03.06.2014 Views

Eco-Profile of Aromatic Polyester Polyols (APP) - PU Europe

Eco-Profile of Aromatic Polyester Polyols (APP) - PU Europe

Eco-Profile of Aromatic Polyester Polyols (APP) - PU Europe

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Final Report<br />

<strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong> <strong>of</strong> <strong>Aromatic</strong><br />

<strong>Polyester</strong> <strong>Polyols</strong> (<strong>APP</strong>)<br />

Sponsored by<br />

<strong>PU</strong> <strong>Europe</strong>,<br />

Federation <strong>of</strong> <strong>Europe</strong>an rigid Polyurethane Foam Associations


Title <strong>of</strong> the Study: <strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong> <strong>of</strong> <strong>Aromatic</strong> <strong>Polyester</strong> <strong>Polyols</strong> (<strong>APP</strong>)<br />

Client:<br />

<strong>PU</strong> <strong>Europe</strong>, Federation <strong>of</strong> <strong>Europe</strong>an rigid Polyurethane Foam Associations<br />

March 2010<br />

Authors:<br />

Angela Schindler<br />

Fabian Haßel<br />

Dr. Martin Baitz<br />

PE INTERNATIONAL GmbH<br />

Hauptstraße 111 – 113<br />

70771 Leinfelden – Echterdingen<br />

Phone +49 711 341817 – 470<br />

Fax +49 711 341817 – 25<br />

E-Mail<br />

Internet<br />

a.schindler@pe-international.com<br />

www.pe-international.com


List <strong>of</strong> Contents<br />

List <strong>of</strong> Contents<br />

List <strong>of</strong> Contents .................................................................................................................. 3<br />

List <strong>of</strong> Figures .................................................................................................................... 5<br />

List <strong>of</strong> Tables ..................................................................................................................... 6<br />

Nomenclature .................................................................................................................... 8<br />

Executive Summary ........................................................................................................... 9<br />

1 Background and Introduction ......................................................................... 10<br />

2 Goal <strong>of</strong> the study ........................................................................................... 11<br />

3 System description ........................................................................................ 12<br />

3.1 Product description ........................................................................................ 12<br />

3.2 Functional unit ............................................................................................... 12<br />

3.3 System boundary conditions .......................................................................... 12<br />

3.4 Temporal, technological and geographical reference ..................................... 13<br />

3.5 Cut-<strong>of</strong>f rules ................................................................................................... 13<br />

3.6 Allocation ....................................................................................................... 14<br />

4 Data sources and quality ............................................................................... 15<br />

4.1 Data collection and source <strong>of</strong> data ................................................................. 15<br />

4.2 Data Quality ................................................................................................... 16<br />

4.2.1 Precision ........................................................................................................ 16<br />

4.2.2 Accuracy ........................................................................................................ 16<br />

4.2.3 Completeness ................................................................................................ 16<br />

4.2.4 Representativeness ....................................................................................... 17<br />

4.2.5 Consistency ................................................................................................... 17<br />

4.2.6 Reproducibility ............................................................................................... 17<br />

4.3 Data Validation .............................................................................................. 17<br />

5 Description <strong>of</strong> the System .............................................................................. 18<br />

6 Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant ...................................... 20<br />

6.1 Energy Data .................................................................................................. 20<br />

6.2 Raw Materials Input ....................................................................................... 22<br />

6.3 Water Consumption ....................................................................................... 24<br />

6.4 Air Emission Data .......................................................................................... 25<br />

6.5 Wastewater Emission Data ............................................................................ 29<br />

6.6 Solid Waste ................................................................................................... 29<br />

7 Life Cycle Impact Assessment for <strong>APP</strong>s with Flame Retardant...................... 30<br />

8 Supplement Data for <strong>APP</strong> without Flame Retardants ..................................... 31<br />

8.1 Energy Data .................................................................................................. 31<br />

8.2 Raw Materials Input ....................................................................................... 33<br />

8.3 Water Consumption ....................................................................................... 35<br />

8.4 Air Emission Data .......................................................................................... 36<br />

3


List <strong>of</strong> Contents<br />

8.5 Wastewater Emission Data ............................................................................ 40<br />

8.6 Solid Waste ................................................................................................... 40<br />

9 Life Cycle Impact Assessment for <strong>APP</strong>s without Flame Retardant ................ 41<br />

10 Literature ....................................................................................................... 42<br />

Supplement A Description <strong>of</strong> result parameters ........................................................... 43<br />

Supplement A 1 Primary energy consumption ............................................................. 43<br />

Supplement A 2 Global Warming Potential (GWP)...................................................... 43<br />

Supplement A 3 Acidification Potential (AP)................................................................ 44<br />

Supplement A 4 Eutrophication Potential (EP) ............................................................ 45<br />

Supplement A 5 Photochemical Ozone Creation Potential (POCP)............................. 46<br />

Supplement A 6 Ozone Depletion Potential (ODP)...................................................... 46<br />

Supplement A 7 Abiotic Depletion Potential ................................................................ 47<br />

4


List <strong>of</strong> Figures<br />

List <strong>of</strong> Figures<br />

Figure 5-1:<br />

Esterification process for the production <strong>of</strong> <strong>Aromatic</strong> <strong>Polyester</strong><br />

<strong>Polyols</strong> ..................................................................................................18<br />

Figure A 1: Greenhouse effect (KREISSIG & KÜMMEL 1999) .....................................44<br />

Figure A 2: Acidification Potential (KREISSIG & KÜMMEL 1999) .................................44<br />

Figure A 3: Eutrophication Potential (KREISSIG & KÜMMEL 1999) .............................45<br />

Figure A 4:<br />

Photochemical Ozone Creation Potential (KREISSIG & KÜMMEL<br />

1999) ....................................................................................................46<br />

Figure A 5: Ozone Depletion Potential (KREISSIG & KÜMMEL 1999) .........................47<br />

5


List <strong>of</strong> Tables<br />

List <strong>of</strong> Tables<br />

Table 3-1: Typical specific <strong>APP</strong> products ...............................................................12<br />

Table 5-1: Raw materials‟ list for <strong>APP</strong>-production ..................................................19<br />

Table 6-1:<br />

Table 6-2:<br />

Table 6-3:<br />

Primary energy input (gross calorific value) required to produce<br />

1 kg <strong>of</strong> <strong>APP</strong> (split into energy types) .....................................................20<br />

Primary energy input (gross calorific value) required to produce<br />

1 kg <strong>of</strong> <strong>APP</strong> (split into energy content) ..................................................20<br />

Primary energy input (gross calorific value) required to produce<br />

1 kg <strong>of</strong> <strong>APP</strong> (referring to primary energy resources) .............................21<br />

Table 6-4: Primary energy input (expressed as mass) ...........................................21<br />

Table 6-5: Raw material input to produce 1 kg <strong>of</strong> <strong>APP</strong> ...........................................22<br />

Table 6-6:<br />

Water consumption to produce 1 kg <strong>of</strong> <strong>APP</strong> (without circulated<br />

cooling water) .......................................................................................24<br />

Table 6-7: Air emissions associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong> ................25<br />

Table 6-8:<br />

Wastewater emission associated with the production <strong>of</strong> 1 kg <strong>of</strong><br />

<strong>APP</strong> ......................................................................................................29<br />

Table 6-9: Waste associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong> ...........................29<br />

Table 7-1:<br />

Table 8-1:<br />

Table 8-2:<br />

Table 8-3:<br />

Environmental impact associated with the production <strong>of</strong> 1 kg <strong>of</strong><br />

<strong>APP</strong> ......................................................................................................30<br />

Primary energy input (gross calorific value) required to produce<br />

1 kg <strong>of</strong> <strong>APP</strong> (without flame retardant), (split into energy types) .............31<br />

Primary energy input (gross calorific value) required to produce<br />

1 kg <strong>of</strong> <strong>APP</strong> (without flame retardant), (split into energy content) ..........31<br />

Primary energy input (gross calorific value) required to produce<br />

1 kg <strong>of</strong> <strong>APP</strong> (without flame retardant), (referring to primary energy<br />

resources) ............................................................................................32<br />

Table 8-4: Primary energy input (expressed as mass) ...........................................32<br />

Table 8-5:<br />

Table 8-6:<br />

Table 8-7:<br />

Table 8-8:<br />

Raw material input to produce 1 kg <strong>of</strong> <strong>APP</strong> (without flame<br />

retardant) ..............................................................................................33<br />

Water consumption to produce 1 kg <strong>of</strong> <strong>APP</strong> (without flame<br />

retardant), (without circulated cooling water) ........................................35<br />

Air emissions associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong><br />

(without flame retardant) .......................................................................36<br />

Wastewater emission associated with the production <strong>of</strong> 1 kg <strong>of</strong><br />

<strong>APP</strong> (without flame retardant) ...............................................................40<br />

6


List <strong>of</strong> Tables<br />

Table 8-9:<br />

Table 9-1:<br />

Waste associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong> (without<br />

flame retardant) ....................................................................................40<br />

Environmental impact associated with the production <strong>of</strong> 1 kg <strong>of</strong><br />

<strong>APP</strong> (without flame retardant) ...............................................................41<br />

7


Nomenclature<br />

Nomenclature<br />

Abbreviation<br />

Explanation<br />

AP<br />

<strong>APP</strong><br />

ADP<br />

EP<br />

EPD<br />

GWP<br />

ODP<br />

POCP<br />

Acidification Potential<br />

<strong>Aromatic</strong> <strong>Polyester</strong> Polyol<br />

Abiotic Depletion Potential<br />

Eutrophication Potential<br />

Environmental Product Declaration<br />

Global Warming Potential<br />

Ozone Depletion Potential<br />

Photochemical Ozone Creation Potential<br />

8


Executive Summary<br />

Executive Summary<br />

This report provides a <strong>Europe</strong>an average cradle-to-gate Life Cycle Inventory for <strong>Aromatic</strong><br />

<strong>Polyester</strong> Polyol (<strong>APP</strong>). <strong>APP</strong>s are used in the manufacture <strong>of</strong> polyisocyanurate (PIR) rigid<br />

insulation foam. Data for other components <strong>of</strong> PIR are available, especially polymeric<br />

MDI.<br />

There are two sets <strong>of</strong> results included in the report, one for <strong>APP</strong>s with flame retardant and<br />

one without.<br />

The report is created in compliance with the latest Plastics<strong>Europe</strong> methodology protocol<br />

for uncompounded Polymer Resins and Reactive Polymer Precursors, [PLASTICS EUROPE<br />

2009]. This document defines the methodology and scope <strong>of</strong> the data. The reference year<br />

