-42<br />

OH<br />

Scheme 39.<br />

the female-produced pheromone <strong>of</strong> the pink hibiscus mealybug,<br />

Maconellicoccus hirsutus, which is an exotic insect pest<br />

in Southern California and Florida [106].<br />

Zhang and Nie [107] described an enantioselective synthesis<br />

<strong>of</strong> all stereoisomers <strong>of</strong> these two compounds, starting<br />

<strong>from</strong> (R)- and (S)-pinononic acids, which are easily prepared<br />

<strong>from</strong> (R)--pinene and (S)-verbenone, respectively. Methylation,<br />

elimination <strong>of</strong> water, and reduction <strong>of</strong> the carboxyl<br />

group afforded (R)- and (S)-maconelliol (A), respectively.<br />

Esterification <strong>of</strong> A was carried out with commercially available<br />

(S)-2-methylbutyric acid and previously prepared (R)-2-<br />

methylbutyric acid [108] to afford all four stereoisomers <strong>of</strong><br />

40. For the synthesis <strong>of</strong> all isomers <strong>of</strong> 41, (R)- and (S)-<br />

lavandulol (B), prepared according to the method described<br />

by Cardillo et al. [108], were esterified with (S)- and (R)-2-<br />

methylbutyric acids (Scheme 38).<br />

8.1.2. 3,7-Dimethyl-2-oxo-6-octene-1,3-diol (42)<br />

Dickens et al. [109] identified 3,7-dimethyl-2-oxo-6-<br />

octene-1,3-diol (42) as the male-produced aggregation<br />

pheromone <strong>from</strong> the Colorado potato beetle (Leptinotarsa<br />

decemlineata). The absolute configuration <strong>of</strong> natural 42 was<br />

determined by Oliver et al. [110] to be (S) by synthesis <strong>of</strong><br />

the racemate and both enantiomers <strong>from</strong> geraniol and (R)-<br />

and (S)-linalool, respectively.<br />

Tashiro and Mori [111] described the synthesis <strong>of</strong> pure<br />

enantiomers <strong>of</strong> 42 employing the lipase-catalysed enantioselective<br />

acetylation <strong>of</strong> (±)-2,3-epoxynerol in the key step,<br />

yielding acetate (2S,3R)-A (98.8% e.e.) and alcohol (2R,3S)-<br />

B (98.6% e.e.). Ring opening under inversion <strong>of</strong> the configuration<br />

at carbon 3 <strong>of</strong> A by treatment with HClO 4 in DMF at 0<br />

°C and subsequent protection <strong>of</strong> the primary hydroxyl group<br />

was followed by selective oxidation and deprotection to give<br />

(S)-42. The enantiomer was obtained similarly starting with<br />

alcohol B (Scheme 39).<br />

8.1.3. (1S,4R)-4-Isopropyl-1-methyl-2-cyclohexen-1-ol (43)<br />

(1S,4R)-4-Isopropyl-1-methyl-2-cyclohexen-1-ol (43) is<br />

the aggregation pheromone <strong>of</strong> the ambrosia beetle Platypus<br />

quercivorus, and the absolute configuration <strong>of</strong> the pheromone<br />

was established as (1S,4R) [112, 113].<br />

Mori [114] described a synthesis <strong>of</strong> the (1S,4R), (1R,4R),<br />

and (1S,4S) isomers and <strong>of</strong> a racemic mixture <strong>of</strong> 43. In this<br />

paper Mori mentioned that (1R*,4R*)-4-isopropyl-1-methyl-<br />

2-cyclohexen-1-ol was detected as a minor component <strong>of</strong> the<br />

frass volatiles <strong>of</strong> P. quercivorus. <strong>Synthesis</strong> <strong>of</strong> (1S,4R)-43<br />

was performed by addition <strong>of</strong> methyl lithium to (R)-cryptone<br />

(91.5–93% e.e.) obtained in six steps <strong>from</strong> (S)-perillyl alcohol.<br />

The racemic pheromone was also prepared by methylation<br />

<strong>of</strong> (±)-cryptone, prepared <strong>from</strong> (+)-nopinone. Both<br />

(1R,4R)- and (1S,4S)-isomers (98% e.e.) <strong>of</strong> the pheromone<br />

were synthesized <strong>from</strong> the enantiomers <strong>of</strong> dihydrolimonene<br />

oxide (Scheme 40).<br />

8.1.4. cis-2-(2-Isopropenyl-1-methylcyclobutyl)ethanol (44)<br />

(grandisol)<br />

Grandisol [cis-2-(2-isopropenyl-1-methylcyclobutyl)<br />

ethanol, 44] has first been identified as a male-produced<br />

pheromone <strong>from</strong> the boll weevil Anthonomus grandis [115],<br />

and has since been found in other insect species [116-118].<br />

Racemic grandisol, contaminated with 10% <strong>of</strong> the trans<br />

diastereomer fragranol (45) was prepared by Bernard et al.<br />

[119] via an efficient route starting <strong>from</strong> 2-(1-methyl-2-<br />

phenylthioethyl)cyclobutanone (A), involving the 1,4-<br />

addition <strong>of</strong> lithium dimethylcuprate to the cyclobutylidene<br />

aldehyde B in the key step (Scheme 41).<br />

Pure (1R,2S)-(-)-grandisol was prepared following a<br />

similar sequence (Scheme 42). A more bulky substituent at<br />

position 2 <strong>of</strong> the enantiopure cyclobutylidene aldehyde B<br />

improved the diastereoselectivity <strong>of</strong> the copper-catalyzed


704 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

OH<br />

1) t-BuOOH, VO(acac) 2 ,<br />

toluene, rt., 2.5 h, quant.<br />

OTBS<br />

O<br />

H 2 , PtO 2 , hexane,<br />

OTBS<br />

O<br />

2) TBSCl, imidazole,<br />

DMF, quant.<br />

EtOAc (1:1), quant.<br />

(S)-Perillyl alcohol<br />

1) Ph 2 Se 2 , NaH, THF,<br />

HMPA, reflux, 3 h<br />

O<br />

MeLi, LiBr,<br />

OH<br />

2) TBAF, THF, rt.<br />

3) NaIO 4 , THF, H 2 O, rt,<br />

1.5 h, 28% (three steps)<br />

Et 2 O, THF, 44%.<br />

(R)-cryptone (91.5-93% e.e.)<br />

(1S,4R)-43 (93.3% e.e.)<br />

O<br />

O<br />

O<br />

AlCl 3 , CH 2 Cl 2 ,<br />

0 - 5 o C, 70 min, 89%<br />

+<br />

MeLi, LiBr, Et 2 O/ THF,<br />

-40 o C to rt,<br />

OH<br />

OH<br />

OH<br />

10 - 15%<br />

+<br />

+<br />

(±)-(S*,R*)-43<br />

44%<br />

(±)-(R*,R*)-43<br />

10%<br />

O<br />

H 2 , PtO 2 ,<br />

MeOH, 92%<br />

O<br />

O<br />

A<br />

+<br />

O<br />

B<br />

Ph 2 Se 2 , NaBH 4 ,<br />

EtOH, reflux, 2 h<br />

OH<br />

SePh<br />

H<br />

+<br />

OH<br />

SePh<br />

+<br />

H<br />

SePh<br />

44% after chromatography<br />

H<br />

From B<br />

OH<br />

30% H 2 O 2 , THF, Py,<br />

rt. 1 h, 61%.<br />

O<br />

Similarly<br />

OH<br />

OH<br />

(1S,4S)-43 (97.8 - 98.2% e.e.)<br />

Scheme 40.<br />

(1R,4R)-43 (98.3 - 98.7% e.e.) 25% overall yield<br />

methylation key step. B (obtained <strong>from</strong> A by reduction and<br />

partial oxidation) was used as the substrate, because direct<br />

methylation <strong>of</strong> TBDMSOTf-activated A with Me 2 CuLi resulted<br />

in lower diastereoselectivity.


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 705<br />

O<br />

COOMe<br />

OH<br />

TMPA/NaH,<br />

DIBAL-H<br />

PCC, CH 2 Cl 2<br />

THF, reflux, 88%<br />

THF -78 o C, 90%<br />

0 o C, 90%<br />

A<br />

SPh<br />

SPh<br />

SPh<br />

H<br />

O<br />

O<br />

H<br />

O<br />

H<br />

B<br />

SPh<br />

Me 2 CuLi<br />

Et 2 O, - 78 o C, 98%<br />

H<br />

SPh<br />

+<br />

H<br />

SPh<br />

[120, 121]<br />

OH<br />

OH<br />

Three steps, 75%<br />

H<br />

+<br />

H<br />

(±)-44<br />

(±)-45<br />

(cis/trans) = (90:10)<br />

Scheme 41.<br />

COOMe<br />

O<br />

H<br />

O<br />

H<br />

H<br />

O<br />

DIBAL-H<br />

THF, -78 o C, 88%<br />

H<br />

O<br />

OH<br />

PCC, CH 2 Cl 2<br />

0 o C, 88%<br />

H<br />

O<br />

Me 2 CuLi<br />

Et 2 O, -78 o C, 97%<br />

H<br />

O<br />

O<br />

A<br />

O<br />

O<br />

B<br />

O<br />

NaBH 4 , MeOH/THF 1:1<br />

0 o C, 94%<br />

H<br />

O<br />

OH<br />

BzCl/DMAP<br />

Et 3 N/CH 2 Cl 2 , 94%<br />

H<br />

O<br />

OBz<br />

TFA, MeOH/H 2 O<br />

rt., 91%<br />

H<br />

OH<br />

OBz<br />

O<br />

O<br />

OH<br />

DIAD/PPh 3<br />

benzene, 91%<br />

H<br />

O<br />

OBz<br />

DIBAL-H<br />

THF, -78 o C, 94%<br />

H<br />

OH<br />

OH<br />

[122]<br />

H<br />

OH<br />

(1S,2S,2'S)-(cis)<br />

(-)-44<br />

Scheme 42.<br />

8.1.5. 1-Acetoxymethyl-2,3,4,4-tetramethylcyclopentane<br />

(46)<br />

(1R*,2R*,3S*)-1-Acetoxymethyl-2,3,4,4-tetramethylcyclopentane<br />

(46) is the female-produced sex pheromone <strong>of</strong><br />

the obscure mealybug Pseudococcus viburni [123].<br />

The synthesis developped by Millar and Midland [124]<br />

started with a polyphosphoric acid-catalyzed cyclization <strong>of</strong><br />

isobutyl methacrylate to obtain the ,-unsaturated cyclopentenone<br />

A. 1,4-Addition <strong>of</strong> lithium dimethylcuprate to<br />

A usually affords the trans isomer, but careful selection <strong>of</strong><br />

the reaction conditions (reaction at -40 ºC and quenching<br />

with ethyl salicylate at -78 ºC) resulted in a 72:28 cis:trans<br />

mixture <strong>of</strong> intermediate B. Conversion <strong>of</strong> the carbonyl group<br />

to a methylene group and subsequent hydroboration yielded<br />

alcohol C as a mixture <strong>of</strong> isomers, <strong>from</strong> which (1S*,2R*,<br />

3S*)-C was isolated by column chromatography and<br />

Kugelrohr distillation. Inversion <strong>of</strong> the stereogenic center at<br />

carbon 1 and acetylation gave (1R*,2R*,3S*)-46, showing<br />

90% isomeric purity (Scheme 43).


706 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

O<br />

O<br />

polyphosphoric acid<br />

O<br />

Me 2 CuLi, ethyl salicylate<br />

quench, -78 o C, 89%<br />

O<br />

100 o C, 34%<br />

A<br />

B<br />

(cis:trans 72:28)<br />

OH<br />

O<br />

H<br />

Zn-CH 2 Br 2 -TiCl 4<br />

BH 3 DMS, THF, 0 o C<br />

aq. NaOH, H 2 O 2 , 75%<br />

PDC, CH 2 Cl 2<br />

81%<br />

mainly (1S*, 2R*, 3S*)-C<br />

O<br />

H<br />

OH<br />

OAc<br />

NaOMe, MeOH<br />

NaBH 4 , EtOH<br />

93%<br />

AcCl, Py<br />

CH 2 Cl 2 , 81%<br />

Scheme 43.<br />

(1S*, 2R*, 3S*)-46<br />

O<br />

O<br />

O<br />

+<br />

PPh 3 Br<br />

n-BuLi<br />

THF, reflux<br />

O<br />

A<br />

O<br />

DIBAL-H<br />

CH 2 Cl 2 , -78 o C<br />

Scheme 44.<br />

OH<br />

Ac 2 O, Et 3 N<br />

DMAP, CH 2 Cl 2<br />

(Z)-47<br />

O<br />

O<br />

+<br />

(E)-47<br />

O<br />

O<br />

8.1.6. 2-Isopropyl-5-methyl-2,4-hexadienyl acetate (47)<br />

Ho et al. identified 2-isopropyl-5-methyl-2,4-hexadienyl<br />

acetate (47) as the sex pheromone produced by females <strong>of</strong><br />

the passionvine mealybug Planococcus minor, and presented<br />

a non-stereoselective synthesis <strong>of</strong> the compound [125].<br />

Wittig reaction between ethyl 3-methyl-2-oxobutanoate<br />

and the ylide <strong>of</strong> 3-methyl-but-2-enyltriphenylphosphonium<br />

bromide yielded a mixture <strong>of</strong> the esters (E)- and (Z)-A,<br />

which was transformed to a mixture <strong>of</strong> (E)- and (Z)-47 by<br />

reduction and acetylation (Scheme 44). The stereoisomers<br />

were separated by HPLC for assignment <strong>of</strong> the geometry <strong>of</strong><br />

the natural product, which turned out to be (E).<br />

8.1.7. 2-Methyl-6-(4’-methylenebicyclo[3.1.0]hexyl)hept-2-<br />

en-1-ol (48)<br />

The aggregation pheromone <strong>of</strong> the stink bug Erysarcoris<br />

lewisi has been proposed to be (E)-2-methyl-6-(4’-<br />

methylenebicyclo[3.1.0]hexyl)hept-2-en-1-ol (48) [126].<br />

Mori synthesized the (2E,6R)-, (2E,6S)-, (2Z,6R)-, and<br />

(2Z,6S)-isomers <strong>of</strong> 48, starting <strong>from</strong> citronellal [127]. The<br />

absolute configuration at carbon 6 was defined by the use <strong>of</strong><br />

(R)- or (S)-citronellal, respectively, while the geometry <strong>of</strong><br />

the double bond was established by stereoselective olefination<br />

reactions. Citronellal was converted to diazoketone A in<br />

7 steps, including methylenation and a Claisen orthoester<br />

rearrangement as the key steps <strong>of</strong> this part <strong>of</strong> the synthesis<br />

(Scheme 45). The -ketocarbene generated <strong>from</strong> A added<br />

intramolacularly to the exo methylene double bond, establishing<br />

the bicyclic structure in intermediate B. This reaction<br />

cannot be controlled stereochemically and a mixture <strong>of</strong> two<br />

diastereomers <strong>of</strong> B was obtained in each case. The double<br />

bond <strong>of</strong> B was cleaved oxidatively to give aldehyde C,<br />

which was converted to (E)-48 in 3 further steps with the<br />

(E)-selective olefination <strong>of</strong> the formyl group with (carbethoxymethylidene)triphenylphosphorane<br />

as the key step. To<br />

obtain (Z)-48, the olefination <strong>of</strong> aldehyde C was carried out<br />

employing Ando’s reagent ethyl 2-(di-o-tolylphosphono)<br />

propanoate, which in turn was prepared in three steps <strong>from</strong><br />

triethyl orthophosphite and ethyl 2-bromopropanoate<br />

(Scheme 45). Bioassays with the synthetic isomers suggested<br />

the natural pheromone to show (2Z,6R) configuration.


