02.06.2014 Views

Generalized Line Outage Distribution Factors - Power Systems ...

Generalized Line Outage Distribution Factors - Power Systems ...

Generalized Line Outage Distribution Factors - Power Systems ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2<br />

In terms of (3), the bracketed term in (6) is<br />

with t ( 1 )<br />

( 1 )<br />

l , and so w ( l % 1<br />

)<br />

∆ l % given by (6) simulates the line %l 1<br />

outage impacts.<br />

We proceed with the generalization for multiple-line outages<br />

by next considering the case of the outages of the two<br />

lines %l 1<br />

and %l 2<br />

.We simulate the impacts on , by introducing<br />

ς % l<br />

k<br />

f l k<br />

, taking explicitly into account the inter-<br />

w ( l % 1<br />

) and w ( l % 2<br />

)<br />

actions between these two transactions in specifying ∆ t( l % 1<br />

)<br />

and ∆ t( l % ) , as shown in Fig. 1. We set ∆ t( l % ) to satisfy<br />

2<br />

( ) ( ) ( ) ( )<br />

w( % )<br />

( ) ( %l<br />

l ) 2<br />

1 l%<br />

2<br />

1− ϕ % ∆ t %l<br />

1<br />

= f<br />

l<br />

% l .<br />

(7)<br />

1 1<br />

Analogously, we select t( )<br />

∆ l % 2<br />

to satisfy<br />

w( % )<br />

( ) ( %l<br />

l ) 1<br />

2 l%<br />

1<br />

1− ϕ % ∆ t %l<br />

2<br />

= f<br />

l<br />

% l .<br />

(8)<br />

( ) ( ) ( ) ( )<br />

2 2<br />

We rewrite (7) and (8) using the relations in (3) and (4) as<br />

⎡ ⎡ w %<br />

( 1) w( 2 )<br />

ϕ<br />

l<br />

l%<br />

ϕ ⎤ ⎤ ⎡ t( 1 ) ⎤ % % ∆ %l ⎡ f %<br />

⎢ ⎢ ⎤<br />

l1 l1<br />

⎥<br />

l 1<br />

I − ⎥ ⎢ ⎥<br />

w( %<br />

1) w( %<br />

2 )<br />

= ⎢<br />

ϕ ϕ t ( 2 )<br />

f<br />

⎥ (9)<br />

⎢ ⎢ l<br />

l<br />

⎥⎥<br />

⎢∆<br />

%l ⎥ ⎢ %l<br />

⎣ 2<br />

⎢ % ⎥⎦<br />

.<br />

⎣ ⎣ l<br />

%<br />

2 l 2 ⎦⎥⎦<br />

⎣ ⎦<br />

As long as the matrix in (9) is nonsingular, we determine<br />

t ∆ t l % by solving the linear system.<br />

∆ ( l % ) and ( )<br />

1<br />

2<br />

Fig. 1. The impacts of the transactions w (% l ) and w (% )<br />

1 l .<br />

2<br />

In the inductive process to generalize the result for the case<br />

of multiple-line outages, we assume that the impacts of a set of<br />

L % α −1 = l % 1, Ll , %<br />

α−1<br />

are simulated with<br />

a−1 outaged lines ( ) { }<br />

a−1 transactions whose amounts are specified by<br />

⎡I − F<br />

( 1) ( α −1 ⎣<br />

∆ α − ) =<br />

L % ⎤ t f<br />

⎦<br />

( α −1)<br />

, (10)<br />

where, ∆ t ( α −1 ) = ⎡∆ (% ) , K,<br />

∆ ( l%<br />

)<br />

T<br />

⎣ t l t ⎤<br />

1<br />

α−1<br />

⎦ , f f , , f<br />

( α 1 %<br />

) ⎣<br />

K<br />

l %<br />

1 lα−1<br />

w( % l1) w( l%<br />

α−1)<br />

ϕ ⎤<br />

% L<br />

l<br />

%<br />

1 l1<br />

⎥<br />

M O M ⎡⎣<br />

I − L%<br />

⎤<br />

α −1 ⎦<br />

w( % l1) w( l%<br />

α−1)<br />

ϕ ⎥<br />

% L<br />

l<br />