<strong>of</strong> the data is 2008.<br />

In case <strong>of</strong> comparative assertions, the respective framework describing the study‟s system<br />

boundaries has to be considered. Differences <strong>of</strong> cut-<strong>of</strong>f criteria and geographical<br />

situations with regard to energy carriers and energy grid mixes may influence the results.<br />

<strong>APP</strong> may also be produced by varying technologies and so via different process chains<br />

and intermediate products. Depending on the study‟s participants and the number <strong>of</strong> participants<br />

a direct comparison <strong>of</strong> several studies may lead to wrong conclusions.<br />

The LCI is intended for public use as “cradle-to-gate” building blocks <strong>of</strong> life cycle assessment<br />

(LCA) studies <strong>of</strong> defined applications or products.<br />

The report is as detailed and specific as the circumstances in a multi-client project with<br />

highly confidential and competitive company data allows.<br />

The data <strong>of</strong> this report show the inventory <strong>of</strong> the aggregated process chain, i.e. the input<br />

and output flows <strong>of</strong> the Life Cycle as well as the Life Cycle Impact Assessment for the<br />

impact categories abiotic depletion potential, global warming potential, acidification potential,<br />

eutrophication potential, ozone depletion potential and photochemical ozone creation<br />

potential according to the characterization factors <strong>of</strong> CML 2007.<br />

9


Background and Introduction<br />

1 Background and Introduction<br />

<strong>PU</strong> <strong>Europe</strong>, the Federation <strong>of</strong> <strong>Europe</strong>an rigid Polyurethane Foam Associations, supports<br />

the collection <strong>of</strong> detailed environmental data on the processes operated by its member<br />

companies with the intention <strong>of</strong> making this information available for public use. The <strong>Eco</strong>pr<strong>of</strong>ile<br />

initiative [Plastics <strong>Europe</strong> 2009] provides an industry specific methodology protocol<br />

for creating and reporting the <strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong>s. The <strong>Eco</strong>-pr<strong>of</strong>ile protocol is based on ISO standards<br />

for Life Cycle Assessment and Environmental Product Declaration [ISO 14040:<br />

2006; and ISO 14021: 1999 et sqq.].<br />

<strong>Eco</strong>-pr<strong>of</strong>iles 1 are widely acknowledged among life cycle practitioners and other stakeholders<br />

worldwide as representative, objective and quantitative datasets. The average<br />

industry <strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong> datasets can be used for internal company benchmarking allowing<br />

individual process improvement. Furthermore, these data could be used as building<br />

blocks in the LCA <strong>of</strong> products where <strong>APP</strong> is used. This allows <strong>APP</strong> customers to improve<br />

their environmental management by:<br />

evaluating the plastics contribution relative to the overall product;<br />

enabling collaboration with recovery procedures to reduce collective impacts;<br />

drawing attention to poor environmental links in user chains, which can lead to<br />

subsequent improvement.<br />

providing data to investigate alternative solutions for regulatory compliance.<br />

Supporting the <strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong> initiative, this study aims to develop the Cradle-to-Gate Life<br />

Cycle Inventory (<strong>Eco</strong>-pr<strong>of</strong>ile) and Life Cycle Impact Assessment for the <strong>Aromatic</strong> <strong>Polyester</strong><br />

Polyol (<strong>APP</strong>). The <strong>APP</strong> cradle-to-gate lifecycle system is analyzed and the important<br />

aspects <strong>of</strong> the LCI and LCIA are described in this report, following the latest Plastics<strong>Europe</strong><br />

methodology protocol for uncompounded Polymer Resins and Reactive Polymer<br />

Precursors, [PLASTICS EUROPE 2009]. The content and format <strong>of</strong> the report is be based on<br />

the above mentioned methodology protocol.<br />

In accordance with <strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong> requirements [PLASTICS EUROPE 2009], the following structure<br />

is used for this study:<br />

In chapter 1 “Background and Introduction” the motivation for the background to this study<br />

is provided. Chapter 2 provides the goal <strong>of</strong> the study. The specific characteristics and<br />

boundaries <strong>of</strong> the considered production-process are presented in chapter 3; chapter 4<br />

discusses the data sources and quality. The respective process <strong>of</strong> the <strong>APP</strong>-production is<br />

described in chapter 5. The life cycle inventory results are listed in chapter 6 and 8. Results<br />

<strong>of</strong> the Life Cycle Impact Assessment (LCIA) are reported in chapter 7 and 9.<br />

1<br />

The terms „<strong>Eco</strong>-pr<strong>of</strong>ile‟ and „Life cycle inventory‟ have the same meaning under the Plastics<strong>Europe</strong><br />

methodology protocol and thus are used interchangeably in this report.<br />

10


Goal <strong>of</strong> the study<br />

2 Goal <strong>of</strong> the study<br />

Goal <strong>of</strong> this study is to create an <strong>Europe</strong>an average cradle–to-gate Life Cycle Inventory<br />

(<strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong>) <strong>of</strong> <strong>Aromatic</strong> <strong>Polyester</strong> <strong>Polyols</strong> in compliance with Plastics<strong>Europe</strong> <strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong><br />

Guidlines [PLASTICS EUROPE 2009].<br />

Thus, the primary data from four <strong>APP</strong> producers were collected, the lifecycle system was<br />

modelled in the GaB 4 s<strong>of</strong>tware and the important aspects <strong>of</strong> the LCI and LCIA are reported<br />

here, following the latest Plastics<strong>Europe</strong> methodology protocol for uncompounded<br />

Polymer Resins and Reactive Polymer Precursors, [PLASTICS EUROPE 2009].<br />

The <strong>Eco</strong>-pr<strong>of</strong>iles (LCI) report is intended to be used as “cradle-to-gate” building blocks <strong>of</strong><br />

life cycle assessment (LCA) studies <strong>of</strong> defined applications or products.<br />

11


System description<br />

3 System description<br />

This chapter describes the different circumstances and boundary conditions <strong>of</strong> the study,<br />

which are vitally important to understand the system and allow the correct interpretation <strong>of</strong><br />

the results. A description <strong>of</strong> the LCI dataset and the underlying methodology is described<br />

in the chapter in compliance with the <strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong> requirements.<br />

The section includes the identification <strong>of</strong> the specific product, the supporting product system,<br />

the scope <strong>of</strong> the study, the boundaries, the data description, the allocation procedures<br />

and cut-<strong>of</strong>f criteria.<br />

3.1 Product description<br />

<strong>Aromatic</strong> <strong>Polyester</strong> <strong>Polyols</strong> comprises a group <strong>of</strong> products which are polymers. Therefore<br />

a CAS number, nor an IUPAC name, nor a chemical formula can be stated. The following<br />

products are considered:<br />

Table 3-1:<br />

Typical specific <strong>APP</strong> products<br />

Producer <strong>Aromatic</strong> <strong>Polyester</strong> <strong>Polyols</strong> Web-link<br />

COIM ISOEXTER ® 3061 – 3557 – 4404 www.coimgroup.com<br />

INVISTA TM TERATE ® polyols http://terate.invista.com/<br />

STEPAN Stepanpol ® www.stepan.com<br />

SYNTHESIA Hoopol ® F-1394/1396/3362/4361/4390 www.synte.es<br />

The data for the production process considered in this study is not split into different steps<br />

but comprises the overall procedure.<br />

<strong>Polyester</strong> <strong>Polyols</strong> are important intermediate products for many production chains. <strong>APP</strong>s<br />

are used to manufacture polyisocyanurate (PIR) and polyurethane rigid insulation foam,<br />

which finds extensive use in the automotive, construction, refrigeration and other industrial<br />

sectors. Other uses include flexible polyurethane foams, semi-rigid foams, and polyurethane<br />

coatings. A major part <strong>of</strong> the world‟s polyols production is shared by two groups <strong>of</strong><br />

polyols, namely polyether and polyester polyols.<br />

Both production and consumption <strong>of</strong> aromatic polyester polyols is strongest in Western<br />

<strong>Europe</strong>, where the market is the largest and most established, which gives a high value to<br />

the <strong>Europe</strong>an average LCI dataset.<br />

3.2 Functional unit<br />

The study uses the following functional unit: 1 kg <strong>of</strong> aromatic polyester polyol on production<br />

output, representing the average <strong>of</strong> the four participants‟ production lines. This implies<br />

that the functional unit does not include blending in <strong>PU</strong> systems.<br />

3.3 System boundary conditions<br />

The <strong>APP</strong> product was modelled in a cradle-to-gate LCI system. Thus, the cradle-to-gate<br />

LCI represents all life cycle processes from extraction <strong>of</strong> natural resources, up to the point<br />

12


System description<br />

where the product is ready for transportation to a customer. Packaging <strong>of</strong> the material is<br />

not included. The construction <strong>of</strong> the <strong>APP</strong>-plant and equipment as well as the maintenance<br />

<strong>of</strong> plants, vehicles and machinery is outside the LCI system boundaries <strong>of</strong> <strong>Eco</strong>-<br />

<strong>Pr<strong>of</strong>ile</strong>s.<br />

The primary data from four major <strong>APP</strong> suppliers were collected and vertical averaging<br />

was calculated, weighted by the yearly production tonnage <strong>of</strong> each chain. I.e. every single<br />

production line was calculated separately according to data collected from the participants<br />

<strong>of</strong> this study. The result <strong>of</strong> the Life Cycle Impact Assessment is then weighted according<br />

to the total production amount <strong>of</strong> 2008. Hence the figures reflect the average <strong>of</strong> four actual<br />

existing process chains.<br />

3.4 Temporal, technological and geographical reference<br />

Time related coverage: The LCI data for <strong>APP</strong> production are collected as 12 month averages<br />

representing the year 2008. Background data have reference years from 2002 to<br />

2008 although mostly coming from 2005 to 2008. If all data would be related to 2008, major<br />

changes in the result are not expected, as technological breakthrough is not known for<br />

refining, re-refining technology or one <strong>of</strong> the related up-stream technologies. The expected<br />

temporal validity <strong>of</strong> the dataset: the data is considered to be sufficiently valid, till<br />

the first significant change in the production chain will take place.<br />

Geographical coverage: Primary production data for the <strong>APP</strong> production comes from<br />

four different suppliers in the EU. Fuel and energy inputs in the system reflect the <strong>Europe</strong>an<br />

conditions, site specific to the extent possible. Therefore, the study results are intended<br />

to be applicable in EU boundaries and need adjustments in order to be applied in<br />

other regions.<br />

Technological coverage: The <strong>APP</strong> production processes are modelled using specific<br />

values, representing the specific technology for the four companies. The LCI data<br />

represent technology in use in the defined production region employed by participating<br />

producers. The considered participants cover 75-85 % <strong>of</strong> a total market <strong>of</strong> more than<br />