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 707<br />

CHO<br />

37% CH 2 O, propanoic acid,<br />

pyrrolidine, i-PrOH,<br />

45 o C, 4 h, 90%<br />

CHO<br />

LiAlH 4 , Et 2 O,<br />

91%<br />

OH<br />

1) MeC(OEt) 3 , propanoic acid,<br />

140 o C, 1 h, 95%<br />

2) KOH, EtOH, H 2 O, reflux, 2 h, 83%<br />

CO 2 H<br />

1) NaOEt, EtOH<br />

2) (COCl) 2 , Py, hexane,<br />

quant. (2 steps)<br />

COCl<br />

CH 2 N 2 , Et 2 O<br />

quant.<br />

A<br />

COCHN 2<br />

Cu, CuSO 4 ,<br />

cyclohexane,<br />

reflux, 1 h, 58%<br />

O<br />

B<br />

OsO 4 , NaIO 4 , t-BuOH,<br />

THF, H 2 O, quant<br />

O<br />

C<br />

O<br />

H<br />

1) Ph 3 P=C(Me)CO 2 Et,<br />

THF, CH 2 Cl 2 , 57%<br />

2) [CH 3 PPh 3 ] + Br - ,<br />

n-BuLi, THF, 96%<br />

CO 2 Et<br />

DIBAL-H, toluene<br />

55%<br />

(2E,6R)-48<br />

OH<br />

C<br />

(o-MeC 6 H 4 O) 2 P(O)CHMeCO 2 Et,<br />

NaH, THF, -78 o C to 5 o C, quant.<br />

CO 2 Et<br />

1) [CH 3 PPh 3 ] + Br - , n-BuLi, THF, 96%<br />

2) DIBAL-H, toluene, 22%<br />

OH<br />

O<br />

(2Z,6R)-48<br />

CHO<br />

Similarly<br />

OH<br />

or<br />

OH<br />

(2Z,6S)-48<br />

(2E,6S)-48<br />

(EtO) 3 P +<br />

O<br />

Cl 2 PCHCO 2 Et<br />

Me<br />

MeCHCO 2 Et<br />

160 o C, 2 h<br />

Br<br />

60%<br />

o-cresol, Et 3 N, CH 2 Cl 2 ,<br />

0 o C - 5 o C, 30 min, rt., 1 h, 60%<br />

O<br />

(EtO) 2 PCHCO 2 Et<br />

Me<br />

Me<br />

O<br />

O P CHCO 2 Et<br />

Me<br />

2<br />

PCl 5 , 75-80 o C<br />

14 h, 67%<br />

Scheme 45.<br />

8.2 <strong>Synthesis</strong> <strong>of</strong> Isoprenoidal Aldehydes, Ketones and<br />

Acids as <strong>Pheromones</strong><br />

8.2.1. (R)-1,1,5,8-Tetramethyl-1,2,3,4,5-pentahydrobenzo<br />

[a][7]annulene (49) [(R)-ar-himachalene]<br />

In 2001 Bartelt et al. [128] isolated and identified the<br />

male-produced pheromone <strong>of</strong> the flea beetle Aphthona flava<br />

as (S)-ar-himachalene (49). Mori [129] proposed the opposite<br />

absolute configuration for the natural compound.<br />

Mori [130, 131] described a synthesis <strong>of</strong> (R)-turmerone A<br />

<strong>from</strong> (4-methylphenyl)acetic acid employing Evans’ asymmetric<br />

alkylation in the key step. (R)-Turmerone was converted<br />

to (R)-ar-himachalene according to Pandey and Dev’s<br />

procedure [132] (Scheme 46). Interestingly, (R)-49 was dextrorotatory<br />

in hexane, while levorotatory in chlor<strong>of</strong>orm.<br />

8.2.2. (2E,4S)-2,4-Dimethylhex-2-enoic acid (50), 4,6-<br />

dimethylnon-4-en-3-one [(S)-manicone, 51], 3,5-dimethyloct-3-en-2-one<br />

[(S)-normanicone], 52, (1S)-1-methylbutyl-<br />

(2E)-2-methylpent-2-enoate (dominicalure-I, 53) and (1S)-<br />

1-methylbutyl (2E)-2,4-dimethylpent-2-enoate (dominicalure-II,<br />

54)<br />

(2E,4S)-2,4-Dimethylhex-2-enoic acid (50) is a castespecific<br />

substance present in the mandibular glands <strong>of</strong> the<br />

male carpenter ants in the genus Camponotus [133]. (S)-<br />

Manicone (4,6-dimethylnon-4-en-3-one, 51) and (S)-


708 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

CO 2 H<br />

1) SOCl 2 , C 6 H 6 , reflux, quant.<br />

2) (S)-4-benzyl-2-oxazolidinone, n-BuLi,<br />

THF, -78 o C, 30 min, then rt., 79%<br />

Bn<br />

O<br />

N<br />

O<br />

O<br />

1) NaHMDS, MeI, THF,<br />

-78 o C, 3 h, then rt., 97%<br />

2) LiAlH 4 , THF,<br />

0 o C to rt., 69%<br />

OH<br />

1) TsCl, DMAP, Py,<br />

0-5 o C, 2 h, 95%<br />

CN<br />

KOH, HO(CH 2 ) 2 OH, H 2 O,<br />

2) NaCN, NaI, DMSO,<br />

110 o C, 30 min, 78%<br />

100 o C, 3 h, 91%<br />

O<br />

OH<br />

1) MeNHOMe HCl, EDC, DMAP,<br />

(i-Pr) 2 NEt, CH 2 Cl 2 , 0 o C, 4 d, 84%<br />

2) Me 2 C=CHMgBr, THF,<br />

-20 o C to rt., 2 h, 88%.<br />

O<br />

(R)-turmerone (A)<br />

AlCl 3 , CS 2 , -40 to -20 o C, 1 h,<br />

then reflux , 46 o C, 4 h, 40%<br />

O<br />

N 2 H 4 H 2 O, KOH, diethylene glycol,<br />

200 - 210 o C, 3 h, 42%.<br />

(R)-ar-himachalene (49)<br />

[] D<br />

23 = +3.8 o (hexane)<br />

[] D<br />

23 = -2.4 o (CHCl 3 )<br />

Scheme 46.<br />

CHO<br />

50<br />

O<br />

+<br />

OH<br />

O<br />

O<br />

SOCl 2 , Benzene<br />

DABCO, dioxane,<br />

0 o C, 20 h<br />

O<br />

Cl<br />

OH<br />

A<br />

O<br />

OMe<br />

Et 2 CuLi,<br />

Et 2 O, -78 o C<br />

Me 2 CuLi,<br />

Et 2 O, -78 o C<br />

1) NaBH 4 , CuCl 2 2H 2 O<br />

MeOH, rt.<br />

2) NaOH, MeOH/H 2 O<br />

51<br />

O<br />

O<br />

R<br />

O<br />

H<br />

R = Et<br />

R = iPr<br />

+<br />

O<br />

O<br />

DABCO<br />

O<br />

R<br />

OH<br />

R = Et (B)<br />

R = iPr (B')<br />

OMe<br />

1) NaBH 4 , CuCl 2 2H 2 O<br />

MeOH, rt.<br />

2) NaOH, MeOH/H 2 O<br />

O<br />

R<br />

52<br />

R = Et<br />

R = iPr<br />

O<br />

OH<br />

Scheme 47.<br />

1) SOCl 2<br />

2) (+)-(2S)-pentan-2-ol<br />

53<br />

O<br />

or<br />

O<br />

54<br />

normanicone (3,5-dimethyl-oct-3-en-2-one, 52) are the mandibular-gland<br />

alarm pheromone components <strong>of</strong> the ants in<br />

the genus Manica [134, 135]. Dominicalure-I [(1S)-1-<br />

Methylbutyl (2E)-2-methylpent-2-enoate, 53] and dominicalure-II<br />

[(1S)-1-methylbutyl (2E)-2,4-dimethylpent-2-<br />

enoate, 54] are the aggregation pheromones <strong>of</strong> the lesser<br />

grain borer Rhyzopertha dominica [136].<br />

Das et al. [137] described a synthesis <strong>of</strong> these pheromone<br />

compounds employing Baylis–Hillman adducts. Compounds<br />

50, 51 and 52 were obtained <strong>from</strong> Baylis-Hillman adduct A,<br />

which was treated with sodium borohydride in the presence<br />

<strong>of</strong> CuCl 2·2H 2 O in MeOH to give the corresponding (E)-2-<br />

methyl-2-alkenoate, which was hydrolyzed yielding acid 50.<br />

Transformation <strong>of</strong> 50 to the acid chloride and alkylation with<br />

lithium diethylcuprate and lithium dimethylcuprate yielded<br />

51 and 52, respectively. For the synthesis <strong>of</strong> 53 and 54, the<br />

Baylis-Hillman adducts B and B’ were subjected to a similar<br />

reaction sequence (Scheme 47).


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 709<br />

CO 2 CH 3<br />

OCH 3<br />

1) n-BuLi, cyclohexane, , 15h<br />

1) K, THF, NH 3 , t-BuOH, -68 o C<br />

A<br />

2) CO 2 , Et 2 O, -78 o C to rt.<br />

3) MeOH, toluene, PTSA (cat.)<br />

, 8h, 45% (3 steps)<br />

2) LiBr (2.2 eq), allyl bromide, -68 o C to rt.<br />

3) HCl (cat.), acetone, 4 o C, 5 min,<br />

46% (3 steps)<br />

CO 2 CH 3<br />

O<br />

Zn, allyl bromide,<br />

OH<br />

CO 2 CH 3<br />

CO 2 CH 3<br />

C (3 mol%), CH 2 Cl 2 ,<br />

HO<br />

1) LiAlH 4 , THF, rt. 20 h, 96%<br />

2) MsCl, Et 3 N, CH 2 Cl 2 ,<br />

-15 o C, 5 min<br />

HO<br />

OMs<br />

KOH, 18-crown-6, benzene,<br />

rt. 1.5 h, 74% (2 steps)<br />

O<br />

E<br />

PhSSPh (2 mol%), hn (vis.),<br />

O<br />

1) LDA, THF, -78 o C<br />

2) Me 2 N=CH 2 I, THF,<br />

HMPA, -78 o C to rt.<br />

O<br />

benzene, 15 o C, 10 min<br />

E 58% + F 38%<br />

Scheme 48.<br />

OCH 3<br />

Periplanone C (55)<br />

DMF, rt. 20 h, 89%<br />

rt., 23 h, 81%<br />

B<br />

D<br />

C =<br />

(Cy 3 )P<br />

Cl 2 Ru<br />

(Cy 3 )P<br />

Ph<br />

F<br />

3) MeI, rt., 2 h<br />

4) NaOAc, H 2 O, Et 2 O, rt.,<br />

1 h, 53% <strong>from</strong> F<br />

8.2.3. (3Z,7E)-9-Isopropyl-2,6-dimethylene-3,7-cyclodecadien-1-one<br />

(periplanone C, 55)<br />

Periplanone C [(3Z,7E)-9-isopropyl-2,6-dimethylene-3,7-<br />

cyclodecadien-1-one, 55] is one <strong>of</strong> at least four biologically<br />

active components <strong>of</strong> the sex pheromone <strong>of</strong> the American<br />

cockroach, Periplaneta americana [138-143].<br />

The key steps <strong>of</strong> the synthesis <strong>of</strong> racemic 55 presented by<br />

Matovic et al. [144] are a ring closure metathesis (RCM)<br />

reaction, assuring the Z configuration <strong>of</strong> the newly formed<br />

double bond in the bicyclic intermediate D, and subsequent<br />

rupture <strong>of</strong> the central bond yielding E. The monocyclic precursor<br />

B was obtained <strong>from</strong> the anisol derivative A and submitted<br />

to RCM using Grubbs first generation catalyst (C) to<br />

yield the bicyclic intermediate D. The rupture <strong>of</strong> the central<br />

bond was achieved by Grob fragmentation under ionic conditions<br />

and yielded the (Z,Z)-cyclodecadienone E, which<br />

could be isomerized photochemically under radical conditions<br />

to the (Z,E)-cyclodecadienone F. The lithium enolate <strong>of</strong><br />

F was aminomethylated with Eschenmoser’s reagent and 55<br />

was obtained after spontaneous elimination <strong>of</strong> dimethylamine<br />

(Scheme 48).<br />

8.2.4. (E)- and (Z)-3-Methyl-4-heptenoic acid (56), and 3-<br />

methyleneheptanoic acid (57)<br />

The volatile sex pheromone released by females <strong>of</strong> the<br />

cowpea weevil Callosobruchus maculatus has been identified<br />

to be a mixture <strong>of</strong> (E)- and (Z)-3-methyl-2-heptenoic<br />

acid, (E)- and (Z)-3-methyl-4-heptenoic acid (56), and 3-<br />

methyleneheptanoic acid (57) [145].<br />

The three latter compounds have been synthesized by<br />

Yajima et al. [146]. 57 was prepared using Chong’s procedure<br />

<strong>of</strong> alkylation <strong>of</strong> the dianion <strong>of</strong> 3-methyl-3-buten-1-ol,<br />

followed by sequential Dess-Martin and Pinnick oxidations<br />

to give the target molecule in a moderate yield but without<br />

isomerization <strong>of</strong> the somewhat sensitive 3-exo methylene<br />

double bond. For the synthesis <strong>of</strong> 56, the (E) and (Z) isomers<br />

