27.05.2014 Views

Black carbon in Arctic snow and its effect on surface albedo

Black carbon in Arctic snow and its effect on surface albedo

Black carbon in Arctic snow and its effect on surface albedo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Black</str<strong>on</strong>g> <str<strong>on</strong>g>carb<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>its</str<strong>on</strong>g> <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> <strong>surface</strong> <strong>albedo</strong><br />

Stephen Warren, University of Wash<str<strong>on</strong>g>in</str<strong>on</strong>g>gt<strong>on</strong><br />

PNNL, 2 November 2009<br />

1


Co-workers<br />

Thomas Grenfell, Sarah Doherty,<br />

Dean Hegg, Ant<strong>on</strong>y Clarke, Richard Br<str<strong>on</strong>g>and</str<strong>on</strong>g>t<br />

2


What affects <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong>?<br />

Snow gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size (age)<br />

Variati<strong>on</strong> of gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size with depth<br />

Snow depth (& vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g>)<br />

Sun angle<br />

Impurities<br />

3


Effect of <str<strong>on</strong>g>snow</str<strong>on</strong>g> gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size (Wiscombe & Warren 1980)<br />

Snow Albedo<br />

4


Interacti<strong>on</strong> of sunlight with <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

To get the same number of refracti<strong>on</strong> events, the<br />

distance traveled through ice is greater <str<strong>on</strong>g>in</str<strong>on</strong>g> coarsegra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>snow</str<strong>on</strong>g>. Therefore, coarse-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

has lower <strong>albedo</strong>.<br />

5


Grenfell,<br />

Warren,<br />

Mullen (1994)<br />

South Pole<br />

6


What affects <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong>?<br />

Snow gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size (age)<br />

Variati<strong>on</strong> of gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size with depth<br />

Snow depth (& vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g>)<br />

Sun angle<br />

Impurities<br />

7


Tundra of northern Yakutia, April 2008<br />

8


Tundra of northern Yakutia, April 2008<br />

A <strong>surface</strong>-<strong>albedo</strong> calculati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> a climate model should<br />

use a frequency-distributi<strong>on</strong> of <str<strong>on</strong>g>snow</str<strong>on</strong>g> depth. Albedo<br />

computed from the average <str<strong>on</strong>g>snow</str<strong>on</strong>g> depth will be too high.<br />

9


What affects <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong>?<br />

Snow gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size (age)<br />

Variati<strong>on</strong> of gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size with depth<br />

Snow depth (& vegetati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g>)<br />

Sun angle<br />

Impurities<br />

10


Why are impurities so <str<strong>on</strong>g>effect</str<strong>on</strong>g>ive at reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong>?<br />

Because absorpti<strong>on</strong> by ice is very weak at visible<br />

wavelengths: ice is nearly transparent.<br />

Absorptive impurities:<br />

<str<strong>on</strong>g>Black</str<strong>on</strong>g> <str<strong>on</strong>g>carb<strong>on</strong></str<strong>on</strong>g> (soot)<br />

Brown <str<strong>on</strong>g>carb<strong>on</strong></str<strong>on</strong>g> (organics)<br />

Soil dust<br />

11


0.5ppm<br />

0.05ppm<br />

Snow Albedo<br />

0.05 ppm<br />

5 ppm<br />

Warren &<br />

Wiscombe<br />

1980<br />

0.5 ppm<br />

5 ppm<br />

12


Reducti<strong>on</strong> of <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong> α<br />

(1) by <str<strong>on</strong>g>snow</str<strong>on</strong>g> ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g Δα = 12%<br />

new <str<strong>on</strong>g>snow</str<strong>on</strong>g> old melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g> radius: 100 µm 1000 µm<br />

broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>albedo</strong>: 83% 71%<br />

(2) by additi<strong>on</strong> of black <str<strong>on</strong>g>carb<strong>on</strong></str<strong>on</strong>g> (BC) (20 ppb):<br />