100,000 t, so the technological coverage is understood as representative.<br />

Primary data were used for all foreground processes (under operational control) complimented<br />

with secondary data from background processes (under indirect management<br />

control).<br />

3.5 Cut-<strong>of</strong>f rules<br />

The cut-<strong>of</strong>f criteria for the study include or exclude materials, energy and emissions data<br />

as follows:<br />

Mass – If a flow is less than 2 % <strong>of</strong> the cumulative mass <strong>of</strong> the model it may be excluded,<br />

provided that its environmental relevance is not a concern.<br />

Energy – If a flow is less than 2 % <strong>of</strong> the cumulative energy <strong>of</strong> the model it may be excluded,<br />

provided that its environmental relevance is not a concern.<br />

Environmental relevance – If a flow meets the above criteria for exclusion, yet is thought<br />

to potentially have a significant environmental impact, it will be included. Material flows<br />

which leave the system (emissions) and whose environmental impact is greater than 2 %<br />

13


System description<br />

<strong>of</strong> the whole impact <strong>of</strong> an impact category that has been considered in the assessment is<br />

covered.<br />

The sum <strong>of</strong> the neglected material flows does not exceed 5 % <strong>of</strong> mass, energy or environmental<br />

relevance.<br />

The average <strong>of</strong> the reported output mass flows <strong>of</strong> the four participants shows 97 % <strong>of</strong> the<br />

input mass flows. 100 % <strong>of</strong> the material end energy flows, provided by the participants as<br />

primary data, are integrated in the calculations.<br />

3.6 Allocation<br />

Allocation was applied for the production process <strong>of</strong> some participants, as minor byproducts<br />

result from their specific <strong>APP</strong>-processing. The by-products have lower values<br />

than the main product <strong>APP</strong>. The process intention is the production <strong>of</strong> <strong>APP</strong> only. Therefore<br />

an economic allocation was applied according to current market prices, stated by the<br />

relevant company.<br />

In the refinery operations, co-production was addressed by applying allocation based on<br />

mass and net calorific value [GaBi databases, 2006]. The chosen allocation in refinery is<br />

based on several sensitivity analyses, which was accompanied by petrochemical experts.<br />

The relevance and influence <strong>of</strong> possible other allocation keys in this context is small.<br />

In steam cracking allocation according to net calorific value is applied. Relevance <strong>of</strong> other<br />

allocation rules (mass) is below 2 %.<br />

14


Data sources and quality<br />

4 Data sources and quality<br />

4.1 Data collection and source <strong>of</strong> data<br />

Gate-to-gate <strong>APP</strong> production: primary data<br />

<strong>Europe</strong>an producers act as a main source <strong>of</strong> data for the production <strong>of</strong> <strong>Aromatic</strong> <strong>Polyester</strong><br />

<strong>Polyols</strong> on the basis <strong>of</strong> a direct questionnaire. Primary data on gate-to-gate <strong>APP</strong> production<br />

is derived from site specific information for processes under operational control supplied<br />

by the participating companies <strong>of</strong> this study. Four different <strong>APP</strong> producers are participating<br />

in the primary data collection.<br />

Upstream supply chain data:<br />

The data for the upstream supply chain until the precursors are taken from the database<br />

<strong>of</strong> the s<strong>of</strong>tware system GaBi 4. All relevant background data such as energy and auxiliary<br />

material are also taken from the GaBi 4 database. Most <strong>of</strong> the background data used is<br />

publicly available and public documentation exists [GABI 2006].<br />

Carbon dioxide, which has been sequestrated by biomass is included in the calculation <strong>of</strong><br />

the balance. The overall considered input-flow <strong>of</strong> CO 2 as sink is 0.134 kg/kg <strong>APP</strong>. The<br />

amount originates from biomass, directly used as raw material as well as from energy<br />

which is generated from biomass. Many different small contributors sum up to the<br />

0.134 kg/kg <strong>APP</strong>.<br />

Special attention was paid to the appropriate specifications <strong>of</strong> related energy supply.<br />

Based on the data from producers the following specific processes were modelled:<br />

Country specific import mixes <strong>of</strong> resources and precursors<br />

Country specific fuel mix and fuel import mixes<br />

Country specific energy supply (depending on location <strong>of</strong> precursors and <strong>APP</strong> site)<br />

After modelling the site-specific systems, the vertical average was calculated, weighted by<br />

the production tonnage <strong>of</strong> each company.<br />

The following companies participated in this study:<br />

COIM GROUP<br />

via A. Manzoni 28/32<br />

20019 Settimo Milanese, Italy<br />

www.coimgroup.com<br />

INVISTA TM<br />

Philipp Reis Str. 2<br />

65795 Hattersheim, Germany<br />

www.invista.com<br />

Production site The Netherlands<br />

15


Data sources and quality<br />

Stepan Company<br />

22 W. Frontage Rd<br />

Northfield, Illinois 60093, USA<br />

www.stepan.com<br />

Production site Germany<br />

SYNTHESIA INTERNACIONAL S.L.U.<br />

c/Coure, 6 Àrea Industrial del Llobregat<br />

08755 Castellbisbal (Barcelona), Spain<br />

www.synthesia.eu<br />

4.2 Data Quality<br />

Data quality is judged by its precision (measured, calculated or estimated), completeness,<br />

consistency (degree <strong>of</strong> uniformity <strong>of</strong> the methodology applied on a study serving as a data<br />

source) and representativeness (geographical, time period, technology). To cover these<br />

requirements and to ensure reliable results, first-hand data in combination with consistent,<br />

background LCA information from the GaBi 4 database [GABI 2006] is used.<br />

All considered pre-products are integrated into the calculation with their respective environmental<br />

burden.<br />

The background database <strong>of</strong> GaBi was initially set-up in 1991 and since then is frequently<br />

updated and enlarged. A two-step quality assurance is applied. First, an internal expert<br />

check by PE is performed and as a second step, an expert-check by the University <strong>of</strong><br />

Stuttgart takes place.<br />

Additionally, an ongoing check by the users worldwide is done, comparing the GaBi data<br />

to other data supply sources. The data sets have been used in LCA-models worldwide for<br />

several years in industrial and scientific applications without any actual known negative<br />

feedback on shortcomings from users.<br />

4.2.1 Precision<br />

As the relevant foreground data is primary data or modelled based on primary information<br />

sources <strong>of</strong> the owner <strong>of</strong> the technology, better precision is not reachable within this goal<br />

and scope. All background data is consistently GaBi pr<strong>of</strong>essional data with the documented<br />

(high) precision.<br />

4.2.2 Accuracy<br />

Primary data is collected with an accuracy <strong>of</strong> 0.01 kg.<br />

4.2.3 Completeness<br />

Primary data used for the gate-to-gate production <strong>of</strong> <strong>APP</strong> covers all related flows <strong>of</strong> in<br />

accordance with the cut <strong>of</strong>f criteria. Other data in the model that is coming from the GaBi 4<br />

database covers all related flows accordingly to the system boundaries and cut <strong>of</strong>f criteria.<br />

There are not any missing data <strong>of</strong> known concern for the study.<br />

16


Data sources and quality<br />

4.2.4 Representativeness<br />

The considered participants cover 75-85 % <strong>of</strong> a total market <strong>of</strong> more than 100,000 t in<br />

2008. The selected background GaBi 4 data can be regarded as representative for the<br />

intended purpose, as it is average data and not in the focus <strong>of</strong> the analysis.<br />

4.2.5 Consistency<br />

To ensure consistency only primary data <strong>of</strong> the same level <strong>of</strong> detail and background data<br />

from the GaBi 4 databases are used. While building up the model cross-checks concerning<br />

the plausibility <strong>of</strong> mass and energy flows are continuously conducted. The provided<br />

primary data was checked by PE several times. Inconsistency could not be found.<br />

4.2.6 Reproducibility<br />

The study has been performed with the LCA s<strong>of</strong>tware PE GaBi 4. GaBi s<strong>of</strong>tware and associated<br />

database integrate ISO 14040/48 requirements. All data and information used<br />

are either documented in this report or they are available from the processes and process<br />

plans designed within the PE GaBi 4 s<strong>of</strong>tware. The reproducibility is given for internal use<br />

since the owners <strong>of</strong> the technology provided the data and the models are stored and<br />

available in a database. Sub-systems are modelled by ´state <strong>of</strong> art´ technology using data<br />

from a publicly available and internationally used database. For the external audience it is<br />

possible that full reproducibility in any degree <strong>of</strong> detail will not be available for confidentiality<br />

reasons.<br />

4.3 Data Validation<br />

The data on <strong>APP</strong> production collected from the project partners was validated at PE IN-<br />

TERNATIONAL and the data providing companies in an iterative process several times.<br />

The collected data are validated using existing data from published sources [e.g. EYERER<br />

1996, GABI 2006] or experts‟ knowledge from PE INTERNATIONAL and LBP.<br />

The background information from the GaBi 4 database is updated regularly and validated<br />

in principle daily by the various users worldwide.<br />

17


Description <strong>of</strong> the System<br />

5 Description <strong>of</strong> the System<br />

The production <strong>of</strong> <strong>APP</strong> can be done in different ways. The four participants start from diverse<br />

raw materials. The flow chart in Figure 5-1 shows the relevant materials. Primary<br />

data refer to the “black box” process <strong>of</strong> esterification; data <strong>of</strong> the manufacturers are stated<br />

as overall figures for the gate-to-gate process. Background data for the pre-products origins<br />

from the GaBi 4 data base and complement the process chain.<br />

Waste streams <strong>of</strong> the <strong>APP</strong>-process itself cross the system boundaries. Due to lack <strong>of</strong> further<br />

information on the waste streams as e.g. heating value or physical treatment, the<br />

waste treatment is not considered in this study.<br />

Figure 5-1:<br />

Esterification process for the production <strong>of</strong> <strong>Aromatic</strong> <strong>Polyester</strong> <strong>Polyols</strong><br />

The raw materials used for the production <strong>of</strong> <strong>APP</strong> are listed in Table 5-1.<br />

As the companies‟ processes require different raw materials according to the respective<br />

process version, only parts <strong>of</strong> the raw materials‟ list are used respectively.<br />

18


Description <strong>of</strong> the System<br />

Table 5-1:<br />

Raw materials’ list for <strong>APP</strong>-production<br />

Raw material<br />

Dimethyl terephtalate (DMT)<br />

Polyethylene terephthalate (PET)<br />

Phthalic Anhydride (PA)<br />

Polyethylene glycol (PEG)<br />

Diethylene glycol (DEG)<br />

Catalyst<br />

Additives<br />

Flame retardants<br />

Functionality enhancers<br />

Due to confidentiality reasons details on s<strong>of</strong>tware modelling and methods used cannot be<br />

shown here. The calculation follows the vertical calculation methodology, i.e. that the averaging<br />

is done after modelling the specific processes. Restrictions on competition and<br />

confidentiality do not allow displaying and describing the systems and analysing details.<br />