<strong>of</strong> the vinylic iodide 4-iodo-3-methyl-3-buten-1-ol were prepared<br />

<strong>from</strong> 3-butyn-1-ol, respectively, and further transformed<br />

via alkylation and oxidation to the desired products<br />

(Scheme 49) [147, 148].<br />

9. SYNTHESIS OF ACETALS AS PHEROMONES<br />

9.1. (1S,3R,5R,7S)-1-Ethyl-3,5,7-trimethyl-2,8-dioxabicyclo[3.2.1]octane<br />

[(+)-sordidin, 58] and (1S,3R,5R,7R)-1-<br />

ethyl-3,5,7-trimethyl-2,8-dioxabicyclo[3.2.1]octane [(–)-7-<br />

epi-sordidin, 59]<br />

The banana weevil Cosmopolites sordidus is the most<br />

devastating insect pest on banana plants worldwide [149].<br />

The major compound <strong>of</strong> the male-produced aggregation<br />

pheromone has been identified as (1S,3R,5R,7S)-1-ethyl-<br />

3,5,7-trimethyl-2,8-dioxabicyclo[3.2.1]octane (58), which<br />

was given the common name sordidin [150-152]. A minor<br />

component <strong>of</strong> the volatile bouquet released by the weevil is


710 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

OH<br />

n-BuLi, TMEDA, n-C 3 H 7 Br<br />

Et 2 O, -78 o C to 0 o C, 46%<br />

OH<br />

1) Dess-Martin periodinane,<br />

CH 2 Cl 2 , rt.<br />

2) NaClO 2 , NaH 2 PO 4 , 2-methyl-2-butene<br />

THF, t-BuOH, H 2 O, 0 o C, 52%<br />

COOH<br />

57<br />

OH<br />

1) [147], 80%<br />

2) TBSCl, Et 3 N, DMAP<br />

CH 2 Cl 2 , 92%<br />

I<br />

OTBS<br />

1) n-C 3 H 7 MgBr, PdCl 2 (dppf), Et 2 O<br />

2) TBAF, THF, 73%<br />

OH<br />

1) Dess-Martin periodinane, CH 2 Cl 2<br />

2) NaClO 2 , NaH 2 PO 4 , 2-methyl-2-butene<br />

THF, t-BuOH, H 2 O, 0 o C, 47%<br />

(E)-56<br />

COOH<br />

OH<br />

1) Ref. 14, 60%,<br />

2) TBSCl, Et 3 N, DMAP<br />

CH 2 Cl 2 , quant.<br />

I<br />

OTBS<br />

1) n-C 3 H 7 MgBr, PdCl 2 (dppf), Et 2 O<br />

2) TBAF, THF, 84%<br />

OH<br />

1) Dess-Martin periodinane, CH 2 Cl 2<br />

COOH<br />

2) NaClO 2 , NaH 2 PO 4 , 2-methyl-2-butene<br />

THF, t-BuOH, H 2 O, 0 o C, 49%<br />

(Z)-56<br />

Scheme 49.<br />

(1S,3R,5R,7R)-7-epi-sordidin (59) [153]. Interestingly, the<br />

enantiomer <strong>of</strong> the latter has been found in caddisflies [154].<br />

An asymmetric synthesis <strong>of</strong> (1S,3R,5R,7S)-58 and<br />

(1S,3R,5R,7R)-59 was performed by Enders et al. [155]. The<br />

first two stereogenic centers were formed by three -<br />

alkylations <strong>of</strong> the RAMP-hydrazone <strong>of</strong> 2,2-dimethyl-1,3-<br />

dioxan-5-one A. The third stereogenic center was formed by<br />

diastereoselective epoxide opening employing the azaenolate<br />

<strong>of</strong> 3-pentanone SAEP-hydrazone in the key step<br />

(Scheme 50). The mixture <strong>of</strong> the diastereomers was separated<br />

by preparative gas chromatography, furnishing the pure<br />

enantiomers with e.e. > 98%.<br />

9.2. 1,5-Dimethyl-6,8-dioxabicyclo[3.2.1]octane (60)<br />

(frontalin)<br />

Frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane,<br />

60) was first isolated and identified as a component <strong>of</strong> the<br />

aggregation pheromones <strong>of</strong> the southern pine beetle (Dendroctonus<br />

frontalis) and <strong>of</strong> the western pine beetle (Dendroctonus<br />

brevicomis) by Kinzer et al. [158]. By means <strong>of</strong><br />

bioassays with pure synthetic enantiomers, Mori [159, 160]<br />

showed the absolute configuration <strong>of</strong> natural 60 to be<br />

(1S,5R) in both species.<br />

Prasad et al. [161] described an enantioselective formal<br />

synthesis <strong>of</strong> frontalin employing the addition <strong>of</strong> Grignard<br />

reagents to the bis-Weinreb amide A derived <strong>from</strong> L-(+)-<br />

tartaric acid and to B as the key steps (Scheme 51).<br />

Schuster et al. [163] described a stereoselective synthesis<br />

<strong>of</strong> 60 by addition <strong>of</strong> an organo zinc reagent to an -keto ester<br />

coupled to a chiral auxiliary. The synthesis was performed<br />

either in solution (98 % e.e. for (+)-60) or with the -keto<br />

ester-chiral auxiliary complex immobilized (86 % e.e.)<br />

(Scheme 52).<br />

9.3. exo-Brevicomin (61), 1’-hydroxy-exo-brevicomin (62)<br />

and 2-hydroxy-exo-brevicomin (63)<br />

exo-Brevicomin (61) and endo-brevicomin (exo- and<br />

endo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) are<br />

common components <strong>of</strong> the aggregation pheromone system<br />

<strong>of</strong> several bark beetle species <strong>of</strong> the genera Dendroctonus<br />

and Dryocoetes [160, 164-166]. Francke et al. [167] have<br />

identified 1’-hydroxy-exo-brevicomin (62) and 2-hydroxyexo-brevicomin<br />

(63) <strong>from</strong> the pine beetle Dendroctonus<br />

ponderosae.<br />

Prasad et al. [168-170] described a synthesis <strong>of</strong> 61, 62,<br />

and 63 employing addition <strong>of</strong> Grignard reagents to the bis-<br />

Weinreb amide A derived <strong>from</strong> L-(+)-tartaric acid and subsequent<br />

stereoselective reduction <strong>of</strong> the keto function with L-<br />

selectride or K-selectride as common steps (Schemes 53 –<br />

55). 61 was synthesized <strong>from</strong> diol B by oxidative cleavage<br />

with lead tetraacetate in benzene and subsequent stereoselective<br />

alkylation <strong>of</strong> the resulting aldehyde to yield the corresponding<br />

threo alcohol C as a single diastereomer. Wacker<br />

oxidation <strong>of</strong> terminal olefin and simultaneous debenzylation<br />

and intramolecular acetalization with Pd/C in MeOH and a<br />

trace <strong>of</strong> 3 M HCl gave the compound 61 (Scheme 53). For<br />

the synthesis <strong>of</strong> 62, TBDMS protected amide D was reduced<br />

with sodium borohydride, tosylated, and reduced with super<br />

hydride to obtain acetonide E. Wacker oxidation and cycliza-


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 711<br />

OCH 3<br />

OCH 3<br />

OCH 3<br />

N<br />

N<br />

O<br />

O<br />

[156, 157]<br />

79% (2 steps)<br />

N<br />

N<br />

O<br />

O<br />

1) t-BuLi, THF, - 78 o C<br />

2) BOMCl, -100 o C to rt. 92%<br />

N<br />

N<br />

O<br />

O<br />

OBn<br />

A<br />

d.e, e.e. > 96%<br />

d.e, e.e. > 96%<br />

1) O 3 , CH 2 Cl 2 , -78 o C, 79%<br />

OH<br />

OBn<br />

1) i. NaH, THF, 0 o C<br />

ii. CS 2 , MeI, 98%<br />

OBn<br />

2) NaBH 4 , MeOH, 0 o C, quant.<br />

O<br />

O<br />

2) n-Bu 3 SnH, AIBN,<br />

toluene, reflux, 98%<br />

O<br />

O<br />

O<br />

N<br />

1) Ca/NH 3 , 97%<br />

1) 3N HCl, H<br />

OTs<br />

2 O/MeOH,<br />

rt. 87%<br />

2) ) Et 3 N, DMAP,<br />

O O<br />

CH 2 Cl 2 , TsCl, rt. quant.<br />

2) 2,6-lutidine, CH 2 Cl 2 ,<br />

OTBS<br />

N<br />

TBSOTf, 0 o C, quant.<br />

d.e, e.e. > 96%<br />

3) NaH, THF, 0 o C, 99%<br />

B<br />

OCH 3<br />

1) LiCl, LDA, THF, -78 o C,<br />

1 h, then 0 o C, 10 min,<br />

2) B, -78 o C to rt.,15 h<br />

OCH 3<br />

N<br />

TBSO HO<br />

3 N HCl, H 2 O/pentane,<br />

rt., 6 d, 84%<br />

O<br />

O<br />

+<br />

O<br />

O<br />

d.r.<br />

1.5 : 1.0<br />

d.e. > 99% e.e. > 98%<br />

(1S,3R,5R,7S)-(+)-sordidin (58)<br />

d.e. > 97% e.e. > 98%<br />

(1S,3R,5R,7R)-7-epi-(-)-sordidin (59)<br />

Scheme 50.<br />

Me OMe<br />

N<br />

O<br />

O<br />

O<br />

Me N O<br />

OMe<br />

O<br />

MgBr<br />

( ) O<br />

( )<br />

3<br />

3<br />

THF, 0 o C, 1 h, 94% O ( )<br />

3<br />

O<br />

MeMgBr, MgBr 2 , Et 2 O<br />

CH 2 Cl 2 , -78 o C, 3.5 h, 74%<br />

O<br />

O<br />

HO<br />

( )<br />

3<br />

( )<br />

3<br />

OH<br />

A<br />

B<br />

1) NaH, DMF, BnCl,<br />

rt., 4h,<br />

2) FeCl 3<br />

. 6H 2 O, CH 2 Cl 2 ,<br />

rt. 4 h, 40% (2 steps)<br />

HO<br />

HO<br />

BnO<br />

( )<br />

3<br />

( )<br />

3<br />

OBn<br />

1) Pb(OAc) 4 , benzene,<br />

rt. 1.5 h<br />

2) NaBH 4 /MeOH,<br />

0 o C, 1 h, 90% (2 steps)<br />

BnO<br />

OH<br />

( )<br />

3<br />

[162]<br />

O<br />

60<br />

O<br />

Scheme 51.


712 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

O<br />

O<br />

O<br />

O<br />

O<br />

R<br />

ZnCl<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

R<br />

R = Me or Wang resin<br />

Solution Phase <strong>Synthesis</strong> 81% and 92% d.e.<br />

R = Me or Wang resin<br />

LiAlH 4 , THF<br />

OH<br />

OH<br />

O 3 , CH 2 Cl 2<br />

-78 o C<br />

O<br />

O<br />

Scheme 52.<br />

Solution Phase <strong>Synthesis</strong> 80%<br />

Solid Phase <strong>Synthesis</strong> 50% 2 steps 86% e.e.<br />

60<br />

solution phase 99:1 (98% e.e.)<br />

solid phase 93:7 (86% e.e.).<br />

O<br />

O<br />

Me<br />

Me<br />

N<br />

N O<br />

A<br />

OMe<br />

O<br />

OMe<br />

1) NaH, DMF, BnBr,<br />

0 o C to rt., 2 h, 97%<br />

2) FeCl 3<br />

. 6H 2 O, CH 2 Cl 2 ,<br />

rt. 2 h, 89%<br />

EtMgBr, MgBr 2 , CH 2 Cl 2 ,<br />

MgBr<br />

( )<br />

3 (4 eq.)<br />

THF, 0 o C, 1h, 96%<br />

OH<br />

HO<br />

HO<br />

B<br />

O<br />

O<br />

OBn<br />

( )<br />

3<br />

( )<br />

3<br />

OBn<br />

O<br />

O<br />

( ) L-selectride (4 eq.)<br />

3<br />

( ) THF, -78 o C, 2.5 h, 94%<br />

3<br />

O<br />

Pb(OAc) 4 , benzene,<br />

H<br />

rt., 1.5 h, 98%<br />

OBn<br />

OH<br />

PdCl 2 , CuCl, O 2 , DMF/H 2 O,<br />

O<br />

O<br />

OH<br />

( )<br />

3<br />

( )<br />

3<br />

OH<br />

-78 o C, 4.5 h, 78%<br />

OBn<br />

C<br />

rt., 2.5 h, 85%<br />

OBn<br />

O<br />

Scheme 53.<br />

H 2 , 10% Pd/C, MeOH<br />

3N HCl, rt., 2.5 h, 72%<br />

O<br />

O<br />

61<br />

tion yielded 62 (Scheme 54). For the synthesis <strong>of</strong> 63,<br />

TBDMS protected amide F was reduced with DIBAL-H and<br />

treated with phosphorus ylide to give the ,-unsaturated<br />

ketone G. Hydrogenation over Pd/C and simultaneous<br />

deprotection <strong>of</strong> the silyl ether and acetonide afford triol<br />

H, which instantly ketalized to 63 (Scheme 55).<br />

9.4. (±)-1,7-Dioxaspiro[5.5]undecane (64) and (2R*,6S*)-<br />

2-methyl-1,7-dioxaspiro[5.5]undecane (65)<br />

1,7-Dioxaspiro[5.5]undecane (64) has been identified as<br />

the major component <strong>of</strong> the sex pheromone released by females<br />

<strong>of</strong> the olive fruit fly Dacus oleae [171]. In bioassays,<br />

(R)-64 was shown to be active against the males, whereas<br />

(S)-64 was active against females [172]. 2-Methyl-1,7-<br />

dioxaspiro[5.5]undecane (65) was identified as volatile component<br />

<strong>of</strong> the cleptoparasite bee Epeolus cruciger [173].<br />

Conway et al. [174] described a synthesis <strong>of</strong> these two spiroketal<br />

compounds employing stereospecific Stille coupling<br />

reactions <strong>of</strong> 2-metallo-dihydropyrans with suitable (Z)-1-<br />

iodoalkenols and subsequent cyclisation (Scheme 56).<br />

10. SYNTHESIS OF ALLENES AS PHEROMONES<br />

10.1. Methyl (R,E)-tetradeca-2,4,5-trienoate (66)<br />

Methyl (R,E)-(-)-tetradeca-2,4,5-trienoate (66) has been<br />

<strong>of</strong> synthetic interest since Horler determined it to be a sex<br />

attractant produced by the male bean weevil, Acanthoscelides<br />

obtectus [175].