Δα ≈ 0.5% for r = 100 µm<br />

Δα ≈ 1.6% for r = 1000 µm<br />

Typical values of BC <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> (ppb):<br />

Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g> 2-3<br />

Canada 10<br />

Siberia 20-25<br />

13


Reducti<strong>on</strong> of <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong> α<br />

(1) by <str<strong>on</strong>g>snow</str<strong>on</strong>g> ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g Δα = 12%<br />

new <str<strong>on</strong>g>snow</str<strong>on</strong>g> old melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g> radius: 100 µm 1000 µm<br />

broadb<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>albedo</strong>: 83% 71%<br />

(2) by additi<strong>on</strong> of black <str<strong>on</strong>g>carb<strong>on</strong></str<strong>on</strong>g> (BC) (20 ppb):<br />

Δα ≈ 0.5% for r = 100 µm<br />

Δα ≈ 1.6% for r = 1000 µm<br />

Typical values of BC <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> (ppb):<br />

Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g> 2-3<br />

Canada 10<br />

Siberia 20-25<br />

Snow gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size is more important than soot c<strong>on</strong>tent,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> it is harder to predict.<br />

14


Soot <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> 1983-4 (Clarke & No<strong>on</strong>e) Most amounts are 5-50 ppb.<br />

1983<br />

16


5-50 ppb of black <str<strong>on</strong>g>carb<strong>on</strong></str<strong>on</strong>g> could reduce <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

<strong>albedo</strong> by 0-4%.<br />

Clarke & No<strong>on</strong>e’s average of all 60 samples<br />

was 25 ppb, imply<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>albedo</strong> reducti<strong>on</strong> of ~2%.<br />

17


Now, 20 years after Clarke & No<strong>on</strong>e (1985),<br />

there is renewed <str<strong>on</strong>g>in</str<strong>on</strong>g>terest <str<strong>on</strong>g>in</str<strong>on</strong>g> dirty <str<strong>on</strong>g>snow</str<strong>on</strong>g>.<br />

18


Proc. Nat. Acad. Sci. 2004<br />

19


Soot <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> is hard to detect visually.<br />

20


30 km east of Vorkuta, Russia Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g> Ice Sheet<br />

370 ppb 2 ppb<br />

21


Debris-covered ice <str<strong>on</strong>g>in</str<strong>on</strong>g> ablati<strong>on</strong> z<strong>on</strong>e of Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g> Ice Sheet.<br />

Silt <str<strong>on</strong>g>and</str<strong>on</strong>g> s<str<strong>on</strong>g>and</str<strong>on</strong>g>.<br />

22


Where <str<strong>on</strong>g>and</str<strong>on</strong>g> when does variati<strong>on</strong> of <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong> matter for climate?<br />

Whenever large areas of <str<strong>on</strong>g>snow</str<strong>on</strong>g> are exposed to significant solar energy<br />

(<str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong> is less important <str<strong>on</strong>g>in</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> boreal forest)<br />

<str<strong>on</strong>g>Arctic</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

- Tundra <str<strong>on</strong>g>in</str<strong>on</strong>g> spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

- Sea ice <str<strong>on</strong>g>in</str<strong>on</strong>g> spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g (covered with <str<strong>on</strong>g>snow</str<strong>on</strong>g>)<br />

- Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g> Ice Sheet <str<strong>on</strong>g>in</str<strong>on</strong>g> both spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>and</str<strong>on</strong>g> summer<br />

N<strong>on</strong>-<str<strong>on</strong>g>Arctic</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

- Great Pla<str<strong>on</strong>g>in</str<strong>on</strong>g>s of North America<br />

- Steppes of Asia: Kazakhstan, M<strong>on</strong>golia, X<str<strong>on</strong>g>in</str<strong>on</strong>g>jiang, Tibet<br />