19


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

6 Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

The Life Cycle Inventory shows the results <strong>of</strong> the cradle-to-gate process for the production<br />

<strong>of</strong> 1 kg <strong>APP</strong> with flame retardant (see page 31 for <strong>APP</strong>s without flame retardant).<br />

6.1 Energy Data<br />

Table 6-1 lists data for the primary energy demand (gross calorific value) broken down to<br />

the types and areas the energy is used for.<br />

Table 6-1:<br />

Primary energy for<br />

Primary energy input (gross calorific value) required to produce 1 kg <strong>of</strong><br />

<strong>APP</strong> (split into energy types)<br />

[MJ]<br />

Electricity in <strong>APP</strong> production 1.6<br />

Thermal energy in <strong>APP</strong> production 2.8<br />

Pre-products as input in <strong>APP</strong> production 72.4<br />

Water / sewage treatment in <strong>APP</strong> production 0.2<br />

Total 77.0<br />

Table 6-2 shows the primary energy demand (gross calorific value) divided into energy<br />

content <strong>of</strong> the energy carrier, including the fuel production and delivery, and the feedstock<br />

energy, contained in the raw materials, used for the <strong>APP</strong> production.<br />

Transportation processes are not considered. Transport <strong>of</strong> pre-products cannot be standardized<br />

as industry sites may be manifold. Sensitivity analysis show, that transports contribute<br />

mainly only up to 2 %. Assuming a transport <strong>of</strong> 1000 km in the product chain (truck<br />

with 27 t payload, EURO 4) the emissions result in about 0.05 kg CO 2 -eq. (compared to<br />

2,77 kg CO 2 -eq. for <strong>APP</strong>, chapter 7).. The effort for data investigation is not commensurate<br />

with the increase <strong>of</strong> supposed accurateness <strong>of</strong> the results.<br />

Table 6-2:<br />

Primary energy<br />

Primary energy input (gross calorific value) required to produce 1 kg <strong>of</strong><br />

<strong>APP</strong> (split into energy content)<br />

[MJ]<br />

Energy content <strong>of</strong> fuel (incl. fuel production and delivery) 31.5<br />

Feedstock energy 45.6<br />

Total 77.0<br />

20


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

Table 6-3:<br />

Primary energy input (gross calorific value) required to produce 1 kg <strong>of</strong><br />

<strong>APP</strong> (referring to primary energy resources)<br />

Energy carrier<br />

Energy content<br />

<strong>of</strong> fuel [MJ]<br />

Feedstock<br />

energy [MJ]<br />

Total [MJ]<br />

Lignite 2.5 2.5<br />

Natural gas 2.6 12.6 15.2<br />

Crude oil 17.6 33.0 50.6<br />

Hard coal 2. 9 2.9<br />

Uranium 3.7 3.7<br />

Wood 2.3E-04 2.3E-04<br />

Renewable fuels 6.7E-08 6.7E-08<br />

Primary energy from geothermics 1.7E-02 1.7E-02<br />

Primary energy from solar energy 1.5 1.5<br />

Primary energy from hydro power 0.3 0.3<br />

Primary energy from wind power 0.2 0.2<br />

Total 31.5 45.6 77.0<br />

Table 6-4:<br />

Primary energy input (expressed as mass)<br />

Energy carrier<br />

[kg]<br />

Lignite 0.2<br />

Natural gas 0.3<br />

Crude oil 1.1<br />

Hard coal 0.1<br />

Uranium<br />

Wood<br />

Renewable fuels<br />

6.7E-06<br />

1.4E-05<br />

4.0E-09<br />

Total 1.8<br />

21


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

6.2 Raw Materials Input<br />

Table 6-5:<br />

Raw material input to produce 1 kg <strong>of</strong> <strong>APP</strong><br />

Raw material<br />

Barium sulphate<br />

Basalt<br />

Bauxite<br />

Bentonite<br />

Calcium chloride<br />

Chromium ore<br />

Clay<br />

Colemanite ore<br />

Copper - Gold - Silver - ore (1.0% Cu; 0.4 g/t Au; 66 g/t Ag)<br />

Copper - Gold - Silver - ore (1.1% Cu; 0.01 g/t Au; 2.86 g/t Ag)<br />

Copper - Gold - Silver - ore (1.16% Cu; 0.002 g/t Au; 1.06 g/t Ag)<br />

Copper - Molybdenum - Gold - Silver - ore (1.13% Cu; 0.02% Mo;<br />

0.01 g/t Au; 2.86 g/t Ag)<br />

Copper ore (0.14%)<br />

Copper ore (1.2%)<br />

Copper ore (4%)<br />

Copper ore (sulphidic)<br />

Dolomite<br />

Ferro manganese<br />

Fluorspar (calcium fluoride; fluorite)<br />

Gravel<br />

Gypsum (natural gypsum)<br />

Heavy spar (barytes)<br />

Imenite (titanium ore)<br />

Inert rock<br />

Iron<br />

Iron ore<br />

Iron ore (65%)<br />

Kaolin ore<br />

Lead<br />

Lead - zinc - ore (4.6%-0.6%)<br />

[kg]<br />

4.09E-14<br />

4.73E-05<br />

5.32E-05<br />

1.85E-03<br />

4.19E-12<br />

3.29E-06<br />

4.68E-04<br />

5.99E-07<br />

2.43E-06<br />

1.48E-06<br />

8.35E-07<br />

2.03E-06<br />

3.52E-04<br />

2.52E-07<br />

9.40E-16<br />

1.11E-12<br />

3.54E-08<br />

2.00E-16<br />

1.39E-05<br />

5.62E-03<br />

9.00E-05<br />

4.48E-03<br />

2.45E-06<br />

3.30E+00<br />

2.56E-07<br />

2.35E-03<br />

6.66E-07<br />

1.08E-06<br />

3.99E-16<br />

6.38E-04<br />

22


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

Lead - zinc - silver - ore (5.49% Pb; 12.15% Zn; 57.4 gpt Ag)<br />

Limestone (calcium carbonate)<br />

Magnesit (Magnesium carbonate)<br />

Magnesium chloride leach (40%)<br />

Manganese ore<br />

Manganese ore (R.O.M.)<br />

Molybdenite (Mo 0.24%)<br />

Nickel ore<br />

Nickel ore (1.6%)<br />

Olivine<br />

Ore (antimony and gold)<br />

Peat<br />

Phosphate ore<br />

Phosphorus minerals<br />

Phosphorus ore (29% P2O5)<br />

Potassium chloride<br />

Potassium salt<br />

Precious metal ore (R.O.M)<br />

Quartz sand (silica sand; silicon dioxide)<br />

Raw pumice<br />

Rhodium<br />

Rutil<br />

Silicon<br />

Slate<br />

Sodium chloride (rock salt)<br />

Sodium sulphate<br />

Soil<br />

Sulphur<br />

Sulphur (bonded)<br />

Talc<br />

Tin ore<br />

Titanium ore<br />

Zinc - copper ore (4.07%-2.59%)<br />

Zinc - lead - copper ore (12%-3%-2%)<br />

8.04E-11<br />

8.41E-02<br />

5.31E-09<br />

4.03E-03<br />

6.34E-07<br />

2.18E-03<br />

1.26E-06<br />

1.82E-07<br />

7.29E-05<br />

2.20E-15<br />

8.76E-07<br />

1.79E-04<br />

6.51E-03<br />

2.18E-09<br />

3.92E-02<br />

5.01E-04<br />

2.72E-02<br />

4.14E-08<br />

1.02E-02<br />

1.04E-07<br />

5.59E-13<br />

0.00E+00<br />

3.87E-12<br />

3.69E-15<br />

2.72E-02<br />

0.00E+00<br />

1.19E-02<br />

4.74E-10<br />

2.43E-10<br />

1.87E-08<br />

3.55E-15<br />

3.38E-07<br />

2.02E-04<br />

5.87E-05<br />

23


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

Zinc - lead ore (4.21%-4.96%)<br />

Zinc ore (sulphide)<br />

3.21E-16<br />

3.95E-15<br />

6.3 Water Consumption<br />

Table 6-6:<br />

Water source<br />

Water consumption to produce 1 kg <strong>of</strong> <strong>APP</strong> (without circulated cooling<br />

water)<br />

[kg]<br />

Water (unspecified)<br />

Water (river water)<br />

Water (ground water)<br />

Water (sea water)<br />

Water (surface water)<br />

Water (lake water)<br />

Water (potable water)<br />

Water (bank filtrate)<br />

Total<br />

8.41E-02<br />

0.00E+00<br />

6.36E+00<br />

4.62E-02<br />

5.92E+00<br />

1.16E-18<br />

5.34E-07<br />

7.08E-12<br />

1.24E+01<br />

24


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

6.4 Air Emission Data<br />

Table 6-7:<br />

Emission<br />

Air emissions associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong><br />