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 713<br />

Me OMe<br />

N<br />

O<br />

O<br />

O<br />

Me N O<br />

OMe<br />

MgBr<br />

( )<br />

3 (1.5 eq)<br />

THF, -15 o C, 30 min, 92%<br />

O<br />

O<br />

Me<br />

O<br />

N<br />

3<br />

O<br />

OMe<br />

1) L-selectride<br />

THF, -78 o C, 2.5 h, 98%<br />

2) TBDMSOTf, Py,<br />

CH 2 Cl 2 , 0 o C to rt., 1 h, 98%<br />

O<br />

O<br />

Me<br />

OTBDMS<br />

( )<br />

3<br />

O<br />

N<br />

OMe<br />

1) NaBH 4 , MeOH,<br />

0 o C to rt., 3 h, 95%<br />

2) TsCl, DMAP, CH 2 Cl 2 ,<br />

rt., 5 h, 92%<br />

O<br />

O<br />

OTBDMS<br />

( )<br />

3<br />

OTs<br />

super hydride, THF,<br />

rt. 2 h, 94%<br />

O<br />

O<br />

E<br />

OTBDMS<br />

( )<br />

3<br />

D<br />

PdCl 2 , CuCl, O 2 ,<br />

DMF/H 2 O, rt., 6 h, 74%<br />

O<br />

O<br />

Scheme 54.<br />

62<br />

OH<br />

Me<br />

N<br />

OMe<br />

O<br />

OTBDMS<br />

O<br />

O<br />

O<br />

1) K-selectride<br />

O<br />

EtMgBr, THF,<br />

THF, -78 o C, 25 min<br />

O<br />

O<br />

O<br />

O<br />

O<br />

-15 o C, 30 min, 88%<br />

O<br />

N<br />

Me N 2) TBDMSCl, imidazole,<br />

OMe<br />

DMAP, DMF, 80 o C, 1.5 h,<br />

N<br />

Me OMe<br />

68% (2 steps)<br />

Me OMe<br />

F<br />

OTBDMS<br />

OTBDMS<br />

1) DIBAL-H, THF, -78 o C, 2h<br />

O<br />

H 2 , 10% Pd/C,<br />

O<br />

FeCl 3 6H 2 O, CH 2 Cl 2 ,<br />

2)<br />

O<br />

O<br />

rt. 1.5 h, quant. O<br />

rt. 1.5 h, 87%<br />

PPh 3<br />

O<br />

O<br />

benzene, reflux, 4 h,<br />

G<br />

74% (2 steps)<br />

OH OH O<br />

( )<br />

2<br />

OH<br />

H<br />

O<br />

O<br />

63<br />

OH<br />

Scheme 55.<br />

Ogasawara et al. [176] described an enantioselective synthesis<br />

<strong>of</strong> this chiral allene using a palladium-catalyzed reaction<br />

for the synthesis <strong>of</strong> the allene moiety in the key step.<br />

Allene intermediate A was prepared by reaction <strong>of</strong> 3-bromo-<br />

1,3-dodecadiene and dimethyl malonate. The use <strong>of</strong><br />

Pd(dba) 2 /(R)-segphos catalyst and 5 equivalents <strong>of</strong> malonate<br />

were the best conditions in terms <strong>of</strong> both yield and asymmetric<br />

induction (71% yield, 77% e.e.). Methanolic hydrolysis,<br />

acidic decarboxylation and treatment with diazomethane<br />

resulted in decarboxylation <strong>of</strong> A nearly without racemization.<br />

A final desaturation step gave 66 in 76% e.e. (Scheme<br />

57).


714 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

HO<br />

OTBDMS<br />

1) (COCl) 2 , DMSO,<br />

CH 2 Cl 2 , -78 o C, 92%<br />

2) Ph 3 P=CHI, THF, -78 oC, 78%<br />

3) CSA, MeOH, 20 o C, 15 h, 78%<br />

H<br />

H<br />

I<br />

OH<br />

(Z : E = 6.4 : 1)<br />

a) M = SnBu 3 ; (o-Tol) 3 P (10 mol%), Pd(OAc) 2 (5 mol%),<br />

Et 3 N, CH 3 CN, 80 o C, 1.5 h, 33%, or<br />

b) M = ZnCl; '(Ph 3 P) 2 Pd' (5 mol%), THF, 0 o C, 1 h, 71%, or<br />

c) M = ZnCl; Pd(Ph 3 P) 4 (5 mol%), THF, 0 o C, 1 h, 72%<br />

O<br />

M<br />

O<br />

1) CSA, CH 2 Cl 2 , 20 oC, 82%<br />

OH<br />

O<br />

64<br />

2) H 2 , 5% Pd/C, EtOAc, 6 h, 93%<br />

O<br />

(Z : E = 6 : 1)<br />

H<br />

OH<br />

O<br />

OEt<br />

TBDMSCl, DBU,<br />

CH 2 Cl 2 , 20 o C, 99%<br />

TBDMSO<br />

O<br />

OEt<br />

1) DIBAL-H (1.6 equiv),<br />

toluene, -78 o C,<br />

2) citric acid, -78 o C, 88%<br />

TBDMSO<br />

A<br />

O<br />

H<br />

DIBAL-H,<br />

toluene, -78 -20 o C<br />

TBDMSO<br />

OH<br />

(COCl) 2 , DMSO, -78 o C<br />

OH<br />

A<br />

1) Ph 3 P=CHI, 73%<br />

2) CSA, MeOH, 20 o C, 85%<br />

HO I H H<br />

(Z : E = 6.4 : 1)<br />

O<br />

ZnCl , Pd(PPh 3 ) 4 (5 mol%),<br />

THF, 5 o C, 1 h, 48 -76 %<br />

O<br />

H<br />

(Z : E = 6.4 : 1)<br />

Scheme 56.<br />

1) CSA, CH 2 Cl 2 , 20 o C, 66%<br />

2) H 2 , 5%, Pd/C, EtOAc, 6 h, 74%<br />

O<br />

65<br />

O<br />

( )<br />

7<br />

+<br />

Br<br />

Pd(dba)2/(R)-segphos(10 mol%),<br />

CsOt-Bu (1.0 eq), 71%<br />

H<br />

( )<br />

7<br />

H<br />

COOMe<br />

COOMe<br />

1) KOH, H 2 O/MeOH<br />

2) dil. H 2 SO 4 , 100 o C<br />

3) CH 2 N 2 in Et 2 O<br />

CH 2 (COOMe) 2 (5.0 eq)<br />

A 77% e.e.<br />

COOMe<br />

1) LDA, THF, -78 o COOMe<br />

H<br />

C<br />

H<br />

2) PhSeBr<br />

( )<br />

7 H<br />

( )<br />

3) NaIO 4 , THF/H 2 O<br />

7 H<br />

76% e.e.<br />

66 76% e.e.<br />

O<br />

O<br />

O<br />

PPh 2<br />

PPh 2<br />

Scheme 57.<br />

O<br />

(R)-segphos


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 715<br />

ABBREVIATIONS<br />

Ac = acetyl<br />

AIBN = azobisisobutyronitrile<br />

BnBr = benzyl bromide<br />

BOMCl = benzyloxymethyl chloride<br />

m-CPBA = m-chloroperbenzoic acid<br />

CSA = camphorsulfonic acid<br />

DABCO = 1,4-diazabicyclo[2.2.2]octane<br />

DBU = diazabicyclo[5.4.0]undecene<br />

DCHT = dicyclohexyl tartrate<br />

DET = diethyl tartrate<br />

DHP = 3,4-dihydro-2H-pyran<br />

DIAD = diisopropyl azodicarboxylate<br />

DIBAL-H = diisobutylaluminium hydride<br />

DIPT = diisopropyl tartrate<br />

DMAP = 4-dimethylaminopyridine<br />

DMF = N,N-dimethylformamide<br />

DMS = dimethylsulfide<br />

DMSO = dimethylsulfoxide<br />

EDC = 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide<br />

HMPA = hexamethylphosphoramide<br />

IBX = 2-iodoxybenzoic acid<br />

KHMDS = potassium hexamethyldisilazide<br />

LDA = lithium diisopropylamide<br />

MOMCl = methoxymethyl chloride<br />

MsCl = methanesulfonyl chloride (mesyl<br />

chloride)<br />

NaHMDS = sodium hexamethyldisilazide<br />

PCC = pyridinium chlorochromate<br />

PDC = pyridinium dichromate<br />

PNBA = p-nitrobenzoic acid<br />

PPh3 = triphenyl phosphine<br />

PPTS = pyridinium p-toluenesulfonate<br />

PTSA = p-toluenesulfonic acid<br />

Py = pyridine<br />

TBAF = tetra-n-butylammonium fluoride<br />

TBDMSCl = tert-butyldimethylsilyl chloride<br />

TBDPSCl = tert-butyldiphenylchlorosilane<br />

TBHP = tert-butyl hydroperoxide<br />

TBSCl = tert-butyldimethylsilyl chloride<br />

TBSOTf = tert-butyldimethylsilyl triflate<br />

TFA = trifluoroacetic acid<br />

THF = tetrahydr<strong>of</strong>urane<br />

THP = tetrahydropyranyl<br />

TMEDA = tetramethylethylenediamine<br />

TMSCl = trimethylsilyl chloride<br />

TsCl = p-toluenesulfonyl chloride (tosyl<br />

chloride)<br />

ACKNOWLEDGEMENTS<br />

PHGZ thanks CNPq, CAPES and Fundação<br />

Araucária/PR for financial support. JAFPV thanks CAPES<br />

for a doctoral fellowship. JB thanks DII-PUCV and Fondecyt<br />

(Chile) for financial support. MFF thanks Conicyt<br />

(Chile) for a doctoral fellowship.<br />

REFERENCES<br />

[1] Mori, K. The total synthesis <strong>of</strong> natural products, ApSimon, J. Ed.:<br />

Wiley, New York, 1981, Vol. 4.<br />

[2] Mori, K. The total synthesis <strong>of</strong> natural products, ApSimon, J. Ed.:<br />

Wiley, New York, 1992, Vol. 9.<br />

[3] Mori, K. in Chemistry <strong>of</strong> <strong>Pheromones</strong> and Other Semiochemicals I,<br />

2004, Vol. 239, pp. 1-50.<br />

[4] Mori, K. Organic synthesis and chemical ecology. Acc. Chem. Res.,<br />

2000, 33, 102-110.<br />

[5] Mori, K. Semiochemicals - <strong>Synthesis</strong>, stereochemistry, and bioactivity.<br />

Eur. J. Org. Chem., 1998, 1479-1489.<br />

[6] Mori, K. <strong>Pheromones</strong>: <strong>Synthesis</strong> and bioactivity. Chem. Commun.,<br />

1997, 1153-1158.<br />

[7] Aleu, J.; Bustillo, A. J.; Hernandez-Galan, R.; Collado, I. G. Biocatalysis<br />

applied to the synthesis <strong>of</strong> pheromones. Curr. Org. Chem.,<br />

2007, 11, 693-705.<br />

[8] Zarbin, P. H. G.; Villar, J., A, F, P.; Marchi, I.; Bergmann, J.;<br />

Oliveira, A. R. M. <strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong>: <strong>Highlights</strong> <strong>from</strong><br />

2002-2004. Curr. Org. Chem., 2009, 13, 299-338.<br />

[9] Gries, R.; Gries, G.; Li, J. X.; Maier, C. T.; Lemmon, C. R.; Slessor,<br />

K. N. Sex-Pheromone Components <strong>of</strong> the Spring Hemlock<br />

Looper, Lambdina-Athasaria (Walker) (Lepidoptera, Geometridae).<br />

J. Chem. Ecol., 1994, 20, 2501-2511.<br />

[10] Shirai, Y.; Seki, M.; Mori, K. Pheromone synthesis, CXCIX -<br />

<strong>Synthesis</strong> <strong>of</strong> all the stereoisomers <strong>of</strong> 7-methylheptadecane and<br />

7,11-dimethylheptadecane, the female sex pheromone components<br />

<strong>of</strong> the spring hemlock looper and the pitch pine looper. Eur. J. Org.<br />

Chem., 1999, 3139-3145.<br />

[11] Nagano, H.; Kuwahara, R.; Yokoyama, F. Radical mediated stereoselective<br />

synthesis <strong>of</strong> meso-7,11-dimethylheptadecane, a female<br />

sex pheromone component <strong>of</strong> the spring hemlock looper and the<br />

pitch pine looper. Tetrahedron, 2007, 63, 8810-8814.<br />

[12] Francke, W.; Toth, M.; Szocs, G.; Krieg, W.; Ernst, H., Buschmann,<br />

E. Identification and <strong>Synthesis</strong> <strong>of</strong> Dimethylalkanes as Sex<br />

Attractants <strong>of</strong> Female Leaf Miner Moths (Lyonetiidae). Z. Naturforsch.<br />

C, 1988, 43, 787-789.<br />

[13] Doan, N. N.; Le, T. N.; Nguyen, H. C.; Hansen, P. E., Duus, F.<br />

Ultrasound assisted synthesis <strong>of</strong> 5,9-dimethylpentadecane and 5,9-<br />

dimethylhexadecane - the sex <strong>Pheromones</strong> <strong>of</strong> leucoptera c<strong>of</strong>feella.<br />

Molecules, 2007, 12, 2080-2088.<br />

[14] Doi, M.; Nemoto, T.; Nakanishi, H.; Kuwahara, Y.; Oguma, Y.<br />

Behavioral response <strong>of</strong> males to major sex pheromone component,<br />

(Z,Z)-5,25-hentriacontadiene, <strong>of</strong> Drosophila ananassae females. J.<br />

Chem. Ecol., 1997, 23, 2067-2078.<br />

[15] Nemoto, T.; Motomichi, D.; Oshi, K.; Matsubayashi, H.; Oguma,<br />

Y.; Suzuki, T., Kuwahara, Y. (Z,Z)-5,27-Tritriacontadiene - Major<br />

Sex-Pheromone <strong>of</strong> Drosophila-Pallidosa (Diptera, Drosophilidae).<br />

J. Chem. Ecol., 1994, 20, 3029-3037.<br />

[16] Morita, A.; Matsuyama, S.; Oguma, Y.; Kuwahara, S. Simple synthesis<br />

<strong>of</strong> the major sex pheromone components <strong>of</strong> Drosophila<br />

ananassae and D-pallidosa. Biosci. Biotechnol. Biochem., <strong>2005</strong>, 69,<br />