Sea ice<br />

- <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> ocean <str<strong>on</strong>g>in</str<strong>on</strong>g> summer<br />

(Mounta<str<strong>on</strong>g>in</str<strong>on</strong>g> glaciers are too small to be important for climate, but they<br />

23<br />

are important for hydrology)


Summary of strategy<br />

(1600 <str<strong>on</strong>g>snow</str<strong>on</strong>g> samples, <strong>on</strong>ly a few <strong>albedo</strong> measurements)<br />

Climatic <str<strong>on</strong>g>effect</str<strong>on</strong>g> of BC <strong>on</strong> <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong> is expected to be at<br />

most a few percent, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong> depends <strong>on</strong><br />

several other variables. Therefore we do not directly<br />

measure the <strong>albedo</strong> reducti<strong>on</strong>. Instead:<br />

(1)Collect <str<strong>on</strong>g>snow</str<strong>on</strong>g> samples, melt <str<strong>on</strong>g>and</str<strong>on</strong>g> filter them. Analyze<br />

the filters photometrically for<br />

(a) BC c<strong>on</strong>centrati<strong>on</strong><br />

(b) fracti<strong>on</strong> of absorpti<strong>on</strong> due to other (“brown”)<br />

c<strong>on</strong>stituents (organic <str<strong>on</strong>g>carb<strong>on</strong></str<strong>on</strong>g>, soil dust).<br />

(2) Use the BC amount together with <str<strong>on</strong>g>snow</str<strong>on</strong>g> gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size <str<strong>on</strong>g>in</str<strong>on</strong>g> a<br />

24<br />

radiative-transfer model to compute <strong>albedo</strong> reducti<strong>on</strong>.


Other methods to measure BC:<br />

Thermo-Optical (c<strong>on</strong>trolled combusti<strong>on</strong>)<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>gle-particle soot photometer (SP2)<br />

Advantages of filter method:<br />

It’s a measure of absorpti<strong>on</strong>, which is closely related to<br />

absorpti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>snow</str<strong>on</strong>g>.<br />

Filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g can be d<strong>on</strong>e anywhere; no need to br<str<strong>on</strong>g>in</str<strong>on</strong>g>g large<br />

quantities of <str<strong>on</strong>g>snow</str<strong>on</strong>g> back to Seattle<br />

28


Filter apparatus at Ny-Alesund, Svalbard<br />

29


Inuvik, Canada<br />

30


Northeast Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

31


Northeast Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

32


Absorpti<strong>on</strong> coefficient k abs (m 2 /g <str<strong>on</strong>g>snow</str<strong>on</strong>g>)<br />

k abs =<br />

(absorpti<strong>on</strong> cross-secti<strong>on</strong> of particles <strong>on</strong> the filter)<br />

(amount of meltwater passed through the filter)<br />

k abs = B a C<br />

B a<br />

C<br />

mass absorpti<strong>on</strong> cross-secti<strong>on</strong> (m 2 /g BC)<br />

c<strong>on</strong>centrati<strong>on</strong> (g BC/g <str<strong>on</strong>g>snow</str<strong>on</strong>g>)<br />

Our BC amounts are calibrated relative to filters<br />

with M<strong>on</strong>arch-71 soot, which has B a ≈6 m 2 /g. 33


How do we verify the model<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <strong>albedo</strong> reducti<strong>on</strong>?<br />

(or bypass the model!)<br />

Direct measurement of <strong>albedo</strong>-reducti<strong>on</strong> is unlikely to be<br />

feasible <str<strong>on</strong>g>in</str<strong>on</strong>g> nature, because of vertical variati<strong>on</strong> of <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size <str<strong>on</strong>g>and</str<strong>on</strong>g> soot c<strong>on</strong>tent, <str<strong>on</strong>g>and</str<strong>on</strong>g> because natural soot<br />

c<strong>on</strong>tent is small.<br />

34


How do we verify the model<str<strong>on</strong>g>in</str<strong>on</strong>g>g of <strong>albedo</strong> reducti<strong>on</strong>?<br />