[kg]<br />

Inorganic emissions<br />

Ammonia<br />

Ammonium<br />

Ammonium nitrate<br />

Argon<br />

Barium<br />

Beryllium<br />

Born coumponds<br />

Boron<br />

Bromine<br />

Carbon dioxide<br />

Carbon disulphide<br />

Carbon monoxide<br />

Chloride (unspecified)<br />

Chlorine<br />

Cyanide (unspecified)<br />

Fluoride (unspecified)<br />

Fluorides<br />

Fluorine<br />

Helium<br />

Hydrogen<br />

Hydrogen chloride<br />

Hydrogen cyanide (prussic acid)<br />

Hydrogen fluoride<br />

Hydrogen iodide<br />

Hydrogen phosphorous<br />

Hydrogen sulphide<br />

Hydrogene Bromine<br />

Lead dioxide<br />

Nitrogen (atmospheric nitrogen)<br />

Nitrogen dioxide<br />

6.88E-05<br />

1.79E-11<br />

1.43E-12<br />

2.70E-14<br />

2.94E-06<br />

7.36E-10<br />

1.30E-06<br />

1.59E-18<br />

3.37E-07<br />

2.71E+00<br />

1.12E-11<br />

1.05E-03<br />

4.78E-06<br />

3.00E-05<br />

5.05E-08<br />

4.13E-07<br />

1.22E-06<br />

4.64E-10<br />

8.25E-09<br />

4.90E-05<br />

1.47E-05<br />

9.49E-10<br />

2.05E-06<br />

3.00E-12<br />

1.72E-13<br />

1.24E-05<br />

2.76E-09<br />

1.46E-13<br />

5.19E-03<br />

1.57E-06<br />

25


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

Nitrogen monoxide<br />

Nitrogen oxides<br />

Nitrous oxide (laughing gas)<br />

Oxygen<br />

Scandium<br />

Strontium<br />

Sulphur dioxide<br />

Sulphur hexafluoride<br />

Sulphuric acid<br />

Tin oxide<br />

Water vapour<br />

Zinc oxide<br />

Zinc sulphate<br />

0.00E+00<br />

3.41E-03<br />

1.54E-04<br />

7.36E-04<br />

7.51E-13<br />

3.02E-11<br />

3.59E-03<br />

1.02E-11<br />

2.16E-09<br />

1.27E-14<br />

3.46E+00<br />

2.54E-14<br />

5.20E-10<br />

Organic emissions<br />

Group PAH<br />

Anthracene<br />

Benzo(a)anthracene<br />

Benzo(a)pyrene<br />

Benzo(ghi)perylene<br />

Benz<strong>of</strong>luorantene<br />

Chrysene<br />

Dibenz(a)anthracene<br />

Indenopyrene<br />

Naphthalene<br />

Penanthrene<br />

Polycylic aromatic hydrocarbons<br />

7.49E-11<br />

3.77E-11<br />

3.66E-10<br />

3.36E-11<br />

6.72E-11<br />

9.25E-11<br />

2.09E-11<br />

2.50E-11<br />

7.86E-09<br />

2.47E-09<br />

1.54E-06<br />

Halogenated organic emissions<br />

Dichlormethane (methylene chlorid)<br />

Dioxins (unspec.)<br />

Halogenated hydrocarbons (unspecified)<br />

Organic chlorine compounds (unspecific)<br />

Polychlorinated biphenyls (PCB unspecified)<br />

Polychlorinated dibenzo-p-dioxins (2,3,7,8 - TCDD)<br />

R 11 (trichlor<strong>of</strong>luoroethane)<br />

1.62E-15<br />

2.01E-15<br />

7.99E-16<br />

7.16E-13<br />

4.67E-11<br />

7.47E-14<br />

4.85E-08<br />

26


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

R 114 (dichlorotetrafuoroethane)<br />

R116 (hecafluoroethane)<br />

R 12 (dichlorodifluoromethane)<br />

R 13 (chlorotrifluoromethane)<br />

R 22 (chlorodifluoromethane)<br />

Tetrafluoromethane (chlor<strong>of</strong>orm)<br />

Vinyl chloride (VCM)<br />

4.96E-08<br />

1.86E-14<br />

1.04E-08<br />

6.54E-09<br />

1.14E-08<br />

2.65E-10<br />

9.38E-09<br />

NMVOC<br />

Acetaldehyde (Ethanal)<br />

Acetic acid<br />

Acetone (dimethylcetone)<br />

Acrolein<br />

Aldehyde (unspecified)<br />

Alkane (unspecified)<br />

Alkene (unspecified)<br />

<strong>Aromatic</strong> hydrocarbons (unspecified)<br />

Benzene<br />

Butadiene<br />

Butane<br />

Butane (n-butane)<br />

Cumene<br />

Cyclohexane (hexahydro benzene)<br />

Diethyl amine (ethylene ethane amine)<br />

Ethane<br />

Ethanol<br />

Ethene (ethylene)<br />

Ethyl benzene<br />

Fluoranthene<br />

Fluorene<br />

Formaldehyde (methanal)<br />

Heptane (isomers)<br />

Hexamethylene diamine (HMDA)<br />

Hexane (isomers)<br />

Mercaptan (unspecified)<br />

2.30E-06<br />

2.49E-04<br />

5.28E-10<br />

1.62E-08<br />

1.01E-05<br />

1.76E-06<br />

8.82E-07<br />

2.60E-06<br />

1.43E-11<br />

8.50E-05<br />

2.51E-06<br />

9.06E-18<br />

2.56E-10<br />

3.56E-16<br />

9.13E-06<br />

4.44E-06<br />

3.13E-08<br />

1.34E-06<br />

2.44E-10<br />

7.74E-10<br />

9.17E-06<br />

2.46E-06<br />

8.41E-13<br />

1.76E-05<br />

1.24E-07<br />

1.77E-03<br />

27


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

Methanol<br />

NMVOC (unspecified)<br />

Octane<br />

Pentane (n-pentane)<br />

Phenol (hydroxy benzene)<br />

Propane<br />

Propene (propylene)<br />

Propionic acid (propane acid)<br />

Styrene<br />

Toluene (methyl benzene)<br />

Trimethylbenzene<br />

Xylene (dimethyl benzene)<br />

1.72E-03<br />

1.35E-06<br />

3.47E-05<br />

1.34E-11<br />

3.81E-04<br />

1.20E-07<br />

1.23E-10<br />

2.83E-13<br />

6.45E-07<br />

1.24E-13<br />

5.57E-04<br />

6.02E-03<br />

Others<br />

Methane<br />

VOC (unspecified)<br />

6.02E-03<br />

7.45E-07<br />

Particles to air<br />

Dust (PM2.5)<br />

Dust (PM10)<br />

Dust (unspecified)<br />

Metals (unspecified)*<br />

Radioactive emissions to air<br />

Wood (dust)<br />

5.63E-05<br />

3.40E-05<br />

1.70E-04<br />

1.40E-12<br />

5.67E-08<br />

4.68E-12<br />

* The value for unspecified metals originates from a multitude number <strong>of</strong> upstreamprocesses<br />

(as energy generation). In the <strong>APP</strong> production metal dust is not emitted directly.<br />

The human toxicity potential (HTP) for this output-flow can be approximated by the<br />

value <strong>of</strong> PM10. The reported flow does not significantly contribute to the HTP (CML 2007).<br />

28


Life Cycle Inventory for <strong>APP</strong>s with Flame Retardant<br />

6.5 Wastewater Emission Data<br />

Table 6-8:<br />

Emission<br />

Wastewater emission associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong><br />

[kg]<br />

Adsorbable organic halogen compounds (AOX)<br />

Biological oxygen demand (BOD)<br />

Chemical oxygen demand (COD)<br />

Total suspended solids (TSS)<br />

Dissolved organic carbon (DOC)<br />

Total organic carbon (TOC)<br />

1.21E-06<br />

5.24E-05<br />

4.35E-03<br />

9.48E-06<br />

3.65E-11<br />

2.00E-05<br />

6.6 Solid Waste<br />

Table 6-9:<br />

Waste<br />

Stockpile goods<br />

Waste associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong><br />

[kg]<br />

3.30E+00<br />

Waste for deposition<br />

Waste for recovery<br />

Municipal waste<br />

Hazardous waste for deposition<br />

Hazardous waste for recovery<br />

Radioactive waste<br />

Total<br />

3.62E-04<br />

6.15E-03<br />

8.44E-03<br />

2.93E-02<br />

1.29E-02<br />

1.32E-03<br />

3.36E+00<br />

29


Life Cycle Impact Assessment for <strong>APP</strong>s with Flame Retardant<br />

7 Life Cycle Impact Assessment for <strong>APP</strong>s with Flame Retardant<br />

The Life Cycle Impact Assessment follows the methodology and characterisation factors<br />

<strong>of</strong> CML updated 2007.<br />

(see page 41 for <strong>APP</strong>s without flame retardant)<br />

Table 7-1:<br />

Environmental impact associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong><br />

Impact category<br />

Abiotic Depletion Potential<br />

Global Warming Potential<br />

Acidification Potential<br />

Eutrophication Potential<br />

Ozone Depletion Potential<br />

Photochemical Ozone Creation Potential<br />

Primary Energy Demand (fossil) (gross cal. value)<br />

Primary Energy Demand (renewable) (gross cal. value)<br />

Primary Energy Demand (total) (gross cal. value)<br />

0.03 kg Sb-Eq.<br />

2.77 kg CO 2 -Eq.<br />

6.16E-03 kg SO 2 -Eq.<br />

1.09E-03 kg PO 3- 4 Eq.<br />

9.96E-08 kg R11-Eq.<br />

1.96E-03 kg C 2 H 2 -Eq.<br />

74.97 MJ<br />

2.06 MJ<br />

77.03 MJ<br />

30


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

8 Supplement Data for <strong>APP</strong> without Flame Retardants<br />

<strong>APP</strong> is available on the market with and without flame retardants. This part supplements<br />

the above shown data. The results cover the cradle-to-gate process for the production <strong>of</strong><br />

1 kg <strong>APP</strong> without flame retardants (see page 20 for <strong>APP</strong>s with flame retardant).<br />

The process chain <strong>of</strong> flame retardants also contains some credits. Therefore it may happen<br />

that specific values <strong>of</strong> <strong>APP</strong> without flame retardant are slightly higher than the respective<br />

values for <strong>APP</strong> with flame retardants.<br />

8.1 Energy Data<br />

Table 8-1 lists data for the primary energy demand (gross calorific value) broken down to<br />

the types and areas the energy is used for.<br />

Table 8-1:<br />

Primary energy for<br />

Primary energy input (gross calorific value) required to produce 1 kg <strong>of</strong><br />

<strong>APP</strong> (without flame retardant), (split into energy types)<br />

[MJ]<br />

Electricity in <strong>APP</strong> production 1.6<br />

Thermal energy in <strong>APP</strong> production 2.8<br />

Pre-products as input in <strong>APP</strong> production 69.5<br />

Water / sewage treatment in <strong>APP</strong> production 0.2<br />

Total 74.1<br />

Table 8-2:<br />

Primary energy<br />

Primary energy input (gross calorific value) required to produce 1 kg <strong>of</strong><br />

<strong>APP</strong> (without flame retardant), (split into energy content)<br />

[MJ]<br />

Energy content <strong>of</strong> fuel (incl. fuel production and delivery) 29.3<br />

Feedstock energy 44.8<br />

Total 74.1<br />

31


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

Table 8-3:<br />

Primary energy input (gross calorific value) required to produce 1 kg <strong>of</strong><br />

<strong>APP</strong> (without flame retardant), (referring to primary energy resources)<br />

Energy carrier<br />

Energy content<br />

<strong>of</strong> fuel [MJ]<br />

Feedstock<br />

energy [MJ]<br />

Total [MJ]<br />

Lignite 2.2 2.2<br />

Natural gas 1.9 12.3 14.3<br />

Crude oil 17.4 32.5 49.9<br />

Hard coal 2.5 2.5<br />

Uranium 3.3 3.3<br />

Wood 2.1E-04 2.1E-04<br />

Renewable fuels 7.8E-08* 7.8E-08*<br />

Primary energy from geothermics 1.7E-02 1.7E-02<br />

Primary energy from solar energy 1.5 1.5<br />

Primary energy from hydro power 0.3 0.3<br />

Primary energy from wind power 0.2 0.2<br />

Total 29.3 44.8 74.1<br />

Table 8-4:<br />

Primary energy input (expressed as mass)<br />

Energy carrier<br />

[kg]<br />

Lignite 0.2<br />

Natural gas 0.3<br />

Crude oil 1.1<br />

Hard coal 0.1<br />

Uranium<br />

Wood<br />

Renewable fuels<br />

6.0E-06<br />

1.3E-05<br />

4.7E-09*<br />

Total 1.7<br />

32


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

8.2 Raw Materials Input<br />

Table 8-5:<br />

Raw material<br />

Barium sulphate<br />

Basalt<br />

Bauxite<br />

Bentonite<br />

Calcium chloride<br />

Chromium ore<br />

Clay<br />

Colemanite ore<br />

Raw material input to produce 1 kg <strong>of</strong> <strong>APP</strong> (without flame retardant)<br />

