05.06.2014 Views

LU-8031 - High Irradiance UV Testers - Q-Lab

LU-8031 - High Irradiance UV Testers - Q-Lab

LU-8031 - High Irradiance UV Testers - Q-Lab

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TECHNICAL BULLETIN <strong>LU</strong>-<strong>8031</strong><br />

<strong>High</strong> <strong>Irradiance</strong><br />

<strong>UV</strong>/Condensation <strong>Testers</strong><br />

Allow Faster Accelerated<br />

Weathering Test Results<br />

Introduction & Background<br />

Weatherability is a necessary quality for coatings<br />

used outdoors. Because outdoor exposures<br />

are so time consuming, accelerated<br />

laboratory testing is used extensively by<br />

industry. One of the more popular laboratory<br />

weathering testers is the ASTM G53 <strong>UV</strong>/Condensation<br />

device, also known as the Q<strong>UV</strong>. 1<br />

In the Q<strong>UV</strong>, test specimens are repetitively<br />

exposed to alternating cycles of <strong>UV</strong> light and<br />

condensing moisture at controlled temperatures.<br />

Previously, exposure conditions could be<br />

varied only by the selection of the fluorescent<br />

<strong>UV</strong> lamp, the timing of the <strong>UV</strong> and condensation<br />

exposures and the temperatures of the exposures.<br />

This paper examines an enhancement<br />

to the Q<strong>UV</strong> weathering tester for precise control<br />

of light output and higher irradiance. Data is<br />

presented on the accelerating effect of higher<br />

irradiance on several common polymers.<br />

<strong>Irradiance</strong> Control System<br />

The irradiance control system, marketed under<br />

the name “Solar Eye,” consists of a programmable<br />

controller that continuously monitors the<br />

<strong>UV</strong> intensity via four sensors mounted in the<br />

test sample plane. A four channel feedback loop<br />

system maintains the programmed irradiance<br />

level by adjusting power to <strong>UV</strong> lamps. The irradiance<br />

level can be adjusted to varying intensities<br />

for different applications. Figure 1 shows<br />

a simplified schematic of how the irradiance<br />

control system works.<br />

Each sensor monitors the intensity of two<br />

lamps. Each sensor is individually calibrated<br />

Figure 1<br />

<br />

1<br />

Sample<br />

Plane<br />

Ballast 1<br />

Controller<br />

Ballast <br />

Lamps<br />

(all same age)<br />

Detector<br />

Sample<br />

Plane<br />

by the operator on a regular basis. The calibration<br />

is traceable to the National Institute of<br />

Standards and Technology (NIST) for ISO 9000<br />

compliance.<br />

Data presented previously 2 has shown that the<br />

Solar Eye control system largely eliminates<br />

variations in <strong>UV</strong> intensity and therefore greatly<br />

reduces variations in test results.<br />

Ballast 4<br />

Ballast 3<br />

3<br />

4<br />

1. ASTM G53, Standard Practice for Operating Light and Water Exposure Apparatus (Fluorescent <strong>UV</strong>-Condensation Type) for Exposure of<br />

Nonmetalic Materials, Annual Book of ASTM Standards, Vol. 04.07, American Society for Testing and Materials, Philadelphia, 1992.<br />

2. Fedor, G. R., Brennan, P. J., “<strong>Irradiance</strong> Control In Fluorescent <strong>UV</strong> Exposure <strong>Testers</strong>,” Accelerated and Outdoor Durability Testing of Organic<br />

Materials, ASTM STP 1202, Warren D. Ketola, and Douglas Grossman, Eds., American Society for Testing and Materials, Philadelphia, 1993.