(or bypass the model!)<br />

Direct measurement of <strong>albedo</strong>-reducti<strong>on</strong> is unlikely to be<br />

feasible <str<strong>on</strong>g>in</str<strong>on</strong>g> nature, because of vertical variati<strong>on</strong> of <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size <str<strong>on</strong>g>and</str<strong>on</strong>g> soot c<strong>on</strong>tent, <str<strong>on</strong>g>and</str<strong>on</strong>g> because natural soot<br />

c<strong>on</strong>tent is small.<br />

Therefore artificial <str<strong>on</strong>g>snow</str<strong>on</strong>g>packs are needed, with uniform gra<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

size <str<strong>on</strong>g>and</str<strong>on</strong>g> large uniform soot c<strong>on</strong>tent (ppm not ppb), to get<br />

a large signal <strong>on</strong> <strong>albedo</strong>.<br />

In cold-room laboratory:<br />

Charlie Zender<br />

Tom Kirchstetter (LBL)<br />

Outdoors:<br />

Richard Br<str<strong>on</strong>g>and</str<strong>on</strong>g>t<br />

35


Advantages of an outdoor experiment:<br />

Uniform illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> across <str<strong>on</strong>g>snow</str<strong>on</strong>g>pack<br />

Wide sample to avoid edge-<str<strong>on</strong>g>effect</str<strong>on</strong>g>s (light emerges from <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

horiz<strong>on</strong>tally distant from where it entered)<br />

Albedo measurement is possible (<str<strong>on</strong>g>in</str<strong>on</strong>g>stead of BRDF)<br />

36


Advantages of an outdoor experiment:<br />

Uniform illum<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> across <str<strong>on</strong>g>snow</str<strong>on</strong>g>pack<br />

Wide sample to avoid edge-<str<strong>on</strong>g>effect</str<strong>on</strong>g>s (light emerges from <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

horiz<strong>on</strong>tally distant from where it entered)<br />

Albedo measurement is possible (<str<strong>on</strong>g>in</str<strong>on</strong>g>stead of BRDF)<br />

37


1 ppm means 3 grams of soot <str<strong>on</strong>g>in</str<strong>on</strong>g> 3 t<strong>on</strong>s of <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

40


Driv<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> the Laptev Sea, near the Lena Delta<br />

46


60 km west of Cherskiy, <str<strong>on</strong>g>in</str<strong>on</strong>g> the Kolyma lowl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

47


On the Lena River west of Tiksi (Yakutia)<br />

48


Snowmelt-filter<str<strong>on</strong>g>in</str<strong>on</strong>g>g lab<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> Tiksi hotel<br />

49


Filters from <str<strong>on</strong>g>snow</str<strong>on</strong>g> near Tiksi<br />

50


Snow <strong>on</strong> lakes,<br />

sea ice, tundra,<br />

ice caps<br />

51


Eastern Siberia, Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g 2008<br />

350 <str<strong>on</strong>g>snow</str<strong>on</strong>g> samples <str<strong>on</strong>g>in</str<strong>on</strong>g> 2 m<strong>on</strong>ths<br />

<str<strong>on</strong>g>Arctic</str<strong>on</strong>g> Canada, Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g 2009<br />

306 <str<strong>on</strong>g>snow</str<strong>on</strong>g> samples <str<strong>on</strong>g>in</str<strong>on</strong>g> 2 weeks<br />

52


Southwest Dev<strong>on</strong> Isl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

57


Sea ice<br />

58


Thick <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>on</strong> sea ice<br />

Th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>on</strong> sea ice<br />