1620-1623.<br />

[17] Hamilton, J. G. C.; Dawson, G. W.; Pickett, J. A. 9-Methylgermacrene-B;<br />

Proposed structure for novel homosesquiterpene <strong>from</strong> the<br />

sex pheromone glands <strong>of</strong> Lutzomyia longipalpis (Diptera: Psychodidae)<br />

<strong>from</strong> Lapinha, Brazil. J. Chem. Ecol., 1996, 22, 1477-<br />

1491.<br />

[18] Hamilton, J. G. C.; Hooper, A. M.; Ibbotson, H. C.; Kurosawa, S.;<br />

Mori, K.; Muto, S. E.; Pickett, J. A. 9-Methylgermacrene-B is confirmed<br />

as the sex pheromone <strong>of</strong> the sandfly Lutzomyia longipalpis<br />

<strong>from</strong> Lapinha, Brazil, and the absolute stereochemistry defined as<br />

S. Chem. Commun., 1999, 2335-2336.<br />

[19] Hooper, A. M.; Farcet, J. B.; Mulholland, N. P.; Pickett, J. A. <strong>Synthesis</strong><br />

<strong>of</strong> 9-methylgermacrene B, racemate <strong>of</strong> the sex pheromone <strong>of</strong><br />

Lutzomyia longipalpis (Lapinha), <strong>from</strong> the renewable resource, Geranium<br />

macrorrhizum essential oil. Green Chem., 2006, 8, 513-515.<br />

[20] Steinbauer, M. J.; Ostrand, F.; Bellas, T. E.; Nilsson, A.; Andersson,<br />

F.; Hedenstrom, E.; Lacey, M. J.; Schiestl, F. P. Identification,<br />

synthesis and activity <strong>of</strong> sex pheromone gland components <strong>of</strong> the


716 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

autumn gum moth (Lepidoptera : Geometridae), a defoliator <strong>of</strong><br />

Eucalyptus. Chemoecology, 2004, 14, 217-223.<br />

[21] Davies, N. W.; Meredith, G.; Molesworth, P. P.; Smith, J. A. Use<br />

<strong>of</strong> the anti-oxidant butylated hydroxytoluene in situ for the synthesis<br />

<strong>of</strong> readily oxidized compounds: Application to the synthesis <strong>of</strong><br />

the moth pheromone (Z, Z, Z)-3,6,9-nonadecatriene. Aust. J.<br />

Chem., 2007, 60, 848-849.<br />

[22] Toth, M.; Buser, H. R.; Pena, A.; Arn, H.; Mori, K.; Takeuchi, T.;<br />

Nikolaeva, L. N.; Kovalev, B. G. Identification <strong>of</strong> (3z,6z)-1,3,6-<br />

9,10-Epoxyheneicosatriene and (3z,6z)-1,3,6-9,10-Epoxyeicosatriene<br />

in the Sex-Pheromone <strong>of</strong> Hyphantria Cunea. Tetrahedron<br />

Lett., 1989, 30, 3405-3408.<br />

[23] Mathur, A. C. Ind. J. Ent., 1962, 24, 286-287.<br />

[24] Persoons, C. J.; Vos, J. D.; Yadav, J. S.; Prasad, A. R.; Sighomony,<br />

S.; Jyothi, K. N., Prasuna, A. L. Indo-Dutch cooperation on pheromones<br />

<strong>of</strong> Indian agricultural pest insects: sex pheromone components<br />

<strong>of</strong> Diacrisia obliqua (Arctiidae), Achaea janata (Noctuidae)<br />

and Amsacta albistriga (Arctiidae). IOBC-WPRS Bull., 1993, 16,<br />

136-140.<br />

[25] Che, C.; Zhang, Z. N. Concise total synthesis <strong>of</strong> (3Z,6Z,9S,10R)-<br />

9,10-epoxy-1,3,6-heneicosatriene, sex pheromone component <strong>of</strong><br />

Hyphantria Cunea. Tetrahedron, <strong>2005</strong>, 61, 2187-2193.<br />

[26] Nakanishi, A.; Mori, K. New synthesis <strong>of</strong> the (3Z,6Z,9S,10R)-<br />

isomers <strong>of</strong> 9,10-epoxy-3,6-henicosadiene and 9,10-epoxy-1,3,6-<br />

henicosatriene, pheromone components <strong>of</strong> the female fall<br />

webworm moth, Hyphantria cunea. Biosci. Biotechnol. Biochem.,<br />

<strong>2005</strong>, 69, 1007-1013.<br />

[27] Bierl, B. A.; Beroza, M.; Collier, C. W. Potent sex attractant <strong>of</strong><br />

gypsy moth - its isolation, identification, and synthesis. Science,<br />

1970, 170, 87-89.<br />

[28] Iwaki, S., Marumo, S. <strong>Synthesis</strong> and activity <strong>of</strong> optically-active<br />

disparlure. J. Am. Chem. Soc., 1974, 96, 7842-7844.<br />

[29] Koumbis, A. E.; Chronopoulos, D. D. A short and efficient synthesis<br />

<strong>of</strong> (+)-disparlure and its enantiomer. Tetrahedron Lett., <strong>2005</strong>,<br />

46, 4353-4355.<br />

[30] Prasad, K. R.; Anbarasan, P. Enantiodivergent synthesis <strong>of</strong> both<br />

enantiomers <strong>of</strong> gypsy moth pheromone disparlure. J. Org. Chem.,<br />

2007, 72, 3155-3157.<br />

[31] Wakamura, S.; Arakaki, N.; Yamamoto, M.; Hiradate, S.; Yasui,<br />

H.; Yasuda, T.; Ando, T. Posticlure: a novel trans-epoxide as a sex<br />

pheromone component <strong>of</strong> the tussock moth, Orgyia postica<br />

(Walker). Tetrahedron Lett., 2001, 42, 687-689.<br />

[32] Fernandes, R. A. An efficient synthesis <strong>of</strong> (-)-posticlure: The sex<br />

pheromone <strong>of</strong> Orgyia postica. Eur. J. Org. Chem., 2007, 5064-<br />

5070.<br />

[33] Jewett, D. M.; Matsumura, F.; Coppel, H. C. Sex-Pheromone<br />

Specificity in Pine Sawflies - Interchange <strong>of</strong> Acid Moieties in an<br />

Ester. Science, 1976, 192, 51-53.<br />

[34] Coppel, H. C.; Casida, J. E.; Dauterman, W. C. Ann. Entomol. Soc.<br />

Am., 1960, 53, 510.<br />

[35] Tai, A.; Morimoto, N.; Yoshikawa, M.; Uehara, K.; Sugimura, T.;<br />

Kikukawa, T. Preparation <strong>of</strong> Stereochemically Pure Sex-<br />

Pheromone Components <strong>of</strong> the Pine Sawfly (Neodiprion-Sertifer)<br />

and Field-Tests <strong>of</strong> the Synthetic Compounds. Agric. Biol. Chem.,<br />

1990, 54, 1753-1762.<br />

[36] Hedenstrom, E.; Hogberg, H. E.; Wassgren, A. B.; Bergstrom, G.;<br />

L<strong>of</strong>qvist, J.; Hansson, B.; Anderbrant, O. Sex-Pheromone <strong>of</strong> Pine<br />

Sawflies - Chiral Syntheses <strong>of</strong> Some Active Minor Components<br />

Isolated <strong>from</strong> Neodiprion-Sertifer and <strong>of</strong> Some Chiral Analogs <strong>of</strong><br />

Diprionyl Acetate. Tetrahedron, 1992, 48, 3139-3146.<br />

[37] Bekish, A. V.; Prokhorevich, K. N.; Kulinkovich, O. G. Transformation<br />

<strong>of</strong> esters into 2-substituted allyl halides via tertiary cyclopropanols:<br />

Application in the stereoselective synthesis <strong>of</strong><br />

(2S,3S,7S)-3,7-dimethyl-2-pentadecyl acetate, the sex pheromone<br />

<strong>of</strong> the pine sawfly Neodiprion sertifer. Eur. J. Org. Chem., 2006,<br />

5069-5075.<br />

[38] Tolasch, T.; von Fragstein, M.; Steidle, J. L. M. Sex pheromone <strong>of</strong><br />

Elater ferrugineus L. (Coleoptera : Elateridae). J. Chem. Ecol.,<br />

2007, 33, 2156-2166.<br />

[39] Hillbur, Y.; Celander, M.; Baur, R.; Rauscher, S.; Haftmann, J.;<br />

Franke, S.; Francke, W. Identification <strong>of</strong> the sex pheromone <strong>of</strong> the<br />

swede midge, Contarinia nasturtii. J. Chem. Ecol., <strong>2005</strong>, 31, 1807-<br />

1828.<br />

[40] Cahill, S.; Evans, L. A.; O'Brien, M. Furanyl spiroketals as stereochemical<br />

relays in the synthesis <strong>of</strong> 1,9-anti diols: synthesis <strong>of</strong> insect<br />

pheromones. Tetrahedron Lett., 2007, 48, 5683-5686.<br />

[41] Gries, R.; Gries, G.; Khaskin, G.; King, S.; Olfert, O.; Kaminski, L.<br />

A.; Lamb, R.; Bennett, R. Sex pheromone <strong>of</strong> orange wheat blossom<br />

midge, Sitodiplosis mosellana. Naturwissenschaften, 2000, 87,<br />

450-454.<br />

[42] Hooper, A. M.; Dufour, S.; Willaert, S.; Pouvreau, S.; Pickett, J. A.<br />

<strong>Synthesis</strong> <strong>of</strong> (2S,7S)-dibutyroxynonane, the sex pheromone <strong>of</strong> the<br />

orange wheat blossom midge, Sitodiplosis mosellana (Gehin) (Diptera<br />

: Cecidomyiidae), by diastereoselective silicon-tethered ringclosing<br />

metathesis. Tetrahedron Lett., 2007, 48, 5991-5994.<br />

[43] Roel<strong>of</strong>s, W. L.; Kochansky, J. P.; Carde, R. T.; Kennedy, G. G.;<br />

Henrick, C. A.; Labovitz, J. N.; Corbin, V. L. Sex-Pheromone <strong>of</strong><br />

Potato Tuberworm Moth, Phthorimaea-Operculella. Life Sci., 1975,<br />

17, 699-706.<br />

[44] Vakhidov, R. R., Musina, I. N. <strong>Synthesis</strong> <strong>of</strong> 4E,7Z-tridecadien-1-<br />

ylacetate, a component <strong>of</strong> the Phthorimaea opercucella sex pheromone.<br />

Chem. Nat. Compd., 2007, 43, 282-284.<br />

[45] Beevor, P. S.; Cork, A.; Hall, D. R.; Nesbitt, B. F.; Day, R. K.;<br />

Mumford, J. D. Components <strong>of</strong> Female Sex-Pheromone <strong>of</strong> Cocoa<br />

Pod Borer Moth, Conopomorpha-Cramerella. J. Chem. Ecol., 1986,<br />

12, 1-23.<br />

[46] Pereira, A. R., Cabezas, J. A. A new method for the preparation <strong>of</strong><br />

1,5-diynes. <strong>Synthesis</strong> <strong>of</strong> (4E,6Z,10Z)-4,6,10-hexadecatrien-1-ol,<br />

the pheromone component <strong>of</strong> the cocoa pod borer moth Conopomorpha<br />

cramerella. J. Org. Chem., <strong>2005</strong>, 70, 2594-2597.<br />

[47] Suzuki, T. A Facile <strong>Synthesis</strong> <strong>of</strong> 4,8-Dimethyldecanal, aggregation<br />

pheromone <strong>of</strong> flour beetles, and its analogs. Agric. Biol. Chem.,<br />

1981, 45, 2641-2643.<br />

[48] Suzuki, T. Identification <strong>of</strong> the Aggregation Pheromone <strong>of</strong> Flour<br />

Beetles Tribolium-Castaneum and Tribolium-Confusum (Coleoptera,<br />

Tenebrionidae). Agric. Biol. Chem., 1981, 45, 1357-1363.<br />

[49] Mori, K.; Kuwahara, S.; Ueda, H. Pheromone synthesis - synthesis<br />

<strong>of</strong> all <strong>of</strong> the 4 possible stereoisomers <strong>of</strong> 4,8-Dimethyldecanal, the<br />

aggregation pheromone <strong>of</strong> the flour beetles. Tetrahedron, 1983, 39,<br />

2439-2444.<br />

[50] Suzuki, T.; Kozaki, J.; Sugawara, R.; Mori, K. Biological-<br />

Activities <strong>of</strong> the Analogs <strong>of</strong> the Aggregation Pheromone <strong>of</strong> Tribolium-Castaneum<br />

(Coleoptera, Tenebrionidae). Appl. Ent. Zool.,<br />

1984, 19, 15-20.<br />

[51] Santangelo, E. M.; Correa, A. G.; Zarbin, P. H. G. <strong>Synthesis</strong> <strong>of</strong><br />

(4R,8R)- and (4S,8R)-4,8-dimethyldecanal: the common aggregation<br />

pheromone <strong>of</strong> flour beetles. Tetrahedron Lett., 2006, 47, 5135-<br />

5137.<br />

[52] Mori, K. Synthetic Microbial Chemistry .3. Revision <strong>of</strong> the Absolute-Configuration<br />

<strong>of</strong> a-Factor - the Inducer <strong>of</strong> Streptomycin Biosynthesis,<br />

Basing on the Reconfirmed (R)-Configuration <strong>of</strong> (+)-<br />

Paraconic Acid. Tetrahedron, 1983, 39, 3107-3109.<br />

[53] Santangelo, E. M.; Zarbin, P. H. G.; Cass, Q. B.; Ferreira, J. T. B.;<br />

Correa, A. G. <strong>Synthesis</strong> <strong>of</strong> the four possible stereoisomers <strong>of</strong> N-2 '-<br />

methylbutyl-2-methylbutylamide, the sex pheromone <strong>of</strong> the longhorn<br />

beetle Migdolus fryanus westwood. Synth. Commun., 2001,<br />

31, 3685-3698.<br />

[54] Kameda, Y., Nagano, H. Radical mediated stereoselective synthesis<br />

<strong>of</strong> (4R,8R)-4,8-dimethyldecanal, an aggregation pheromone <strong>of</strong> Tribolium<br />

flour beetles. Tetrahedron, 2006, 62, 9751-9757.<br />

[55] Aldrich, J. R. Chemical Ecology <strong>of</strong> the Heteroptera. Annu. Rev.<br />

Entomol., 1988, 33, 211-238.<br />

[56] Millar, J. G. in The Chemistry <strong>of</strong> <strong>Pheromones</strong> and Other Semiochemicals<br />

II, Vol. 240 (Ed.: Schulz, S.), Springer-Verlag, Berlin<br />

Heidelberg <strong>2005</strong>.<br />

[57] Fucarino, A.; Millar, J. G.; McElfresh, J. S., Colazza, S. Chemical<br />

and physical signals mediating conspecific and heterospecific aggregation<br />

behavior <strong>of</strong> first instar stink bugs. J. Chem. Ecol., 2004,<br />

30, 1257-1269.<br />

[58] Innocenzi, P. J.; Hall, D. R.; Cross, J. V.; Masuh, H.; Phythian, S.<br />

J.; Chittamaru, S.; Guarino, S. Investigation <strong>of</strong> long-range female<br />

sex pheromone <strong>of</strong> the European tarnished plant bug, Lygus rugulipennis:<br />

Chemical, electrophysiological, and field studies. J. Chem.<br />

Ecol., 2004, 30, 1509-1529.<br />

[59] Moreira, J. A., Millar, J. G. Short and simple syntheses <strong>of</strong> 4-oxo-<br />

(E)-2-hexenal and homologs: Pheromone components and defensive<br />

compounds <strong>of</strong> Hemiptera. J. Chem. Ecol., <strong>2005</strong>, 31, 965-968.<br />

[60] Nishida, R.; Fukami, H.; Ishii, S. Sex-Pheromone <strong>of</strong> German Cockroach<br />

(Blattella-Germanica L) Responsible for Male Wing-Raising<br />

- 3,11-Dimethyl-2-Nonacosanone. Experientia, 1974, 30, 978-979.