<strong>High</strong> <strong>Irradiance</strong> for Faster Results<br />

The programmable, automatic irradiance control<br />

system allows the operator to choose a higher than<br />

standard level of irradiance for <strong>UV</strong> exposure tests.<br />

For many materials, this results in faster degradation<br />

and therefore shorter test times.<br />

It is widely recognized the <strong>UV</strong>A-340 lamp is a more<br />

realistic simulation of sunlight than the <strong>UV</strong>B-313<br />

lamp. 3,4 Since its introduction, most of the plastics<br />

industry has switched to the <strong>UV</strong>A-340 because it<br />

gives more realistic results. However, in spite of its<br />

limitations, a large number of coatings researchers<br />

continue to use the <strong>UV</strong>-B lamps because they give<br />

faster results. With the programmable controller,<br />

the <strong>UV</strong>A-340 can now be operated at higher irradiance<br />

levels to speed up test results. Figure 2<br />

shows <strong>UV</strong>A-340 lamps at various irradiance levels,<br />

compared to sunlight.<br />

The recommended maximum increase over typical<br />

G53 irradiance is 75%. Even though lamps are<br />

capable of higher intensity levels at full power, it is<br />

not recommended that tests be run at levels higher<br />

than 1.75x normal. There must be some excess<br />

power available to maintain the desired set point<br />

and account for such things as lamp aging and other<br />

factors which reduce the maximum irradiance<br />

potential. It should be noted that lamps operated at<br />

higher than normal irradiance will have a proportionally<br />

shorter useful life span.<br />

Exposure Results for Various<br />

Polymers<br />

The programmable, automatic irradiance control<br />

system allows the operator to choose a higher than<br />

standard level of irradiance for <strong>UV</strong> exposure tests.<br />

For many materials, this results in faster degradation<br />

and therefore shorter test times.<br />

It is widely recognized the <strong>UV</strong>A-340 lamp is a more<br />

realistic simulation of sunlight than the <strong>UV</strong>B-313<br />

lamp. 3,4 Since its introduction, most of the plastics<br />

industry has switched to the <strong>UV</strong>A-340 because it<br />

gives more realistic results. However, in spite of its<br />

limitations, a large number of coatings researchers<br />

continue to use the <strong>UV</strong>-B lamps because they give<br />

faster results. With the programmable controller,<br />

the <strong>UV</strong>A-340 can now be operated at higher irradiance<br />

levels to speed up test results. Figure 2<br />

shows <strong>UV</strong>A-340 lamps at various irradiance levels,<br />

compared to sunlight.<br />

The recommended maximum increase over typical<br />

G53 irradiance is 75%. Even though lamps are<br />

capable of higher intensity levels at full power, it is<br />

not recommended that tests be run at levels higher<br />

than 1.75x normal. There must be some excess<br />

power available to maintain the desired set point<br />

and account for such things as lamp aging and other<br />

factors which reduce the maximum irradiance<br />

potential. It should be noted that lamps operated at<br />

higher than normal irradiance will have a proportionally<br />

shorter useful life span.<br />

Figure 2 Figure 3<br />

<strong>UV</strong>A-340 at Different Intensities<br />

Acrylic Yellowing<br />

<strong>Irradiance</strong> W/m /nm<br />

1.5<br />

1<br />

0.5<br />

Intensified<br />

1.75x<br />

<strong>UV</strong>A-340<br />

Typical <strong>Irradiance</strong><br />

Reduced to .35<br />

Noon Summer<br />

Sunlight<br />

Gloss<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0.83<br />

Material: Epoxy Coating (gray)<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

270 290 310 330 350 370 390<br />

Wavelength (nm)<br />

1.3<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure


Figure 4<br />

Acrylic Yellowing<br />

delta b<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Material: Acrylic Sheet (clear)<br />

2<br />

1.3<br />

1<br />

0.83<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

Figure 8<br />

Acrylic Yellowing<br />

delta b<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

Material: Vinyl Film (green)<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

1.3<br />

-0.8<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

0.83<br />

Figure 5<br />

Polystyrene Yellowing<br />

Figure 9<br />

Vinyl Yellowing<br />

50<br />

40<br />

1.3<br />

0.83<br />

30<br />

Material:<br />

Polycarbonate Sheet (clear)<br />

1.3<br />

delta b<br />

30<br />

Material:<br />

20<br />

Polystyrene Reference Matl. (clear)<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