[kg]<br />

4.06E-14<br />

4.45E-05<br />

3.00E-05<br />

1.79E-03<br />

4.16E-12<br />

2.97E-06<br />

4.54E-04<br />

5.35E-07<br />

Copper - Gold - Silver - ore (1,0% Cu; 0,4 g/t Au; 66 g/t Ag)<br />

Copper - Gold - Silver - ore (1,1% Cu; 0,01 g/t Au; 2,86 g/t Ag)<br />

Copper - Gold - Silver - ore (1,16% Cu; 0,002 g/t Au; 1,06 g/t Ag)<br />

2.19E-06<br />

1.33E-06<br />

7.53E-07<br />

Copper - Molybdenum - Gold - Silver - ore (1,13% Cu; 0,02% Mo;<br />

0,01 g/t Au; 2,86 g/t Ag) 1.84E-06<br />

Copper ore (0.14%)<br />

Copper ore (1.2%)<br />

Copper ore (4%)<br />

Copper ore (sulphidic)<br />

Dolomite<br />

Ferro manganese<br />

Fluorspar (calcium fluoride; fluorite)<br />

Gravel<br />

Gypsum (natural gypsum)<br />

Heavy spar (barytes)<br />

Imenite (titanium ore)<br />

Inert rock<br />

Iron<br />

Iron ore<br />

Iron ore (65%)<br />

Kaolin ore<br />

Lead<br />

Lead - zinc - ore (4,6%-0,6%)<br />

2.76E-04<br />

2.27E-07<br />

8.97E-16<br />

1.06E-12<br />

3.26E-08<br />

1.98E-16<br />

1.39E-05<br />

5.26E-03<br />

8.63E-05<br />

4.33E-03<br />

1.15E-06<br />

2.82E+00<br />

1.35E-07<br />

2.09E-03<br />

9.86E-07<br />

9.60E-07<br />

3.96E-16<br />

5.50E-04<br />

33


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

Lead - zinc - silver - ore (5,49% Pb; 12,15% Zn; 57,4 gpt Ag)<br />

Limestone (calcium carbonate)<br />

Magnesit (Magnesium carbonate)<br />

Magnesium chloride leach (40%)<br />

Manganese ore<br />

Manganese ore (R.O.M.)<br />

Molybdenite (Mo 0,24%)<br />

Nickel ore<br />

Nickel ore (1.6%)<br />

Olivine<br />

Ore (antimony and gold)<br />

Peat<br />

Phosphate ore<br />

Phosphorus minerals<br />

Phosphorus ore (29% P2O5)<br />

Potassium chloride<br />

Potassium salt<br />

Precious metal ore (R.O.M)<br />

Quartz sand (silica sand; silicon dioxide)<br />

Raw pumice<br />

Rhodium<br />

Rutil<br />

Silicon<br />

Slate<br />

Sodium chloride (rock salt)<br />

Sodium sulphate<br />

Soil<br />

Sulphur<br />

Sulphur (bonded)<br />

Talc<br />

Tin ore<br />

Titanium ore<br />

Zinc - copper ore (4.07%-2.59%)<br />

Zinc - lead - copper ore (12%-3%-2%)<br />

8.04E-11<br />

5.32E-02<br />

5.24E-09<br />

3.09E-03<br />

5.71E-07<br />

1.36E-05<br />

1.14E-06<br />

1.82E-07<br />

6.51E-05<br />

2.18E-15<br />

8.76E-07<br />

1.70E-04<br />

6.51E-03<br />

2.08E-09<br />

7.35E-04<br />

5.01E-04<br />

2.32E-02<br />

2.26E-07<br />

1.35E-03<br />

9.32E-08<br />

5.59E-13<br />

0.00E+00<br />

3.87E-12<br />

3.67E-15<br />

1.46E-02<br />

0.00E+00<br />

5.47E-03<br />

4.67E-10<br />

2.40E-10<br />

1.67E-08<br />

3.52E-15<br />

0.00E+00<br />

1.63E-04<br />

4.94E-05<br />

34


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

Zinc - lead ore (4.21%-4.96%)<br />

Zinc ore (sulphide)<br />

3.06E-16<br />

1.05E-14<br />

8.3 Water Consumption<br />

Table 8-6:<br />

Water source<br />

Water consumption to produce 1 kg <strong>of</strong> <strong>APP</strong> (without flame retardant),<br />

(without circulated cooling water)<br />

[kg]<br />

Water (unspecified)<br />

Water (river water)<br />

Water (ground water)<br />

Water (sea water)<br />

Water (surface water)<br />

Water (lake water)<br />

Water (potable water)<br />

Water (bank filtrate)<br />

Total<br />

6.92E-02<br />

0.00E+00<br />

5.51E+00<br />

4.56E-02<br />

5.82E+00<br />

1.16E-18<br />

2.54E-07<br />

5.22E-12<br />

1.09E+01<br />

35


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

8.4 Air Emission Data<br />

Table 8-7:<br />

Emission<br />

Air emissions associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong> (without<br />