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 717<br />

[61] Ahn, K. C.; Jung, J. C., Park, O. S. A simple and cost effective<br />

synthesis <strong>of</strong> 3,11-dimethylnonacosan-2-one, a female sex pheromone<br />

<strong>of</strong> the German cockroach. Molecules, 2006, 11, 751-757.<br />

[62] Smith, R. G.; Daterman, G. E., Daves, G. D. Douglas-Fir Tussock<br />

Moth - Sex-Pheromone Identification and <strong>Synthesis</strong>. Science, 1975,<br />

188, 63-64.<br />

[63] Daterman, G. E.; Peterson, L. J.; Robbins, R. G.; Sower, L. L.;<br />

Daves, G. D., Smith, R. G. Laboratory and Field Bioassay <strong>of</strong> Douglas-Fir<br />

Tussock Moth Lepidoptera-Lymantriidae Pheromone, (Z)-6-<br />

Heneicosen-11-One. Environm. Entomol., 1976, 5, 1187-1190.<br />

[64] Shin, D. G.; Maeng, Y. H.; Heo, H. J., Jun, J. G. Selective transformation<br />

reaction <strong>of</strong> 6,8-dioxabicyclo[3.2.1]octane structure to<br />

delta,epsilon-enone and application to the synthesis <strong>of</strong> Douglas-fir<br />

tussock moth pheromone. Tetrahedron Lett., <strong>2005</strong>, 46, 1985-1987.<br />

[65] Chuman, T.; Kohno, M.; Kato, K., Noguchi, M. "4,6-Dimethyl-7-<br />

Hydroxy-Nonan-3-One, a Sex-Pheromone <strong>of</strong> the Cigarette Beetle<br />

(Lasioderma-Serricorne F). Tetrahedron Lett., 1979, 2361-2364.<br />

[66] Ono, M.; Onishi, I.; Chuman, T.; Kohno, M., Kato, K. A Novel<br />

<strong>Synthesis</strong> <strong>of</strong> (+/-)-Serricornin 4,6-Dimethyl-7-Hydroxy-Nonan-3-<br />

One - the Sex-Pheromone <strong>of</strong> Cigarette Beetle (Lasioderma-<br />

Serricorne F). Agric. Biol. Chem., 1980, 44, 2259-2260.<br />

[67] Mori, K.; Nomi, H.; Chuman, T.; Kohno, M.; Kato, K., Noguchi,<br />

M. Phermone <strong>Synthesis</strong> .53. <strong>Synthesis</strong> and Absolute Stereochemistry<br />

<strong>of</strong> Serricornin [(4s, 6s, 7s)-4,6-Dimethyl-7-Hydroxy-3-<br />

Nonanone] - the Sex-Pheromone <strong>of</strong> the Cigarette Beetle. Tetrahedron,<br />

1982, 38, 3705-3711.<br />

[68] Mori, M.; Chuman, T.; Kohno, M.; Kato, K.; Noguchi, M.; Nomi,<br />

H., Mori, K. Absolute Stereochemistry <strong>of</strong> Serricornin, the Sex-<br />

Pheromone <strong>of</strong> Cigarette Beetle, as Determined by the <strong>Synthesis</strong> <strong>of</strong><br />

Its (4s,6r,7r)-Isomer. Tetrahedron Lett., 1982, 23, 667-670.<br />

[69] Chuman, T.; Kato, K., Noguchi, M. <strong>Synthesis</strong> <strong>of</strong> (+/-)-Serricornin,<br />

"4,6-Dimethyl-7-Hydroxy-Nonan-3-One, a Sex-Pheromone <strong>of</strong><br />

Cigarette Beetle (Lasioderma-Serricorne F). Agric. Biol. Chem.,<br />

1979, 43, <strong>2005</strong>-<strong>2005</strong>.<br />

[70] Ward, D. E.; Jheengut, V., Beye, G. E. Thiopyran route to polypropionates:<br />

An efficient synthesis <strong>of</strong> serricornin. J. Org. Chem.,<br />

2006, 71, 8989-8992.<br />

[71] Schmuff, N. R.; Phillips, J. K.; Burkholder, W. E.; Fales, H. M.;<br />

Chen, C. W.; Roller, P. P., Ma, M. The Chemical-Identification <strong>of</strong><br />

the Rice Weevil and Maize Weevil Aggregation Pheromone. Tetrahedron<br />

Lett., 1984, 25, 1533-1534.<br />

[72] Phillips, J. K.; Walgenbach, C. A.; Klein, J. A.; Burkholder, W. E.;<br />

Schmuff, N. R., Fales, H. M. Rstar,Sstar)-5-Hydroxy-4-Methyl-3-<br />

Heptanone Male-Produced Aggregation Pheromone <strong>of</strong> Sitophilus-<br />

Oryzae (L) and S-Zeamais Motsch. J. Chem. Ecol., 1985, 11, 1263-<br />

1274.<br />

[73] Walgenbach, C. A.; Phillips, J. K.; Burkholder, W. E.; King, G. G.<br />

S.; Slessor, K. N., Mori, K. Determination <strong>of</strong> Chirality in 5-<br />

Hydroxy-4-Methyl-3-Heptanone, the Aggregation Pheromone <strong>of</strong><br />

Sitophilus-Oryzae (L) and S-Zeamais Motschulsky. J. Chem. Ecol.,<br />

1987, 13, 2159-2169.<br />

[74] Mori, K., Ebata, T. Pheromone <strong>Synthesis</strong> .88. <strong>Synthesis</strong> <strong>of</strong> All <strong>of</strong><br />

the 4 Possible Stereoisomers <strong>of</strong> 5-Hydroxy-4-Methyl-3-Heptanone<br />

(Sitophilure), the Aggregation Pheromone <strong>of</strong> the Rice Weevil and<br />

the Maize Weevil. Tetrahedron, 1986, 42, 4421-4426.<br />

[75] Kalaitzakis, D.; Rozzell, J. D.; Kambourakis, S., Smonou, I. A twostep<br />

chemoenzymatic synthesis <strong>of</strong> the natural pheromone (+)-<br />

sitophilure utilizing isolated, NADPH-dependent ketoreductases.<br />

Eur. J. Org. Chem., 2006, 2309-2313.<br />

[76] Phillips, J. K.; Miller, S. P. F.; Andersen, J. F.; Fales, H. M., Burkholder,<br />

W. E. The Chemical-Identification <strong>of</strong> the Granary Weevil<br />

Aggregation Pheromone. Tetrahedron Lett., 1987, 28, 6145-6146.<br />

[77] Levinson, H. Z.; Levinson, A.; Ren, Z., Mori, K. Comparative<br />

Olfactory Perception <strong>of</strong> the Aggregation <strong>Pheromones</strong> <strong>of</strong> Sitophilus-<br />

Oryzae (L), Sitophilus-Zeamais (Motsch) and Sitophilus-Granarius<br />

(L), as Well as the Stereoisomers <strong>of</strong> These <strong>Pheromones</strong>. J. Appl.<br />

Entomol., 1990, 110, 203-213.<br />

[78] Kalaitzakis, D.; Kambourakis, S.; Rozzell, D. J., Smonou, I.<br />

Stereoselective chemoenzymatic synthesis <strong>of</strong> sitophilate: a natural<br />

pheromone. Tetrahedron Asymmetry, 2007, 18, 2418-2426.<br />

[79] Gil, S.; Parra, M.; Rodriguez, P., Sotoca, E. New synthesis <strong>of</strong> (+/-)-<br />

sitophilate using carboxylic acid dianion methodology - A stereoselectivity<br />

study. <strong>Synthesis</strong>, <strong>2005</strong>, 3451-3455.<br />

[80] Hallett, R. H.; Perez, A. L.; Gries, G.; Gries, R.; Pierce, H. D.; Yue,<br />

J.; Oehlschlager, A. C.; Gonzalez, L. M., Borden, J. H. Aggregation<br />

Pheromone <strong>of</strong> Coconut Rhinoceros Beetle, Oryctes-<br />

Rhinoceros (L) (Coleoptera, Scarabaeidae). J. Chem. Ecol., 1995,<br />

21, 1549-1570.<br />

[81] Morin, J. P.; Rochat, D.; Malosse, C.; Lettere, M.; deChenon, R.<br />

D.; Wibwo, H., Descoins, C. Ethyl 4-methyloctanoate, major component<br />

<strong>of</strong> Oryctes rhinoceros (L) (Coleoptera, Dynastidae) male<br />

pheromone. Comptes Rendus Acad. Sci. Ser. III-Sci. Vie-Life Sci.,<br />

1996, 319, 595-602.<br />

[82] Rochat, D.; Mohammadpoor, K.; Malosse, C.; Avand-Faghih, A.;<br />

Lettere, M.; Beauhaire, J.; Morin, J. P.; Pezier, A.; Renou, M., Abdollahi,<br />

G. A. Male aggregation pheromone <strong>of</strong> date palm fruit stalk<br />

borer Oryctes elegans. J. Chem. Ecol., 2004, 30, 387-407.<br />

[83] Ragoussis, V.; Giannikopoulos, A.; Skoka, E., Grivas, P. Efficient<br />

synthesis <strong>of</strong> (+/-)-4-methyloctanoic acid, aggregation pheromone <strong>of</strong><br />

rhinoceros beetles <strong>of</strong> the genus Oryctes (Coleoptera : Dynastidae,<br />

scarabaeidae). J. Agric. Food Chem., 2007, 55, 5050-5052.<br />

[84] Laurence, B. R., Pickett, J. A. "Erythro-6-Acetoxy-5-<br />

Hexadecanolide, the Major Component <strong>of</strong> a Mosquito Oviposition<br />

Attractant Pheromone. J. Chem. Soc. Chem. Commun., 1982, 59-<br />

60.<br />

[85] Laurence, B. R.; Mori, K.; Otsuka, T.; Pickett, J. A., Wadhams, L.<br />

J. Absolute-Configuration <strong>of</strong> Mosquito Oviposition Attractant<br />

Pheromone, 6-Acetoxy-5-Hexadecanolide. J. Chem. Ecol., 1985,<br />

11, 643-648.<br />

[86] Sun, B.; Peng, L. Z.; Chen, X. S.; Li, Y. L.; Li, Y., Yamasaki, K.<br />

<strong>Synthesis</strong> <strong>of</strong> (-)-(5R,6,S)-6-acetoxyhexadecan-5-olide by L-prolinecatalyzed<br />

asymmetric aldol reactions. Tetrahedron Asymmetry,<br />

<strong>2005</strong>, 16, 1305-1307.<br />

[87] Ikishima, H.; Sekiguchi, Y.; Ichikawa, Y., Kotsuki, H. <strong>Synthesis</strong> <strong>of</strong><br />

(-)-(5R,6S)-6-acetoxyhexadecanolide based on L-proline-catalyzed<br />

asymmetric aldol reactions. Tetrahedron, 2006, 62, 311-316.<br />

[88] Dhotare, B.; Goswami, D., Chattopadhyay, A. (R)-2,3-cyclohexylideneglyceraldehyde,<br />

a novel template for stereoselective preparation<br />

<strong>of</strong> functionalized delta-lactones: synthesis <strong>of</strong> mosquito<br />

oviposition pheromone. Tetrahedron Lett., <strong>2005</strong>, 46, 6219-6221.<br />

[89] Prasad, K. R., Anbarasan, P. Stereoselective synthesis <strong>of</strong> (-)-6-<br />

acetoxyhexadecanolide: a mosquito oviposition attractant pheromone.<br />

Tetrahedron Asymmetry, 2007, 18, 2479-2483.<br />

[90] Cosse, A. A.; Bartelt, R. J.; James, D. G., Petroski, R. J. Identification<br />

<strong>of</strong> a female-specific, antennally active volatile compound <strong>of</strong><br />

the currant stem girdler. J. Chem. Ecol., 2001, 27, 1841-1853.<br />

[91] James, D. G.; Petroski, R. J.; Cosse, A. A.; Zilkowski, B. W., Bartelt,<br />

R. J. Bioactivity, synthesis, and chirality <strong>of</strong> the sex pheromone<br />

<strong>of</strong> currant stem girdler, Janus integer. J. Chem. Ecol., 2003, 29,<br />

2189-2199.<br />

[92] Shibata, C.; Mori, K. <strong>Synthesis</strong> <strong>of</strong> (4R,9Z)-9-octadecen-4-olide, the<br />

female sex pheromone <strong>of</strong> Janus integer, and its enantiomer. Eur. J.<br />

Org. Chem., 2004, 1083-1088.<br />

[93] Mori, K. Concise synthesis <strong>of</strong> (4R,9Z)-octadec-9-en-4-olide, the<br />

female sex pheromone <strong>of</strong> Janus integer. Eur. J. Org. Chem., <strong>2005</strong>,<br />

2040-2044.<br />

[94] Meyers, A. I.; Mihelich, E. D., Nolen, R. L. Oxazolines .10. <strong>Synthesis</strong><br />