10<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

delta b<br />

20<br />

10<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

0.83<br />

Figure 6<br />

Vinyl Yellowing<br />

Figure 10<br />

Polycarbonate Yellowing<br />

50<br />

30<br />

Material: P.V.C. Film (clear)<br />

1.3<br />

50<br />

40<br />

Material: CAB Sheet (clear)<br />

1.3<br />

delta b<br />

20<br />

10<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

0.83<br />

delta b<br />

30<br />

20<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

10<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

0.83<br />

Figure 7<br />

Vinyl Gloss Loss<br />

Gloss<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Material: Acrylic Sheet (clear)<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

0.83<br />

1.3<br />

Figure 11<br />

Polyester<br />

Gloss<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Material: Polyester Coating (tan)<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

0.83<br />

1.3


Figure 12<br />

Urethane Gloss Loss<br />

Gloss<br />

delta b<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Material: Urethane Coating (gray)<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

1.3<br />

0<br />

0 500 1000 1500 2000 2500<br />

Figure 13<br />

Yellowing<br />

50<br />

40<br />

30<br />

Hours Q<strong>UV</strong>/se Exposure<br />

Material: ABS Sheet (white)<br />

0.83<br />

0.83<br />

20<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

10<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Figure 14<br />

Hours Q<strong>UV</strong>/se Exposure<br />

Polystyrene Yellowing<br />

1.3<br />

Figure 16<br />

Polypropylene Yellowing<br />

delta b<br />

12<br />

10<br />

8<br />

6<br />

4<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

2<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Figure 17<br />

Material: Polypropylene Sheet<br />

1.3<br />

Hours Q<strong>UV</strong>/se Exposure<br />

Automotive Paint Gloss Loss<br />

Gloss<br />

100<br />

80<br />

60<br />

40<br />

0.83<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

20<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

0.83<br />

Material: Automotive Coating (blue/gray)<br />

1.3<br />

0<br />

Material: Polyesthylene Sheet<br />

Effect of Moisture<br />

<br />

delta b<br />

delta b<br />

-1<br />

-2<br />

Test Conditions:<br />

-3<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

-4<br />

0 500 1000 1500 2000 2500<br />

Figure 15<br />

Nylon Yellowing<br />

5<br />

4<br />

3<br />

Material: Nylon Sheet<br />

Hours Q<strong>UV</strong>/se Exposure<br />

1.3<br />

0.83<br />

2<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

1<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

1.3<br />

0.83<br />

For materials which are sensitive to moisture, there<br />

may be a further acceleration when moisture is<br />

added to the <strong>UV</strong> cycle. Furthermore, some materials<br />

may respond in a completely different fashion<br />

in the presence of moisture. To test this, materials<br />

were exposed under 4 different conditions:<br />

• 100% <strong>UV</strong> Cycle (at 50 o C)<br />

• <strong>UV</strong> + Moisture Cycle (4 hours <strong>UV</strong> at 50 o C,<br />

alternating with 4 hours condensation at<br />

50 o C)<br />

• <strong>UV</strong> + Dark/dry Cycle (4 hours <strong>UV</strong> at 50 o C,<br />

alternating with 4 hours dark at 50 o C)<br />

• Moisture + Dark/dry Cycle (4 hours dark<br />

and dry at 50 o C, alternating with 4 hours<br />

condensation at 50 o C)<br />

On the blue vinyl film, the <strong>UV</strong>+Moisture Cycle<br />

degraded the material most rapidly. Although the<br />

100% <strong>UV</strong> Cycle exposed the material to twice the<br />

<strong>UV</strong> “dosage,” the results were not as severe.