59


BC c<strong>on</strong>centrati<strong>on</strong>s (ng/g or ppb)<br />

LOCATION<br />

MEDIAN<br />

LOCATION<br />

MEDIAN<br />

Russia, 2007<br />

(western)<br />

Russia, 2008<br />

(eastern)<br />

Canada, 2007<br />

(subarctic)<br />

Canada, 2009<br />

(arctic)<br />

33<br />

20<br />

15<br />

9<br />

Barrow (Alaska),<br />

2008<br />

12<br />

Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g>, AWS 3<br />

Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g>, Dye-2 2<br />

North Pole<br />

Vic<str<strong>on</strong>g>in</str<strong>on</strong>g>ity, 2008<br />

Svalbard, 2007 11<br />

6<br />

64


22<br />

17<br />

42<br />

15<br />

21 5 (fresh)<br />

14 56<br />

66<br />

94<br />

<str<strong>on</strong>g>Arctic</str<strong>on</strong>g> Russia March-May 2007, 2008<br />

~500 <str<strong>on</strong>g>snow</str<strong>on</strong>g> samples; median <strong>surface</strong> (0-10 cm) values plotted here (ppb).<br />

(Cherskiy: 56 ppb <strong>surface</strong>, 20 ppb sub<strong>surface</strong>. Heavy <str<strong>on</strong>g>snow</str<strong>on</strong>g>fall <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

65<br />

autumn, sublimati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> w<str<strong>on</strong>g>in</str<strong>on</strong>g>ter leaves BC at <strong>surface</strong>.)


Do particles get left beh<str<strong>on</strong>g>in</str<strong>on</strong>g>d<br />

at the <strong>surface</strong> as the <str<strong>on</strong>g>snow</str<strong>on</strong>g> melts?<br />

66


Percolati<strong>on</strong> z<strong>on</strong>e of southern Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g> July 2008<br />

60 km south (upw<str<strong>on</strong>g>in</str<strong>on</strong>g>d) of Dye-2 stati<strong>on</strong><br />

~1 m annual <str<strong>on</strong>g>snow</str<strong>on</strong>g>fall, ~2 ppb soot<br />

~50 cm melts <str<strong>on</strong>g>in</str<strong>on</strong>g> July. But 7 cm new <str<strong>on</strong>g>snow</str<strong>on</strong>g> at end of July. 67


new <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

Depth (cm)<br />

(not yet<br />

corrected<br />

for undercatch<br />

by<br />

filter; need<br />

to multiply<br />

by 1.1)<br />

70


Sanja Forsström (Norwegian Polar Institute)<br />

71


Has the <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> become cleaner or dirtier <str<strong>on</strong>g>in</str<strong>on</strong>g> 25 years?<br />

Median values of BC <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> (ppb):<br />

Clarke & No<strong>on</strong>e Our values<br />

60 samples 1600 samples<br />

1983-1984 2005-2009<br />

Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g> 2 2-3<br />

Canada 21 12<br />

Alaska 15 12<br />

<str<strong>on</strong>g>Arctic</str<strong>on</strong>g> Ocean 32 6<br />

Svalbard 22 14<br />

(Difference <str<strong>on</strong>g>in</str<strong>on</strong>g> photometer accounts for factor 1.6, based <strong>on</strong> <str<strong>on</strong>g>Arctic</str<strong>on</strong>g><br />

filters from 1984 remeasured with <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrat<str<strong>on</strong>g>in</str<strong>on</strong>g>g s<str<strong>on</strong>g>and</str<strong>on</strong>g>wich.)<br />

72


<str<strong>on</strong>g>Black</str<strong>on</strong>g> <str<strong>on</strong>g>carb<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> air<br />

at Alert, Canada<br />

(83 N, 62 W)<br />

Patricia Qu<str<strong>on</strong>g>in</str<strong>on</strong>g>n et al.,<br />

Tellus 2007<br />

73


Summary<br />

• BC <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> is not detected visually.<br />