%<br />

α−1 lα<br />

−1<br />

1<br />

− =⎡ ⎤⎦<br />

⎡ϕ<br />

⎢<br />

and F L % =<br />

( α−1<br />

) ⎢ ⎥ , with F nonsingular.<br />

( )<br />

⎢<br />

⎣<br />

ϕ<br />

⎦<br />

We now consider the additional line l% α∉L %<br />

( α −1)<br />

outage. The set<br />

of outaged lines is L% ( ) = L% ( ) U{ l%<br />

} . Reasoning along the<br />

α α−1 α<br />

lines used in the two-line outage analysis, ∆t ( α −1)<br />

is given by<br />

(<br />

( )<br />

) ( ) α<br />

⎡<br />

⎤<br />

( ) ( ( ) ) ( ) α<br />

⎣I − % l<br />

l<br />

F<br />

α −1 ⎦ ∆ t α −1 = f<br />

%<br />

L %<br />

α −1 . (11)<br />

We capture the impacts of the outages of the L %( ) elements<br />

on<br />

t (% l 1 )<br />

i<br />

k<br />

w( 1) w( 2)<br />

f +∆ f % l<br />

l<br />

+∆f<br />

%<br />

l lk l<br />

k k<br />

i% j% i%<br />

1<br />

1 2<br />

w( 1) w( 2<br />

f +∆ f % l<br />

l<br />

+∆f<br />

% )<br />

% l1 l% %<br />

1 l1<br />

α −1<br />

%l α<br />

by using the analogue of (8) and determine t( α<br />

)<br />

( )<br />

( ) ( L% )<br />

( %<br />

w %l<br />

α −1 L<br />

( α 1)<br />

)<br />

α<br />

−<br />

1−<br />

ϕ<br />

∆ t %l f<br />

α = %l .<br />

%l<br />

α<br />

α<br />

( ) ( ) ( )<br />

( )<br />

( )<br />

∆ % l from<br />

T<br />

(12)<br />

The superscript L %<br />

( )<br />

denotes the network with the<br />

α −1<br />

j<br />

k<br />

t (% l 1 )<br />

j%<br />

2<br />

t (% l 2 )<br />

w( 1) w( 2<br />

f +∆ f % l<br />

l<br />

+∆f<br />

% )<br />

% l 2 l% %<br />

2 l 2<br />

t (% l 2 )<br />

elements of L %( ) outaged. We define<br />

α −1<br />

w( % l ) w( %<br />

α<br />

lα<br />

)<br />

b @ ⎡ϕ<br />

,.., ϕ ⎤ ⎣ l% %<br />

1 lα<br />

−1<br />

⎦<br />

T<br />

w<br />

and<br />

( l% 1) w( l%<br />

⎡<br />

1)<br />

ϕ ,.., ϕ<br />

α −<br />

c @<br />

⎤ and rewrite (11) and (12) as<br />

% %<br />

⎣ lα<br />

lα<br />

⎦<br />

−1<br />

w( %l α )<br />

T<br />

⎡⎣<br />

I −F<br />

L% ( )<br />

⎤<br />

1 ( 1)<br />

( 1 ) ( f<br />

α α ϕ<br />

− ⎦<br />

∆t − − b − + c ∆ t( α−1)<br />

) = f<br />

l% ( 1)<br />

α l%<br />

α −<br />

α<br />

(13)<br />

w( %l α )<br />

−1<br />

( 1 −ϕ<br />

) ∆t( % T<br />

% lα<br />

) −c ⎡ − ⎤<br />

( )<br />

( ( ) ( ))<br />

1<br />

1 t α f ,<br />

α<br />

⎣<br />

I F %<br />

α−<br />

⎦<br />

f α − + b ∆ l%<br />

=<br />

l<br />

L<br />

% lα<br />

which may be simplified to<br />

⎡ % b ⎤<br />

( α −1)<br />

⎡I −F % ⎤∆ t<br />

( α ) ( α ) = f<br />

⎣ L<br />

⎦<br />

( α )<br />

, % @ F L<br />

F ⎢<br />

w( %<br />

L α ) ⎥<br />

( α )<br />

T<br />

l (14)<br />

⎣<br />

c ϕ %l α ⎦ .<br />

So long as ⎡I −F L%<br />

⎣<br />

⎤<br />

( α ) ⎦ is nonsingular, we use (14) to solve for<br />

∆t and so simulate the impacts of the α line outages.<br />

( α )<br />