flame retardant)<br />

[kg]<br />

Inorganic emissions<br />

Ammonia<br />

Ammonium<br />

Ammonium nitrate<br />

Argon<br />

Barium<br />

Beryllium<br />

Born coumponds<br />

Boron<br />

Bromine<br />

Carbon dioxide<br />

Carbon disulphide<br />

Carbon monoxide<br />

Chloride (unspecified)<br />

Chlorine<br />

Cyanide (unspecified)<br />

Fluoride (unspecified)<br />

Fluorides<br />

Fluorine<br />

Helium<br />

Hydrogen<br />

Hydrogen chloride<br />

Hydrogen cyanide (prussic acid)<br />

Hydrogen fluoride<br />

Hydrogen iodide<br />

Hydrogen phosphorous<br />

Hydrogen sulphide<br />

Hydrogene Bromine<br />

Lead dioxide<br />

Nitrogen (atmospheric nitrogen)<br />

6.82E-05<br />

1.65E-11<br />

1.41E-12<br />

2.70E-14<br />

2.84E-06<br />

6.53E-10<br />

1.15E-06<br />

1.59E-18<br />

2.98E-07<br />

2.53E+00<br />

7.78E-12<br />

8.29E-04<br />

3.55E-06<br />

1.42E-05<br />

4.98E-08<br />

3.95E-07<br />

1.20E-06<br />

3.42E-10<br />

9.20E-09<br />

4.46E-05<br />

1.33E-05<br />

5.27E-10<br />

1.82E-06<br />

2.73E-12<br />

1.58E-13<br />

1.23E-05<br />

2.51E-09<br />

1.35E-13<br />

4.99E-03<br />

36


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

Nitrogen dioxide<br />

Nitrogen monoxide<br />

Nitrogen oxides<br />

Nitrous oxide (laughing gas)<br />

Oxygen<br />

Scandium<br />

Strontium<br />

Sulphur dioxide<br />

Sulphur hexafluoride<br />

Sulphuric acid<br />

Tin oxide<br />

Water vapour<br />

Zinc oxide<br />

Zinc sulphate<br />

1.57E-06<br />

0.00E+00<br />

3.17E-03<br />

1.49E-04<br />

7.02E-04<br />

8.14E-13<br />

3.24E-11<br />

3.40E-03<br />

9.40E-12<br />

1.91E-09<br />

1.17E-14<br />

3.69E+00<br />

2.34E-14<br />

5.03E-10<br />

Organic emissions<br />

Group PAH<br />

Anthracene<br />

Benzo(a)anthracene<br />

Benzo(a)pyrene<br />

Benzo(ghi)perylene<br />

Benz<strong>of</strong>luorantene<br />

Chrysene<br />

Dibenz(a)anthracene<br />

Indenopyrene<br />

Naphthalene<br />

Penanthrene<br />

Polycylic aromatic hydrocarbons<br />

7.25E-11<br />

3.65E-11<br />

3.61E-10<br />

3.25E-11<br />

6.51E-11<br />

8.96E-11<br />

2.03E-11<br />

2.42E-11<br />

7.61E-09<br />

2.39E-09<br />

1.53E-06<br />

Halogenated organic emissions<br />

Dichlormethane (methylene chlorid)<br />

Dioxins (unspec.)<br />

Halogenated hydrocarbons (unspecified)<br />

Organic chlorine compounds (unspecific)<br />

Polychlorinated biphenyls (PCB unspecified)<br />

Polychlorinated dibenzo-p-dioxins (2,3,7,8 - TCDD)<br />

1.61E-15<br />

1.95E-15<br />

7.94E-16<br />

7.05E-13<br />

4.45E-11<br />

6.31E-14<br />

37


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

R 11 (trichlor<strong>of</strong>luoroethane)<br />

R 114 (dichlorotetrafuoroethane)<br />

R116 (hecafluoroethane)<br />

R 12 (dichlorodifluoromethane)<br />

R 13 (chlorotrifluoromethane)<br />

R 22 (chlorodifluoromethane)<br />

Tetrafluoromethane (chlor<strong>of</strong>orm)<br />

Vinyl chloride (VCM)<br />

4.33E-08<br />

4.44E-08<br />

1.86E-14<br />

9.32E-09<br />

5.85E-09<br />

1.02E-08<br />

2.40E-10<br />

9.15E-09<br />

NMVOC<br />

Acetaldehyde (Ethanal)<br />

Acetic acid<br />

Acetone (dimethylcetone)<br />

Acrolein<br />

Aldehyde (unspecified)<br />

Alkane (unspecified)<br />

Alkene (unspecified)<br />

<strong>Aromatic</strong> hydrocarbons (unspecified)<br />

Benzene<br />

Butadiene<br />

Butane<br />

Butane (n-butane)<br />

Cumene<br />

Cyclohexane (hexahydro benzene)<br />

Diethyl amine (ethylene ethane amine)<br />

Ethane<br />

Ethanol<br />

Ethene (ethylene)<br />

Ethyl benzene<br />

Fluoranthene<br />

Fluorene<br />

Formaldehyde (methanal)<br />

Heptane (isomers)<br />

Hexamethylene diamine (HMDA)<br />

Hexane (isomers)<br />

2.29E-06<br />

2.27E-06<br />

5.11E-10<br />

1.51E-08<br />

9.89E-06<br />

1.61E-06<br />

8.72E-07<br />

2.49E-06<br />

1.28E-11<br />

8.26E-05<br />

2.29E-06<br />

9.06E-18<br />

1.78E-10<br />

3.22E-16<br />

9.00E-06<br />

2.41E-04<br />

4.39E-06<br />

3.07E-08<br />

1.19E-06<br />

2.36E-10<br />

7.49E-10<br />

8.86E-06<br />

2.42E-06<br />

7.51E-13<br />

1.76E-05<br />

38


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

Mercaptan (unspecified)<br />

Methanol<br />

NMVOC (unspecified)<br />

Octane<br />

Pentane (n-pentane)<br />

Phenol (hydroxy benzene)<br />

Propane<br />

Propene (propylene)<br />

Propionic acid (propane acid)<br />

Styrene<br />

Toluene (methyl benzene)<br />

Trimethylbenzene<br />

Xylene (dimethyl benzene)<br />

1.21E-07<br />

1.77E-03<br />

1.69E-03<br />

1.33E-06<br />

3.33E-05<br />

1.33E-11<br />

3.73E-04<br />

1.07E-07<br />

1.20E-10<br />

1.97E-13<br />

5.78E-07<br />

1.14E-13<br />

5.56E-04<br />

Others<br />

Methane<br />

VOC (unspecified)<br />

5.75E-03<br />

7.17E-07<br />

Particles to air<br />

Dust (PM2.5)<br />

Dust (PM10)<br />

Dust (unspecified)<br />

Metals (unspecified)*<br />

Radioactive emissions to air<br />

Wood (dust)<br />

5.07E-05<br />

3.28E-05<br />

8.70E-05<br />

1.38E-12<br />

5.08E-08<br />

4.32E-12<br />

* The value for unspecified metals originates from a multitude number <strong>of</strong> upstreamprocesses<br />

(as energy generation). In the <strong>APP</strong> production metal dust is not emitted directly.<br />

The human toxicity potential (HTP) for this output-flow can be approximated by the<br />

value <strong>of</strong> PM10. The reported flow does not significantly contribute to the HTP (CML 2007).<br />

39


Supplement Data for <strong>APP</strong> without Flame Retardants<br />

8.5 Wastewater Emission Data<br />

Table 8-8:<br />

Emission<br />

Wastewater emission associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong><br />

(without flame retardant)<br />

[kg]<br />

Adsorbable organic halogen compounds (AOX)<br />

Biological oxygen demand (BOD)<br />

Chemical oxygen demand (COD)<br />

Total suspended solids (TSS)<br />

Dissolved organic carbon (DOC)<br />

Total organic carbon (TOC)<br />

1.18E-06<br />

5.08E-05<br />

3.23E-03<br />

8.60E-06<br />

3.24E-11<br />

1.96E-05<br />

8.6 Solid Waste<br />

Table 8-9:<br />

Waste<br />

Stockpile goods<br />

Waste associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong> (without flame retardant)<br />

[kg]<br />

2.80E+00<br />

Waste for deposition<br />

Waste for recovery<br />

Municipal waste<br />

Hazardous waste for deposition<br />

Hazardous waste for recovery<br />

Radioactive waste<br />

Total<br />

2.89E-04<br />

4.89E-03<br />

8.22E-03<br />

4.57E-03<br />

1.11E-02<br />

1.18E-03<br />

2.83E+00<br />

40


Retardant<br />

Life Cycle Impact Assessment for <strong>APP</strong>s without Flame<br />

9 Life Cycle Impact Assessment for <strong>APP</strong>s without Flame<br />

Retardant<br />

The Life Cycle Impact Assessment follows the methodology and characterisation factors<br />

<strong>of</strong> CML updated 2007.<br />

(see page 30 for <strong>APP</strong>s with flame retardant)<br />

Table 9-1:<br />

Environmental impact associated with the production <strong>of</strong> 1 kg <strong>of</strong> <strong>APP</strong><br />

(without flame retardant)<br />

Impact category<br />

Abiotic Depletion Potential<br />

Global Warming Potential<br />

Acidification Potential<br />

Eutrophication Potential<br />

Ozone Depletion Potential<br />

Photochemical Ozone Creation Potential<br />

Primary Energy Demand (fossil) (gross cal. value)<br />

Primary Energy Demand (renewable) (gross cal. value)<br />

Primary Energy Demand (total) (gross cal. value)<br />

0.03 kg Sb-Eq.<br />

2.58 kg CO 2 -Eq.<br />

5.79E-03 kg SO 2 -Eq.<br />

1.02E-03 kg PO 3- 4 Eq.<br />

8.91E-08 kg R11-Eq.<br />

1.93E-03 kg C 2 H 2 -Eq.<br />

72.14 MJ<br />

2.01 MJ<br />

74.15 MJ<br />

41


Literature<br />

10 Literature<br />

EYERER 1996<br />

GABI 2006<br />

GUINÉE ET AL. 1996<br />

Ganzheitliche Bilanzierung – Werkzeug zum Planen und Wirtschaften<br />

in Kreisläufen, 1996<br />

GaBi 4: S<strong>of</strong>tware und Datenbank zur Ganzheitlichen Bilanzierung.<br />

IKP, Universität Stuttgart und PE <strong>Europe</strong> GmbH, Leinfelden-<br />

Echterdingen, 2006.“<br />

LCA impact assessment <strong>of</strong> toxic releases; Generic modelling <strong>of</strong> fate,<br />

exposure and effect for ecosystems and human beings. (no. 1996/21)<br />

Centre <strong>of</strong> Environmental Science (CML) Leiden and National Institute<br />

<strong>of</strong> Public Health and Environmental Protection (RIVM), Bilthoven, May<br />

1996.<br />

GUINÈE ET AL. 2001<br />

GUINÉE ET AL. 2002<br />

IKP 2003<br />

ISO 14021: 1999<br />

ISO 14024: 1999<br />

ISO 14025: 2006<br />

Guinée, J. et. al. Handbook on Life Cycle Assessment - Operational<br />

Guide to the ISO Standards. Centre <strong>of</strong> Environmental Science, Leiden<br />

University (CML); The Netherlands, 2001.<br />

Handbook on Life Cycle Assessment: An operational Guide to the ISO<br />

Standards; Dordrecht: Kluvver Academic Publsihers, 2002.<br />

Institut für Kunstst<strong>of</strong>fprüfung und Kunstst<strong>of</strong>fkunde der Universität<br />

Stuttgart, Abteilung Ganzheitliche Bilanzierung, 2003<br />

ISO 14021 Environmental labels and declarations -- Self-declared<br />

environmental claims (Type II environmental labelling). Geneva,1999<br />

ISO 14024 Environmental labels and declarations -- Type I environmental<br />

labelling -- Principles and procedures. Geneva, 1999<br />

ISO 14025 Environmental labels and declarations -- Type III environmental<br />

declarations -- Principles and procedures. Geneva, 2006<br />

ISO 14040: 2006 ISO 14040 Environmental Management – Life Cycle Assessment –<br />

Principles and Framework. Geneva, 2006<br />

ISO 14044: 2006 ISO 14044 Environmental management -- Life cycle assessment --<br />

Requirements and guidelines. Geneva, 2006<br />

ISO 14048: 2002 ISO 14048 Environmental management -- Life cycle assessment --<br />

Data documentation format. Geneva, 2002<br />

ISO 14049: 2000 ISO 14049 Environmental management -- Life cycle assessment --<br />

Examples <strong>of</strong> application <strong>of</strong> ISO 14041 to goal and scope definition<br />

and inventory analysis. Geneva, 2000<br />

KREISSIG & KÜMMEL<br />

1999<br />

PLASTICS EUROPE 2009<br />

Kreißig, J. und J. Kümmel (1999): Baust<strong>of</strong>f-Ökobilanzen. Wirkungsabschätzung<br />

und Auswertung in der Steine-Erden-Industrie. Hrsg.<br />

Bundesverband Baust<strong>of</strong>fe Steine + Erden e.V.<br />

Plastic <strong>Europe</strong> <strong>Eco</strong>-<strong>Pr<strong>of</strong>ile</strong>s and environmental Declarations. Life<br />

Cycle Inventory Methodology and Product Category Rules (PCR) for<br />

Uncoumpounded Polymer Precursors. March 2009.<br />

42


Supplement A<br />

Supplement A Description <strong>of</strong> result parameters<br />

Supplement A 1 Primary energy consumption<br />

Primary energy demand is <strong>of</strong>ten difficult to determine due to the various types <strong>of</strong> energy<br />

source. Primary energy demand is the quantity <strong>of</strong> energy directly withdrawn from the hydrosphere,<br />

atmosphere or geosphere or energy source without any anthropogenic<br />

change. For fossil fuels and uranium, this would be the amount <strong>of</strong> resource withdrawn<br />

expressed in its energy equivalent (i.e. the energy content <strong>of</strong> the raw material). For renewable<br />

resources, the energy-characterised amount <strong>of</strong> biomass consumed would be<br />

described. For hydropower, it would be based on the amount <strong>of</strong> energy that is gained from<br />

the change in the potential energy <strong>of</strong> the water (i.e. from the height difference). As aggregated<br />

values, the following primary energies are designated:<br />

The total “Primary energy consumption non-renewable”, given in MJ, essentially<br />

characterises the gain from the energy sources natural gas, crude oil, lignite, coal and<br />

uranium. Natural gas and crude oil will be used both for energy production and as material<br />

constituents e.g. in plastics. Coal will primarily be used for energy production. Uranium will<br />

only be used for electricity production in nuclear power stations.<br />

The total “Primary energy consumption renewable”, given in MJ, is generally accounted<br />

separately and comprises hydropower, wind power, solar energy and biomass.<br />

It is important that the end energy (e.g. 1 kWh <strong>of</strong> electricity) and the primary energy used<br />

are not miscalculated with each other; otherwise the efficiency for production or supply <strong>of</strong><br />

the end energy will not be accounted for.<br />

The energy content <strong>of</strong> the manufactured products will be considered as feedstock energy<br />

content. It will be characterised by the net calorific value <strong>of</strong> the product. It represents the<br />

still usable energy content.<br />

Supplement A 2 Global Warming Potential (GWP)<br />

The mechanism <strong>of</strong> the greenhouse effect can be observed on a small scale, as the name<br />

suggests, in a greenhouse. These effects are also occurring on a global scale. The occuring<br />

short-wave radiation from the sun comes into contact with the earth‟s surface and is<br />

partly absorbed (leading to direct warming) and partly reflected as infrared radiation. The<br />

reflected part is absorbed by so-called greenhouse gases in the troposphere and is reradiated<br />

in all directions, including back to earth. This results in a warming effect at the<br />

earth‟s surface.<br />

In addition to the natural mechanism, the greenhouse effect is enhanced by human activites.<br />