Figure 18<br />

Vinyl Gloss Loss<br />

Gloss<br />

100<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

Material: Vinyl Film (blue)<br />

Test Conditions:<br />

30<br />

Q<strong>UV</strong>/se<br />

20 Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

10 Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Figure 19<br />

Urethane Gloss Loss<br />

Gloss<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Figure 20<br />

11<br />

Hours Q<strong>UV</strong>/se Exposure<br />

Material: Urethane Coating (gray)<br />

100% <strong>UV</strong><br />

<strong>UV</strong> + Moisture<br />

Moisture + Dark/Dry<br />

<strong>UV</strong> + Moisture<br />

<strong>UV</strong> + Dark/Dry<br />

100% <strong>UV</strong><br />

0 500 1000 1500 2000 2500 3000<br />

Hours Q<strong>UV</strong>/se Exposure<br />

Polypropylene Gloss Loss<br />

Moisture + Dark/Dry<br />

<strong>UV</strong> + Dark/Dry<br />

Material: Polypropylene Sheet (natural)<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83<br />

W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

Exposure Duration & Measurement<br />

Intervals<br />

As a general rule, exposures should be run until<br />

the material has reached complete failure. This<br />

is because the perceived difference in the rate of<br />

degradation between any two exposures may vary,<br />

depending on how the data is analyzed.<br />

Figure 21 shows how running an exposure test<br />

to a predetermined level of degradation (in this<br />

case, yellowing) can cause confusion. If the exposure<br />

had been terminated after a delta b of 8 was<br />

reached, the higher irradiance exposure would<br />

appear to be 48% faster. If the exposure had been<br />

terminated at a delta b of 34, the higher irradiance<br />

test would appear to be only 32% faster. Only running<br />

the test to complete failure shows the true<br />

relationship between the two exposures.<br />

Figure 21<br />

Comparison at Varying Levels of Yellowing<br />

delta b<br />

48<br />

40<br />

32<br />

24<br />

Material: ABS Sheet (white)<br />

delta b = 34<br />

3% faster<br />

0.83<br />

16<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

8<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

delta b = 8<br />

Cycle: <strong>UV</strong> Only<br />

4% faster<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

1.3<br />

delta b<br />

9<br />

7<br />

5<br />

3<br />

1<br />

-1<br />

100% <strong>UV</strong><br />

0 1000 2000 3000<br />

Hours Q<strong>UV</strong>/se Exposure<br />

<strong>UV</strong> + Dark/Dry<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

<strong>UV</strong> + Moisture<br />

Moisture + Dark/Dry<br />

Figure 22 shows the same data used in the previous<br />

figure. However, here the exposures were<br />

analysed after a predetermined number of hours. If<br />

the two exposures are compared at 500 hours, the<br />

difference appears to be 100%. If they are compared<br />

at 1000 hours, the difference is 22%.<br />

This moisture effect is even more dramatic on the<br />

urethane. Again, although the <strong>UV</strong>+Moisture Cycle<br />

exposed the material to only half the <strong>UV</strong> dosage<br />

as the 100% <strong>UV</strong> Cycle, the rate of degradation is<br />

much faster.<br />

Sometimes the presence of moisture effects both<br />

the rate and the type of degradation. This is illustrated<br />

in Figure 20. In this case, the <strong>UV</strong>+Moisture<br />

Cycle gave a very different result than the cycles<br />

that omitted moisture.