• Variati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>albedo</strong> due to variati<strong>on</strong> of <str<strong>on</strong>g>snow</str<strong>on</strong>g> gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size is much<br />

larger than <strong>albedo</strong> reducti<strong>on</strong> due to BC (<str<strong>on</strong>g>and</str<strong>on</strong>g> gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size is harder<br />

to predict).<br />

• Greenl<str<strong>on</strong>g>and</str<strong>on</strong>g> has the lowest BC values <str<strong>on</strong>g>in</str<strong>on</strong>g> the <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> (~2 ppb).<br />

This value was also found by Clarke & No<strong>on</strong>e, Petr Chylek et<br />

al., Joe McC<strong>on</strong>nell et al.<br />

Median BC values from Canada (12 ppb) <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> Ocean<br />

(6 ppb) are lower now than were reported <str<strong>on</strong>g>in</str<strong>on</strong>g> 1984.<br />

Highest soot amounts now are <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> Russia, which was not<br />

sampled <str<strong>on</strong>g>in</str<strong>on</strong>g> 1984.<br />

• D<strong>on</strong>’t just use median values; BC becomes c<strong>on</strong>centrated at the<br />

<strong>surface</strong> by sublimati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> perhaps also <str<strong>on</strong>g>in</str<strong>on</strong>g> melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>snow</str<strong>on</strong>g>.<br />

74


Summary (2)<br />

• Our values of BC may be too high (dust; SP2, T/O comparis<strong>on</strong>s<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> progress)<br />

• Experiments <strong>on</strong> artificial <str<strong>on</strong>g>snow</str<strong>on</strong>g>packs are underway to check the<br />

radiative-transfer model<str<strong>on</strong>g>in</str<strong>on</strong>g>g.<br />

• <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> is often th<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> patchy, so <strong>albedo</strong> may be<br />

determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed more by <str<strong>on</strong>g>snow</str<strong>on</strong>g> thickness than by impurities.<br />

• BC <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> is not the cause of rapid <str<strong>on</strong>g>Arctic</str<strong>on</strong>g> warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the last<br />

25 years.<br />

75


Measurements:<br />

BC c<strong>on</strong>tent<br />

Albedo change<br />

Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g:<br />

Radiative forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Climate resp<strong>on</strong>se


Global, annual-mean RF estimates<br />

• Hansen <str<strong>on</strong>g>and</str<strong>on</strong>g> Nazarenko (2004): +0.16 W/m 2<br />

− Superseded by recent estimates from Koch/GISS<br />

• Jacobs<strong>on</strong> (2004): +0.06 W/m 2<br />

− TOA forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g from (early) B<strong>on</strong>d fossil fuel+biofuel BC<br />

− Equilibrium warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g: +0.06 K<br />

• Flanner et al (2007, 2009): +0.04 W/m 2<br />

− TOA forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g from (2004) B<strong>on</strong>d fossil fuel+biofuel BC<br />

− Equilibrium warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g: +0.12 K<br />

• Koch et al (2009): +0.03 W/m 2 (all present sources)<br />

− 1995 – 1890 change from all BC <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g>/ice: +0.01 W/m 2<br />

− Equilibrium warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g: +0.18 K<br />

• Rypdal et al (2009): +0.03 W/m 2<br />

− Emissi<strong>on</strong>s from Cofala et al (2007)<br />

• All have efficacies larger than 1<br />

77


E<br />

i<br />

∆Ts<br />

/ Fi<br />

= ∆ T / F( CO )<br />

s<br />

2<br />

Soot <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> has the greatest<br />

efficacy of all climate forc<str<strong>on</strong>g>in</str<strong>on</strong>g>gs<br />

c<strong>on</strong>sidered, because:<br />

(1) Peak of soot fallout (Spr<str<strong>on</strong>g>in</str<strong>on</strong>g>g)<br />

co<str<strong>on</strong>g>in</str<strong>on</strong>g>cides with <strong>on</strong>set of <str<strong>on</strong>g>snow</str<strong>on</strong>g>melt<br />

(2) Melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>snow</str<strong>on</strong>g> has lower<br />

<strong>albedo</strong> than cold <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

(3) Earlier melt exposes dark<br />

underly<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>surface</strong><br />

(4) Stable atmosphere prevents<br />

rapid heat exchange with free<br />

troposphere, c<strong>on</strong>centrates 78<br />

warm<str<strong>on</strong>g>in</str<strong>on</strong>g>g at <strong>surface</strong>.