<strong>of</strong> Gamma-Butyrolactones. J. Org. Chem., 1974, 39, 2783-<br />

2787.<br />

[95] Zarbin, P. H. G.; Oliveira, A. R. M.; Simonelli, F.; Villar, J., A, F,<br />

P., Delay, O. An easy and versatile approach to the synthesis <strong>of</strong><br />

chiral pheromone lactones via 4,4-dimethyl-2-oxazoline derivatives.<br />

Tetrahedron Lett., 2004, 45, 7399-7400.<br />

[96] Sabitha, G.; Yadagiri, K., Yadav, J. S. <strong>Synthesis</strong> <strong>of</strong> the Janus integer<br />

pheromone (4R,9Z)-9-octadecen-4-olide. Tetrahedron Lett.,<br />

2007, 48, 1651-1652.<br />

[97] Sabitha, G.; Bhaskar, V.; Yadagiri, K., Yadav, J. S. <strong>Synthesis</strong> <strong>of</strong><br />

(R)-Japonilure and (4R, 9Z)-9-Octadecen-4-olide, <strong>Pheromones</strong> <strong>of</strong><br />

the Japanese beetle and currant stem girdler. Synth. Commun.,<br />

2007, 37, 2491-2500.<br />

[98] Ikan, R.; Gottlieb, R.; Bergmann, E. D., Ishay, J. Pheromone <strong>of</strong><br />

Queen <strong>of</strong> Oriental Hornet, Vespa Orientalis. J. Insect. Physiol.,<br />

1969, 15, 1709-1712.<br />

[99] Sabitha, G.; Reddy, E. V.; Yadagiri, K., Yadav, J. S. Total synthesis<br />

<strong>of</strong> insect pheromones (R)-4-dodecanolide and (S)-5-<br />

hexadecanolide. <strong>Synthesis</strong>, 2006, 3270-3274.<br />

[100] Sabitha, G.; Fatima, N.; Swapna, R., Yadav, J. S. Asymmetric total<br />

syntheses <strong>of</strong> (R)-(-)-argentilactone and (S)-5-hexadecanolide. <strong>Synthesis</strong>,<br />

2006, 2879-2884.<br />

[101] Wheeler, J. W.; Araujo, J.; Happ, G. M., Pasteels, J. M. Gamma-<br />

Dodecalactone <strong>from</strong> Rove Beetles. Tetrahedron Lett., 1972, 4635-<br />

4638.


718 Current Organic Chemistry, 2009, Vol. 13, No. 7 Bergmann et al.<br />

[102] Yadav, J. S.; Deshpande, P. K., Sharma, G. V. M. An Effective,<br />

Practical Method for the <strong>Synthesis</strong> <strong>of</strong> Chiral Propargyl Alcohols.<br />

Tetrahedron, 1990, 46, 7033-7046.<br />

[103] Tumlinson, J. H.; Klein, M. G.; Doolittle, R. E.; Ladd, T. L.,<br />

Proveaux, A. T. Identification <strong>of</strong> Female Japanese Beetle Sex-<br />

Pheromone - Inhibition <strong>of</strong> Male Response by an Enantiomer.<br />

Science, 1977, 197, 789-792.<br />

[104] Kunesch, G.; Zagatti, P.; Lallemand, J. Y.; Debal, A., Vigneron, J.<br />

P. Structure and <strong>Synthesis</strong> <strong>of</strong> the Wing Gland Pheromone <strong>of</strong> the<br />

Male African Sugar-Cane Borer - Eldana-Saccharina (Wlk) (Lepidoptera,Pyralidae).<br />

Tetrahedron Lett., 1981, 22, 5271-5274.<br />

[105] Kong, L.; Zhuang, Z.; Chen, Q.; Deng, H.; Tang, Z.; Jia, X.; Li, Y.,<br />

Zhai, H. A facile asymmetric synthesis <strong>of</strong> (+)-eldanolide. Tetrahedron<br />

Asymmetry, 2007, 18, 451-454.<br />

[106] Zhang, A.; Amalin, D.; Shirali, S.; Serrano, M. S.; Franqui, R. A.;<br />

Oliver, J. E.; Klun, J. A.; Aldrich, J. R.; Meyerdirk, D. E.,<br />

Lapointe, S. L. Sex pheromone <strong>of</strong> the pink hibiscus mealybug,<br />

Maconellicoccus hirsutus, contains an unusual cyclobutanoid<br />

monoterpene. Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 9601-9606.<br />

[107] Zhang, A. J., Nie, J. Y. Enantioselective synthesis <strong>of</strong> the female sex<br />

pheromone <strong>of</strong> the pink hibiscus mealybug, Maconellicoccus hirsutus.<br />

J. Agric. Food Chem., <strong>2005</strong>, 53, 2451-2455.<br />

[108] Cardillo, G.; Damico, A.; Orena, M., Sandri, S. Diastereoselective<br />

Alkylation <strong>of</strong> 3-Acylimidazolidin-2-Ones - <strong>Synthesis</strong> <strong>of</strong> (R)-<br />

Lavandulol and (S)-Lavandulol. J. Org. Chem., 1988, 53, 2354-<br />

2356.<br />

[109] Dickens, J. C.; Oliver, J. E.; Hollister, B.; Davis, J. C., Klun, J. A.<br />

Breaking a paradigm: male-produced aggregation pheromone for<br />

the Colorado potato beetle. J. Exp. Biol., 2002, 205, 1925-1933.<br />

[110] Oliver, J. E.; Dickens, J. C., Glass, T. E. (S)-3,7-dimethyl-2-oxo-6-<br />

octene-1,3-diol: an aggregation pheromone <strong>of</strong> the Colorado potato<br />

beetle, Leptinotarsa decemlineata (Say). Tetrahedron Lett., 2002,<br />

43, 2641-2643.<br />

[111] Tashiro, T., Mori, K. Enzyme-assisted synthesis <strong>of</strong> (S)-1,3-<br />

dihydroxy-3,7-dimethyl-6-octen-2-one, the male-produced aggregation<br />

pheromone <strong>of</strong> the Colorado potato beetle, and its (R)-<br />

enantiomer. Tetrahedron Asymmetry, <strong>2005</strong>, 16, 1801-1806.<br />

[112] Nakashima, T.; Saito, S.; Kobayashi, M.; Kinuura, H., Tokoro, M.<br />

A challenge to Japanese oak wilt: structure and activity <strong>of</strong> aggregation<br />

pheromone in Platypus quercivorus. Aroma Res., <strong>2005</strong>, 6, 348-<br />

351.<br />

[113] Kashiwagi, T.; Nakashima, T.; Tebayashi, S., Kim, C. S. Determination<br />

<strong>of</strong> the absolute configuration <strong>of</strong> quercivorol, (1S,4R)-pmenth-2-en-1-ol,<br />

an aggregation pheromone <strong>of</strong> the ambrosia beetle<br />

Platypus quercivorus (Coleoptera : Platypodidae). Biosci. Biotechnol.<br />

Biochem., 2006, 70, 2544-2546.<br />

[114] Mori, K. <strong>Synthesis</strong> <strong>of</strong> (1S,4R)-4-isopropyl-1-methyl-2-cyclohexen-<br />

1-ol, the aggregation pheromone <strong>of</strong> the ambrosia beetle Platypus<br />

quercivorus, its racemate, (1R,4R)- and (1S,4S)-isomers. Tetrahedron<br />

Asym., 2006, 17, 2133-2142.<br />

[115] Tumlinson, J. H.; Hardee, D. D.; Gueldner, R. C.; Thompson, A.<br />

C., Hedin, P. A. Sex <strong>Pheromones</strong> Produced by Male Boll Weevil -<br />

Isolation, Identification, and <strong>Synthesis</strong>. Science, 1969, 166, 1010-<br />

1012.<br />

[116] Booth, D. C.; Phillips, T. W.; Claesson, A.; Silverstein, R. M.;<br />

Lanier, G. N., West, J. R. Aggregation Pheromone Components <strong>of</strong><br />

2 Species <strong>of</strong> Pissodes-Weevils (Coleoptera, Curculionidae) - Isolation,<br />

Identification, and Field Activity. J. Chem. Ecol., 1983, 9, 1-<br />

12.<br />

[117] Phillips, T. W.; West, J. R.; Foltz, J. L.; Silverstein, R. M., Lanier,<br />

G. N. Aggregation Pheromone <strong>of</strong> the Deodar Weevil, Pissodes-<br />

Nemorensis (Coleoptera, Curculionidae) - Isolation and Activity <strong>of</strong><br />

Grandisol and Grandisal. J. Chem. Ecol., 1984, 10, 1417-1423.<br />

[118] Francke, W.; Pan, M. L.; Konig, W. A.; Mori, K.; Puapoomchareon,<br />

P.; Heuer, H., Vite, J. P. Identification <strong>of</strong> Pityol and Grandisol<br />

as Pheromone Components <strong>of</strong> the Bark Beetle, Pityophthorus-<br />

Pityographus. Naturwissenschaften, 1987, 74, 343-345.<br />

[119] Bernard, A. M.; Frongia, A.; Ollivier, J.; Piras, P. P.; Secci, F.,<br />

Spiga, M. A highly stereocontrolled formal total synthesis <strong>of</strong> (+/-)-<br />

and <strong>of</strong> (-)-grandisol by 1,4-conjugated addition <strong>of</strong> organocopper<br />

reagents to cyclobutylidene derivatives. Tetrahedron, 2007, 63,<br />

4968-4974.<br />

[120] Trost, B. M., Keeley, D. E. New Synthetic Methods - Secoalkylative<br />

Approach to Grandisol. J. Org. Chem., 1975, 40, 2013-2013.<br />

[121] Trost, B. M.; Keeley, D. E.; Arndt, H. C., Bogdanowicz, M. J. New<br />

Synthetic Reactions - <strong>Synthesis</strong> <strong>of</strong> Cyclobutanes, Cyclobutenes,<br />

and Cyclobutanones - Applications in Geminal Alkylation. J. Am.<br />

Chem. Soc., 1977, 99, 3088-3100.<br />

[122] Narasaka, K.; Kusama, H., Hayashi, Y. Enantioselective and Diastereoselective<br />

<strong>Synthesis</strong> <strong>of</strong> (+)-Grandisol. Bull. Chem. Soc. Jpn.,<br />

1991, 64, 1471-1478.<br />

[123] Millar, J. G.; Midland, S. L.; McElfresh, J. S., Daane, K. M.<br />

(2,3,4,4-Tetramethylcyclopentyl)methyl acetate, a sex pheromone<br />

<strong>from</strong> the obscure mealybug: First example <strong>of</strong> a new structural class<br />

<strong>of</strong> monoterpenes. J. Chem. Ecol., <strong>2005</strong>, 31, 2999-3005.<br />

[124] Millar, J. G., Midland, S. L. <strong>Synthesis</strong> <strong>of</strong> the sex pheromone <strong>of</strong> the<br />

obscure mealybug, the first example <strong>of</strong> a new class <strong>of</strong> monoterpenoids.<br />

Tetrahedron Lett., 2007, 48, 6377-6379.<br />

[125] Ho, H. Y.; Hung, C. C.; Chuang, T. H., Wang, W. L. Identification<br />

and synthesis <strong>of</strong> the sex pheromone <strong>of</strong> the passionvine mealybug,<br />

Planococcus minor (Maskell). J. Chem. Ecol., 2007, 33, 1986-<br />

1996.<br />

[126] Takita, M. Tohoku Nogyo Kenkyu Seika Joho, <strong>2005</strong>, 19, 50-51.<br />

[127] Mori, K. Pheromone synthesis, Part 233. Synthetic studies aimed at<br />

the elucidation <strong>of</strong> the stereostructure <strong>of</strong> the aggregation pheromone,<br />

2-methyl-6-(4 '-methylenebicyclo[3.1.0]hexyl)hept-2-en-1-ol, produced<br />

by the male stink bug Erysarcoris lewisi. Tetrahedron<br />

Asymmetry, 2007, 18, 838-846.<br />

[128] Bartelt, R. J.; Cosse, A. A.; Zilkowski, B. W.; Weisleder, D.,<br />

Momany, F. A. Male-specific sesquiterpenes <strong>from</strong> Phyllotreta and<br />

Aphthona flea beetles. J. Chem. Ecol., 2001, 27, 2397-2423.<br />

[129] Muto, S.; Bando, M., Mori, K. <strong>Synthesis</strong> and stereochemistry <strong>of</strong> the<br />

four himachalene-type sesquiterpenes isolated <strong>from</strong> the flea beetle<br />

(Aphthona flava) as pheromone candidates. Eur. J. Org. Chem.,<br />

2004, 1946-1952.<br />

[130] Mori, K. <strong>Synthesis</strong> <strong>of</strong> (R)-ar-turmerone and its conversion to (R)-<br />

ar-himachalene, a pheromone component <strong>of</strong> the flea beetle: (R)-arhimachalene<br />

is dextrorotatory in hexane, while levorotatory in<br />

chlor<strong>of</strong>orm. Tetrahedron Asymmetry, <strong>2005</strong>, 16, 685-692.<br />

[131] Mori, K. <strong>Synthesis</strong> <strong>of</strong> (R)-ar-turmerone and its conversion to (R)-<br />

ar-himachalene, a pheromone component <strong>of</strong> the flea beetle: (R)-arhimachalene<br />

is dextrorotatory in hexane, while levorotatory in<br />

chlor<strong>of</strong>orm (vol. 16, pg 685, <strong>2005</strong>). Tetrahedron Asymmetry, <strong>2005</strong>,<br />

16, 1721-1721.<br />

[132] Pandey, R. C.; Dev, S. Studies in Sesquiterpenes .30. <strong>Synthesis</strong> <strong>of</strong><br />

Ar-Himachalene and Himachalanes. Tetrahedron 1968, 24, 3829-<br />

3839.<br />

[133] Brand, J. M.; Duffield, R. M.; Macconne, J. G.; Blum, M. S.; Fales,<br />

H. M. Caste-Specific Compounds in Male Carpenter Ants. Science,<br />

1973, 179, 388-389.<br />

[134] Fales, H. M.; Crewe, R. M.; Blum, M. S., Brand, J. M. Alarm<br />

<strong>Pheromones</strong> in Genus Manica Derived <strong>from</strong> Mandibular Gland. J.<br />

Insect. Physiol., 1972, 18, 1077-1088.<br />

[135] Bestmann, H. J.; Attygalle, A. B.; Glasbrenner, J.; Riemer, R.,<br />

Vostrowsky, O. <strong>Pheromones</strong> .61. the Absolute-Configuration <strong>of</strong> the<br />