This development for specifying the appropriate values of<br />

the transactions is used to provide the GLODF expression. For<br />

any line k ∉ %<br />

( L ( α)<br />

)<br />

l L ( ) , we define ξ %<br />

, whose elements are the<br />

α<br />

GLODFs with the lines in L %<br />

( ) outaged, with the interactions<br />

α<br />

between the outaged lines fully considered. The change in the<br />

real power flow of line l is<br />

k<br />

( f l )<br />

l k<br />

T<br />

( )<br />

∆ @ ⎡ξ<br />

⎤<br />

⎣ ⎦ f<br />

k<br />

( L% ( α ) ) L%<br />

( α )<br />

lk<br />

l ∉ L % (15)<br />

( α )<br />

, k ( α )<br />

However, the combined impacts on line l of the a<br />

k<br />

transactions with the ∆t ( α ) specified by (14) is<br />

( L% ( α ) ) w( l% 1 ) w( l%<br />

α )<br />

( ∆ f ) = ⎡ϕ<br />

, , ϕ ⎤ ∆<br />

k ⎣<br />

K<br />

k k ⎦<br />

t<br />

l l l<br />

( α )<br />

. (16)<br />

Therefore, for ⎡⎣<br />

I −F L%<br />

⎤<br />

( α ) ⎦ nonsingular, we rewrite (16) as<br />

( L%<br />

( ) ) −1<br />

α<br />

w( 1 ) w( α )<br />

( ∆ f ) = ⎡ϕ<br />

l % l%<br />

, , ϕ ⎤ ⎡I<br />

− % ⎤<br />

l k ( α )<br />

k k ⎣ ⎦<br />

f<br />

( α<br />

⎣<br />

L<br />

F L . (17)<br />

l l ⎦<br />

)<br />

( L ( α)<br />

)<br />

It follows from (15) that is the solution of<br />

ξ %<br />

l k<br />

F ( ) ( ) ( )<br />

, (18)<br />

T L% T<br />

( α )<br />

w l% 1<br />

w l%<br />

α<br />

⎡⎣I<br />

− L%<br />

ξ = ⎡<br />

( α )<br />

⎤⎦ ϕ , , ϕ ⎤<br />

l k ⎣ l L<br />

k l k ⎦<br />

and is defined whenever ⎡I −F L%<br />

⎣<br />

⎤<br />

( α ) ⎦ is nonsingular. The case<br />

for singular ⎡I −F L%<br />

⎣<br />

⎤<br />

( α ) ⎦ indicates that the outage of the α<br />

lines in L %<br />

( ) separates the system into two or more islands.<br />

α<br />

The analysis of such cases is treated in [6]. In fact, a simple<br />

case is the outage of a line whose PTDF equals one. In this<br />

case, the outage of the line results in the creation of two<br />

separate subsystems. When the outaged line whose PTDF is<br />

unity happens to be a radial tie, the outage results in the<br />

isolation of the radial node.<br />

The relation (18) provides an analytic, closed-form<br />

expression for the GLODFs. Since the GLODF is expressed in<br />

terms of the pre-outage network parameters, we avoid the need<br />

to evaluate the post-outage network parameters. A key<br />

advantage in the deployment of GLODFs is the ability to<br />

evaluate the post-outage flows on specific lines of interest<br />

without the need to determine the post-outage network states.<br />

The proposed LODF extension permits the GLODF evaluation<br />

through a computationally efficient procedure which involves<br />

the solution of a system of linear equations whose dimension is<br />

T

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!