Table 1<br />

Materials Tester<br />

Material Polymer Description Color Thickness<br />

1 Vinyl film clear 0.006<br />

2 Vinyl glossy film blue 0.003<br />

3 Polystyrene ref. material plaque clear 0.110<br />

4 Vinyl film green 0.004<br />

5 Epoxy coil coating gray<br />

6 Urethane coil coating gray<br />

7 ? automotive paint blue<br />

8 Polyester coil coating tan<br />

9 Acrylic sheet clear 1/8"<br />

10 Polycarbonate sheet clear 1/8"<br />

11 Polyethylene sheet white 1/8"<br />

12 ABS sheet white 1/8"<br />

13 CAB sheet clear 1/8"<br />

14 Polypropylene sheet natural 3/16"<br />

15 Nylon sheet natural 3/16"<br />

An even more dramatic example of this is shown<br />

in Figure 23. After 1000 hours exposure, there is<br />

no difference in the exposure results. However, at<br />

1500 hours, there is an 18 to 1 difference. Because<br />

the lower irradiance test was terminated before the<br />

sample reached failure, there is no way to know<br />

the actual relationship between the two exposures.<br />

These examples also illustrate why degradation<br />

should be measured at regular intervals during an<br />

exposure, rather than at the end of a preset time.<br />

<br />

Figure 22<br />

Comparison at Various Exposure Times<br />

delta b<br />

48<br />

40<br />

32<br />

24<br />

Material: ABS Sheet (white)<br />

@1000 hours<br />

% more<br />

yellowing<br />

@00 hours<br />

100% more<br />

0.83<br />

16 yellowing<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

8<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

1.3<br />

Figure 23<br />

Comparison at Varying Time Intervals<br />

delta b<br />

40<br />

36<br />

32<br />

28<br />

24<br />

20<br />

16<br />

12<br />

8<br />

Material: P.V.C. Film (clear)<br />

Test Conditions:<br />

Q<strong>UV</strong>/se<br />

Lamp: <strong>UV</strong>A-340<br />

<strong>Irradiance</strong>: 1.35 & 0.83 W/m2/nm @ 340nm<br />

Cycle: <strong>UV</strong> Only<br />

Temperature: B.P. 50C<br />

@100 hours<br />

18x more yellowing<br />

than @ 1000 hours<br />

4<br />

0.83<br />

0<br />

0 500 1000 1500 2000 2500<br />

Hours Q<strong>UV</strong>/se Exposure<br />

1.3


Summary & Conclusions<br />

There is currently great interest in using high irradiance<br />

exposures as a method of accelerating<br />

laboratory weathering tests. One way to achieve<br />

higher irradiance is with the programmable automatic<br />

irradiance control system now available for<br />

use in Q<strong>UV</strong>/SE weathering testers. This system<br />

was designed to maintain a precise <strong>UV</strong> intensity<br />

level throughout an exposure test. With this system,<br />

the operator can choose from a range of irradiance<br />

levels, up to 75% over that of a standard<br />

Q<strong>UV</strong> device.<br />

Acknowledgement<br />

The authors would like to recognize Sandra Kalmbach<br />

for her assistance in data collection and organization.<br />

Accelerated laboratory weathering data from a variety<br />

of materials indicates that, for some of these<br />

materials, exposure to high light intensity levels in<br />

a Q<strong>UV</strong>/SE causes faster degradation. For these<br />

materials, test times can be reduced by using<br />

higher irradiance exposures.<br />

However for other materials, moisture or temperature<br />

may play a critical roll in degradation.<br />

Moisture in the test cycle increased the rate of yellowing<br />

or gloss loss for 5 of the 15 materials tested,<br />

as compared to <strong>UV</strong> only exposures. Furthermore,<br />

experience indicates that irradiance, moisture,<br />

dark time, and temperature frequently have a synergistic<br />

effect. Using high irradiance to reduce test<br />

times is a promising technique for quality control<br />

and product development. However it could have<br />

a detrimental effect on correlations between laboratory<br />

and outdoor results.


Q-<strong>Lab</strong> Headquarters<br />

& Instruments Division<br />

800 Canterbury Road<br />

Cleveland, OH 44145 USA<br />

Phone: 440-835-8700<br />

Fax: 440-835-8738<br />

Q-<strong>Lab</strong> Corporation<br />

Q-<strong>Lab</strong> Europe<br />

Express Trading Estate<br />

Farnworth<br />

Bolton, BL4 9TP<br />

England<br />

Phone: 44 (0) 1204 861616<br />

Fax: 44 (0) 1204 861617<br />

Q-<strong>Lab</strong> China<br />

Room 1809/1810, Liangyou Bld.<br />

618 Shangcheng Road<br />

Pudong District<br />

Shanghai, China 200120<br />

Phone: 86-21-5879-7970<br />

Fax: 86-21-5879-7960<br />

www.q-lab.com<br />

info@q-lab.com<br />

<strong>LU</strong>-<strong>8031</strong><br />

© 2006 Q-<strong>Lab</strong> Corporaiton.<br />

All Rights Reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!