Ant Alarm Pheromone Manicone. Angew. Chem. Int. Ed. Engl.,<br />

1987, 26, 784-785.<br />

[136] Williams, H. J.; Silverstein, R. M.; Burkholder, W. E., Khorramshahi,<br />

A. Dominicalure-1 and Dominicalure-2 - Components <strong>of</strong><br />

Aggregation Pheromone <strong>from</strong> Male Lesser Grain Borer Rhyzopertha-Dominica<br />

(F) (Coleoptera, Bostrichidae). J. Chem. Ecol., 1981,<br />

7, 759-780.<br />

[137] Das, B.; Banerjee, J.; Chowdhury, N.; Majhi, A., Mahender, G.<br />

Synthetic applications <strong>of</strong> the Baylis-Hillman reaction: Simple and<br />

convenient synthesis <strong>of</strong> five important insect pheromones. Helv.<br />

Chim. Acta, 2006, 89, 876-883.<br />

[138] Persoons, C. J.; Ritter, F. J., Lichtend.Wj Sex-<strong>Pheromones</strong> <strong>of</strong><br />

American Cockroach, Periplaneta-Americana - Isolation and Partial<br />

Identification <strong>of</strong> 2 Excitants. Proc. Kon. Ned. Akad. Wetensch. Ser.<br />

C-Biol. Med. Sci., 1974, 77, 201-204.<br />

[139] Persoons, C. J.; Verwiel, P. E. J.; Talman, E., Ritter, F. J. Sex-<br />

Pheromone <strong>of</strong> the American Cockroach, Periplaneta-Americana -<br />

Isolation and Structure Elucidation <strong>of</strong> Periplanone-B. J. Chem.<br />

Ecol., 1979, 5, 221-236.<br />

[140] Persoons, C. J.; Verwiel, P. E. J.; Ritter, F. J., Nooyen, W. J. Studies<br />

on Sex-Pheromone <strong>of</strong> American Cockroach, with Emphasis on<br />

Structure Elucidation <strong>of</strong> Periplanone-A. J. Chem. Ecol., 1982, 8,<br />

439-451.<br />

[141] Persoons, C. J.; Ritter, F. J.; Verwiel, P. E. J.; Hauptmann, H.,<br />

Mori, K. Nomenclature <strong>of</strong> American Cockroach Sex-<strong>Pheromones</strong>.<br />

Tetrahedron Lett., 1990, 31, 1747-1750.


<strong>Synthesis</strong> <strong>of</strong> <strong>Pheromones</strong> Current Organic Chemistry, 2009, Vol. 13, No. 7 719<br />

[142] Hauptmann, H.; Muhlbauer, G., Sass, H. Identification and <strong>Synthesis</strong><br />

<strong>of</strong> Periplanon-A. Tetrahedron Lett., 1986, 27, 6189-6192.<br />

[143] Biendl, M.; Hauptmann, H., Sass, H. Periplanone-D1 and Periplanone-D2,<br />

2 New Biologically-Active Germacranoid Sesquiterpenes<br />

<strong>from</strong> the American Cockroach Periplaneta-Americana. Tetrahedron<br />

Lett., 1989, 30, 2367-2368.<br />

[144] Matovic, R.; Ivkovic, A.; Manojlovic, M.; Tokic-Vujosevic, Z.,<br />

Saicic, R. N. Ring closing metathesis/fragmentation route to (Z)-<br />

configured medium ring cycloalkenes. Total synthesis <strong>of</strong> (+/-)-<br />

periplanone C. J. Org. Chem., 2006, 71, 9411-9419.<br />

[145] Phillips, T. W.; Phillips, J. K.; Webster, F. X.; Tang, R., Burkholder,<br />

W. E. Identification <strong>of</strong> sex pheromones <strong>from</strong> cowpea weevil,<br />

Callosobruchus maculatus, and related studies with C-analis<br />

(Coleoptera: Bruchidae). J. Chem. Ecol., 1996, 22, 2233-2249.<br />

[146] Yajima, A.; Yamamoto, M.; Nukada, T., Yabuta, G. Efficient and<br />

stereo-selective syntheses <strong>of</strong> three stereoisomers <strong>of</strong> the sex pheromone<br />

<strong>of</strong> the cowpea weevil, Callosobruchus maculatus. Biosci.<br />

Biotechnol. Biochem., 2007, 71, 2720-2724.<br />

[147] Rand, C. L.; Vanhorn, D. E.; Moore, M. W., Negishi, E. Selective<br />

Carbon-Carbon Bond Formation Via Transition-Metal Catalysis<br />

.19. a Versatile and Selective Route to Difunctional Trisubstituted<br />

(E)-Alkene Synthons Via Zirconium-Catalyzed Carboalumination<br />

<strong>of</strong> Alkynes. J. Org. Chem., 1981, 46, 4093-4096.<br />

[148] Ma, S. M., Negishi, E. Anti-carbometalation <strong>of</strong> homopropargyl<br />

alcohols acid their higher homologues via non-chelation-controlled<br />

syn-carbometalation and chelation-controlled isomerization. J. Org.<br />

Chem., 1997, 62, 784-785.<br />

[149] Ostmark, H. E. Economic Insect Pests <strong>of</strong> Bananas. Annu. Rev.<br />

Entomol., 1974, 19, 161-176.<br />

[150] Budenberg, W. J.; Ndiege, I. O., Karago, F. W. Evidence for Volatile<br />

Male-Produced Pheromone in Banana Weevil Cosmopolites-<br />

Sordidus. J. Chem. Ecol., 1993, 19, 1905-1916.<br />

[151] Beauhaire, J.; Ducrot, P. H.; Malosse, C.; Rochat, D.; Ndiege, I. O.,<br />

Otieno, D. O. Identification and <strong>Synthesis</strong> <strong>of</strong> Sordidin, a Male<br />

Pheromone Emitted by Cosmopolites-Sordidus. Tetrahedron Lett.,<br />

1995, 36, 1043-1046.<br />

[152] Mori, K.; Nakayama, T., Takikawa, H. <strong>Synthesis</strong> and absolute<br />

configuration <strong>of</strong> sordidin, the male-produced aggregation pheromone<br />

<strong>of</strong> the banana weevil, Cosmopolitan sordidus. Tetrahedron<br />

Lett., 1996, 37, 3741-3744.<br />

[153] Fletcher, M. T.; Moore, C. J., Kitching, W. Absolute configuration<br />

<strong>of</strong> sordidin and 7-episordidin emitted by the banana weevil, Cosmopolites<br />

sordidus. Tetrahedron Lett., 1997, 38, 3475-3476.<br />

[154] Bergmann, J.; L<strong>of</strong>stedt, C.; Ivanov, V. D.; Francke, W. Identification<br />

and synthesis <strong>of</strong> new bicyclic acetals <strong>from</strong> caddisflies<br />

(Trichoptera). Tetrahedron Lett., 2004, 45, 3669-3672.<br />

[155] Enders, D.; Breuer, I., Nuhring, A. First asymmetric synthesis <strong>of</strong><br />

(+)-sordidin and (-)-7-epi-sordidin, aggregation <strong>Pheromones</strong> <strong>of</strong> the<br />

banana weevil cosmopolites sordidus. Eur. J. Org. Chem., <strong>2005</strong>,<br />

2677-2683.<br />

[156] Enders, D., Bockstiegel, B. Enantioselective Alkylation <strong>of</strong> 2,2-<br />

Dimethyl-1,3-Dioxan-5-One Using the Samp-Hydrazone Ramp-<br />

Hydrazone Method. <strong>Synthesis</strong>, 1989, 493-496.<br />

[157] Enders, D., Jegelka, U. 1,3-Dioxan-5-One as C-3-Building Block<br />

for the Diastereoselective and Enantioselective <strong>Synthesis</strong> <strong>of</strong> C-5-<br />

Deoxy to C-9-Deoxy Sugars Using the Samp-Hydrazone Ramp-<br />

Hydrazone Method. Tetrahedron Lett., 1993, 34, 2453-2456.<br />

[158] Kinzer, G. W.; Fentiman, A. F.; Page, T. F.; Foltz, R. L.; Vite, J. P.,<br />

Pitman, G. B. Bark Beetle Attractants - Identification <strong>Synthesis</strong> and<br />

Field Bioassay <strong>of</strong> a New Compound Isolated <strong>from</strong> Dendroctonus.<br />

Nature, 1969, 221, 477-478.<br />

[159] Mori, K. <strong>Synthesis</strong> <strong>of</strong> Optically-Active Forms <strong>of</strong> Frontalin -<br />

Pheromone <strong>of</strong> Dendroctonus Bark Beetles. Tetrahedron, 1975, 31,<br />

1381-1384.<br />

[160] Wood, D. L.; Browne, L. E.; Ewing, B.; Lindahl, K.; Bedard, W.<br />

D.; Tilden, P. E.; Mori, K.; Pitman, G. B., Hughes, P. R. Western<br />

Pine Beetle - Specificity among Enantiomers <strong>of</strong> Male and Female<br />

Components <strong>of</strong> an Attractant Pheromone. Science, 1976, 192, 896-<br />

898.<br />

[161] Prasad, K. R.; Chandrakumar, A., Anbarasan, P. Asymmetric synthesis<br />

<strong>of</strong> both enantiomers <strong>of</strong> alpha-methyl-alphamethoxyphenylacetic<br />

acid <strong>from</strong> L-(+)-tartaric acid: formal enantioselective<br />

synthesis <strong>of</strong> insect pheromone (-)-frontalin. Tetrahedron<br />

Asymmetry, 2006, 17, 1979-1984.<br />

[162] Kang, S. K.; Rho, H. S., Namkoong, E. Y. Enantioselective <strong>Synthesis</strong><br />

<strong>of</strong> (-)-Frontalin. Bull. Korean Chem. Soc., 1995, 16, 191-193.<br />

[163] Schuster, C.; Knollmueller, M., Gaertner, P. Chiral linker. Part 4:<br />

Diastereoselective addition <strong>of</strong> RZnX to alpha-keto esters using m-<br />

hydrobenzoin derived chiral auxiliaries in solution and on solid<br />

support and their application in the stereoselective synthesis <strong>of</strong><br />

frontalin. Tetrahedron Asymmetry, 2006, 17, 2430-2441.<br />

[164] Silverstein, R. M.; Brownlee, R. G.; Bellas, T. E.; Wood, D. L.;<br />

Browne, L. E. Brevicomin - Principal Sex Attractant in Frass <strong>of</strong><br />

Female Western Pine Beetle. Science, 1968, 159, 889-891.<br />

[165] Bedard, W. D.; Tilden, P. E.; Wood, D. L.; Silverstein, R. M.;<br />

Brownlee, R. G., Rodin, J. O. Western Pine Beetle - Field Response<br />

to Its Sex Pheromone and a Synergistic Host Terpene Myrcene.<br />

Science, 1969, 164, 1284-1285.<br />

[166] Vite, J. P.; Billings, R. F.; Ware, C. W., Mori, K. Southern Pine-<br />

Beetle - Enhancement or Inhibition <strong>of</strong> Aggregation Response Mediated<br />

by Enantiomers <strong>of</strong> Endo-Brevicomin. Naturwissenschaften,<br />

1985, 72, 99-100.<br />

[167] Francke, W.; Schroder, F.; Philipp, P.; Meyer, H.; Sinnwell, V.,<br />

Gries, G. Identification and synthesis <strong>of</strong> new bicyclic acetals <strong>from</strong><br />

the mountain pine beetle, Dendroctoaus ponderosae Hopkins (Col:<br />

Scol). Bioorg. Med. Chem., 1996, 4, 363-374.<br />

[168] Prasad, K. R., Anbarasan, P. Asymmetric synthesis <strong>of</strong> unsaturated<br />

alpha-benzyloxyaldehydes: an enantioselective synthesis <strong>of</strong> (+)-<br />

exo-brevicomin. Tetrahedron Asymmetry, <strong>2005</strong>, 16, 3951-3953.<br />

[169] Prasad, K. R.; Anbarasan, P. An enantiospecific synthesis <strong>of</strong> (+)-<br />

hydroxy-exo-brevicomin. Tetrahedron Lett., 2006, 47, 1433-1435.<br />

[170] Prasad, K. R.; Anbarasan, P. An expeditious enantiospecific synthesis<br />

<strong>of</strong> (+)-2-hydroxy-exo-brevicomin. Synlett, 2006, 2087-2088.<br />

[171] Baker, R.; Herbert, R.; Howse, P. E.; Jones, O. T.; Francke, W.,<br />

Reith, W. Identification and <strong>Synthesis</strong> <strong>of</strong> the Major Sex-Pheromone<br />

<strong>of</strong> the Olive Fly (Dacus-Oleae). J. Chem. Soc. Chem. Commun.,<br />

1980, 52-53.<br />

[172] Haniotakis, G.; Francke, W.; Mori, K.; Redlich, H., Schurig, V.<br />

Sex-Specific Activity <strong>of</strong> "(R)-(-)-1,7-Dioxaspiro[5.5]Undecane (S)-<br />

(+)-1,7-Dioxaspiro[5.5]Undecane, the Major Pheromone <strong>of</strong> Dacus-<br />

Oleae (Diptera, Tephritidae). J. Chem. Ecol., 1986, 12, 1559-1568.<br />

[173] Tengo, J.; Bergstrom, G.; Borgkarlson, A. K.; Groth, I., Francke,<br />

W. Volatile Compounds <strong>from</strong> Cephalic Secretions <strong>of</strong> Females in 2<br />

Cleptoparasite Bee Genera, Epeolus (Hym, Anthophoridae) and<br />

Coelioxys (Hym,Megachilidae). Z. Naturforsch. C, 1982, 37, 376-<br />

380.<br />

[174] Conway, J. C.; Quayle, P.; Regan, A. C., Urch, C. J. Palladium<br />

mediated spiroketal synthesis: application to pheromone synthesis.<br />

Tetrahedron, <strong>2005</strong>, 61, 11910-11923.<br />

[175] Horler, D. F. (-)Methyl-N-Tetradeca-Trans-2,4,5-Trienoate, an<br />

Allenic Ester Produced by Male Dried Bean Beetle, Acanthoscelides-Obtectus<br />

(Say). J. Chem. Soc. C-Org., 1970, 859.<br />

[176] Ogasawara, M.; Nagano, T., Hayashi, T. A new route to methyl<br />

(R,E)-(-)-tetradeca-2,4,5-trienoate (pheromone <strong>of</strong> Acanthoscelides<br />

obtectus) utilizing a palladium-catalyzed asymmetric allene formation<br />

reaction. J. Org. Chem., <strong>2005</strong>, 70, 5764-5767.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!