Greenhouse gases that are considered to be caused, or increased, anthropogenically<br />

are, for example, carbon dioxide, methane and CFCs. Figure A 1 shows the main<br />

processes <strong>of</strong> the anthropogenic greenhouse effect. An analysis <strong>of</strong> the greenhouse effect<br />

should consider the possible long term global effects.<br />

43


Supplement A<br />

The global warming potential is calculated<br />

in carbon dioxide equivalents<br />

(CO 2 -Eq.). This means that the greenhouse<br />

potential <strong>of</strong> an emission is given<br />

in relation to CO 2 Since the residence<br />

time <strong>of</strong> the gases in the atmosphere is<br />

incorporated into the calculation, a<br />

time range for the assessment must<br />

also be specified. A period <strong>of</strong> 100<br />

years is customary.<br />

UV - radiation<br />

Infrared<br />

radiation<br />

Absorption<br />

Reflection<br />

CFCs<br />

CO 2<br />

CH 4<br />

Figure A 1: Greenhouse effect<br />

(KREISSIG & KÜMMEL 1999)<br />

Trace gases in the atmosphere<br />

Supplement A 3 Acidification Potential (AP)<br />

The acidification <strong>of</strong> soils and waters occurs predominantly through the transformation <strong>of</strong><br />

air pollutants into acids. This leads to a decrease in the pH-value <strong>of</strong> rainwater and fog<br />

from 5.6 to 4 and below. Sulphur dioxide and nitrogen oxide and their respective acids<br />

(H 2 SO 4 und HNO 3 ) produce relevant contributions. This damages ecosystems, whereby<br />

forest dieback is the most well-known impact.<br />

Acidification has direct and indirect damaging effects (such as nutrients being washed out<br />

<strong>of</strong> soils or an increased solubility <strong>of</strong> metals into soils). But even buildings and building materials<br />

can be damaged. Examples include metals and natural stones which are corroded<br />

or disintegrated at an increased rate.<br />

When analysing acidification, it should be considered that although it is a global problem,<br />

the regional effects <strong>of</strong> acidification can vary. Figure A 2 displays the primary impact pathways<br />

<strong>of</strong> acidification.<br />

The acidification potential is given in<br />

sulphur dioxide equivalents (SO 2 -Eq.).<br />

The acidification potential is described<br />

as the ability <strong>of</strong> certain substances to<br />

build and release H + - ions. Certain<br />

emissions can also be considered to<br />

have an acidification potential, if the<br />

given S-, N- and halogen atoms are<br />

set in proportion to the molecular<br />

mass <strong>of</strong> the emission. The reference<br />

substance is sulpher dioxide.<br />

H 2<br />

SO 44<br />

HNO 3<br />

SO 2<br />

Figure A 2: Acidification Potential<br />

(KREISSIG & KÜMMEL 1999)<br />

NO X<br />

44


Supplement A<br />

Supplement A 4 Eutrophication Potential (EP)<br />

Eutrophication is the enrichment <strong>of</strong> nutrients in a certain place. Eutrophication can be<br />

aquatic or terrestrial. Air pollutants, waste water and fertilization in agriculture all contribute<br />

to eutrophication.<br />

The result in water is an accelerated algae growth, which in turn, prevents sunlight from<br />

reaching the lower depths. This leads to a decrease in photosynthesis and less oxygen<br />

production. In addition, oxygen is needed for the decomposition <strong>of</strong> dead algae. Both effects<br />

cause a decreased oxygen concentration in the water, which can eventually lead to<br />

fish dying and to anaerobic decomposition (decomposition without the presence <strong>of</strong> oxygen).<br />

Hydrogen sulphide and methane are thereby produced. This can lead, among others,<br />

to the destruction <strong>of</strong> the eco-system.<br />

On eutrophicated soils, an increased susceptibility <strong>of</strong> plants to diseases and pests is <strong>of</strong>ten<br />

observed, as is a degradation <strong>of</strong> plant stability. If the nutrification level exceeds the<br />

amounts <strong>of</strong> nitrogen necessary for a maximum harvest, it can lead to an enrichment <strong>of</strong><br />

nitrate. This can cause, by means <strong>of</strong> leaching, increased nitrate content in groundwater.<br />

Nitrate also ends up in drinking water.<br />

Nitrate at low levels is harmless from a<br />

toxicological point <strong>of</strong> view. However,<br />

nitrite, a reaction product <strong>of</strong> nitrate, is<br />

toxic to humans. The causes <strong>of</strong> eutrophication<br />

are displayed in Figure A 3.<br />

The eutrophication potential is calculated<br />

in phosphate equivalents<br />

(PO 4 -Eq). As with acidification potential,<br />

it‟s important to remember that the<br />

effects <strong>of</strong> eutrophication potential differ<br />

regionally.<br />

NOX<br />

Air pollution<br />

N2O<br />

NH3<br />

Waste water<br />

PO4<br />

Figure A 3: Eutrophication Potential<br />

(KREISSIG & KÜMMEL 1999)<br />

-3<br />

Fertilisation<br />

NO3 - NH4+<br />

45


Supplement A<br />

Supplement A 5 Photochemical Ozone Creation Potential (POCP)<br />

Despite playing a protective role in the stratosphere, at ground-level ozone is classified as<br />

a damaging trace gas. Photochemical ozone production in the troposphere, also known as<br />

summer smog, is suspected to damage vegetation and material. High concentrations <strong>of</strong><br />

ozone are toxic to humans.<br />

Radiation from the sun and the presence <strong>of</strong> nitrogen oxides and hydrocarbons incur complex<br />

chemical reactions, producing aggressive reaction products, one <strong>of</strong> which is ozone.<br />

Nitrogen oxides alone do not cause high ozone concentration levels.<br />

Hydrocarbon emissions occur from incomplete combustion, in conjunction with petrol<br />

(storage, turnover, refuelling etc.) or from solvents. High concentrations <strong>of</strong> ozone arise<br />

when the temperature is high, humidity is low, when air is relatively static and when there<br />

are high concentrations <strong>of</strong> hydrocarbons. Today it is assumed that the existance <strong>of</strong> NO<br />

and CO reduces the accumulated ozone to NO 2 , CO 2 and O 2 . This means, that high concentrations<br />

<strong>of</strong> ozone do not <strong>of</strong>ten occur near hydrocarbon emission sources. Higher ozone<br />

concentrations more commonly arise in areas <strong>of</strong> clean air, such as forests, where there is<br />

less NO and CO (Figure A 4).<br />

In Life Cycle Assessments, photochemical<br />

ozone creation potential<br />

(POCP) is referred to in ethyleneequivalents<br />

(C 2 H 4 -Äq.). When analyzing,<br />

it‟s important to remember that the<br />

actual ozone concentration is strongly<br />

influenced by the weather and by the<br />

characterristics <strong>of</strong> the local conditions.<br />

Hydrocarbons<br />

Nitrogen oxides<br />

Ozone<br />

Dry and warm<br />

climate<br />

Hydrocarbons<br />

Nitrogen oxides<br />

Figure A 4: Photochemical Ozone Creation Potential<br />

(KREISSIG & KÜMMEL 1999)<br />

Supplement A 6 Ozone Depletion Potential (ODP)<br />

Ozone is created in the stratosphere by the disassociation <strong>of</strong> oxygen atoms that are exposed<br />

to short-wave UV-light. This leads to the formation <strong>of</strong> the so-called ozone layer in<br />

the stratosphere (15 - 50 km high). About 10 % <strong>of</strong> this ozone reaches the troposphere<br />

through mixing processes. In spite <strong>of</strong> its minimal concentration, the ozone layer is essential<br />

for life on earth. Ozone absorbs the short-wave UV-radiation and releases it in longer<br />

wavelengths. As a result, only a small part <strong>of</strong> the UV-radiation reaches the earth.<br />

Anthropogenic emissions deplete ozone. This is well-known from reports on the hole in<br />

the ozone layer. The hole is currently confined to the region above Antarctica, however<br />

another ozone depletion can be identified, albeit not to the same extent, over the midlatitudes<br />

(e.g. <strong>Europe</strong>). The substances which have a depleting effect on the ozone can<br />

essentially be divided into two groups; the fluorine-chlorine-hydrocarbons (CFCs) and the<br />

nitrogen oxides (NOX). Figure A 5 depicts the procedure <strong>of</strong> ozone depletion.<br />

One effect <strong>of</strong> ozone depletion is the warming <strong>of</strong> the earth's surface. The sensitivity <strong>of</strong> humans,<br />

animals and plants to UV-B and UV-A radiation is <strong>of</strong> particular importance. Possible<br />

46


Supplement A<br />

effects are changes in growth or a decrease in harvest crops (disruption <strong>of</strong> photosynthesis),<br />

indications <strong>of</strong> tumors (skin cancer and eye diseases) and decrease <strong>of</strong> sea plankton,<br />

which would strongly affect the food chain. In calculating the ozone depletion potential, the<br />

anthropogenically released halogenated hydrocarbons, which can destroy many ozone<br />

molecules, are recorded first. The so-called Ozone Depletion Potential (ODP) results from<br />

the calculation <strong>of</strong> the potential <strong>of</strong> different ozone relevant substances.<br />

This is done by calculating, first <strong>of</strong> all,<br />

a scenario for a fixed quantity <strong>of</strong><br />

emissions <strong>of</strong> a CFC reference (CFC<br />

11). This results in an equilibrium<br />

state <strong>of</strong> total ozone reduction. The<br />

same scenario is considered for each<br />

substance under study whereby CFC<br />

11 is replaced by the quantity <strong>of</strong> the<br />

substance. This leads to the ozone<br />

depletion potential for each respective<br />

substance, which is given in CFC 11<br />

equivalents. An evaluation <strong>of</strong> the<br />

ozone depletion potential should take<br />

into consideration the long term,<br />

global and partly irreversible effects.<br />

UV - radiation<br />

Stratosphere<br />

15 - 50 km Absorption Absorption<br />

CFCs<br />

Nitrogen oxide<br />

Figure A 5: Ozone Depletion Potential<br />

(KREISSIG & KÜMMEL 1999)<br />

Supplement A 7 Abiotic Depletion Potential<br />

The abiotic depletion potential covers all natural resources (incl. fossil energy carriers) as<br />

metal containing ores, crude oil and mineral raw materials. Abiotic resources include all<br />

raw materials from non-living resources that are non-renewable. This impact category<br />

describes the reduction <strong>of</strong> the global amount <strong>of</strong> non-renewable raw materials. Nonrenewable<br />

means a time frame <strong>of</strong> at least 500 years. This impact category covers an<br />

evaluation <strong>of</strong> the availability <strong>of</strong> natural elements in general, as well as the availability <strong>of</strong><br />

fossil energy carriers. The reference substance for the characterisation factors is antimony.<br />

47

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!