Efficacy for soot <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

1.8 (Hansen et al. 2005)<br />

3.2 (Flanner, Zender, R<str<strong>on</strong>g>and</str<strong>on</strong>g>ers<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> Rasch, 2007)<br />

(1)Albedo reducti<strong>on</strong> causes temperature <str<strong>on</strong>g>in</str<strong>on</strong>g>crease, gra<str<strong>on</strong>g>in</str<strong>on</strong>g>-size<br />

growth, reduced <strong>albedo</strong>.<br />

(2)Soot causes greater <strong>albedo</strong> reducti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> coarse-gra<str<strong>on</strong>g>in</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

(3)Melt<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>centrates soot at the <strong>surface</strong>.<br />

Global annual mean forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g by soot <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g>:<br />

F = 0.17 W m -2 ; F e<br />

= 0.30 W m -2 (Hansen & Nazarenko 2004)<br />

F = 0.05 W m -2 ; F e<br />

= 0.16 W m -2 (Flanner et al. 2007)<br />

79


Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g questi<strong>on</strong>s:<br />

How is BC removed from the atmosphere <str<strong>on</strong>g>in</str<strong>on</strong>g>to <str<strong>on</strong>g>snow</str<strong>on</strong>g>?<br />

How does uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g> gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size propagate to<br />

uncerta<str<strong>on</strong>g>in</str<strong>on</strong>g>ty <str<strong>on</strong>g>in</str<strong>on</strong>g> BC’s reducti<strong>on</strong> of <strong>albedo</strong>?<br />

How does sub-grid-scale heterogeneity of <str<strong>on</strong>g>snow</str<strong>on</strong>g> depth <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>snow</str<strong>on</strong>g> cover affect BC’s ability to reduce <str<strong>on</strong>g>snow</str<strong>on</strong>g> <strong>albedo</strong>?<br />

What radiative forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g results from a change <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>surface</strong><br />

<strong>albedo</strong>?<br />

To what extent is <str<strong>on</strong>g>snow</str<strong>on</strong>g> hidden by<br />

(a) Trees<br />

(b) Clouds<br />

80


The forward model process<br />

(Doherty <str<strong>on</strong>g>and</str<strong>on</strong>g> Flanner)<br />

Emissi<strong>on</strong>s<br />

Transport,<br />

aerosol ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

depositi<strong>on</strong><br />

meltwater scaveng<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Spatially <str<strong>on</strong>g>and</str<strong>on</strong>g> temporally<br />

resolved BC c<strong>on</strong>tent<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>snow</str<strong>on</strong>g><br />

(Recent measurements help<str<strong>on</strong>g>in</str<strong>on</strong>g>g with items <str<strong>on</strong>g>in</str<strong>on</strong>g> red)<br />

Complicati<strong>on</strong>s<br />

gra<str<strong>on</strong>g>in</str<strong>on</strong>g> size,<br />

BC absorptivity<br />

<str<strong>on</strong>g>snow</str<strong>on</strong>g> thickness,<br />

other impurities<br />

∆ Snow<br />

Albedo<br />

Complicati<strong>on</strong>s<br />

<str<strong>on</strong>g>snow</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> sea-ice<br />

resp<strong>on</strong>se, etc.<br />

<str<strong>on</strong>g>snow</str<strong>on</strong>g> ag<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

resp<strong>on</strong>se<br />

Climate<br />

resp<strong>on</strong>se<br />

Radiative<br />

forc<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

(by source)<br />

Complicati<strong>on</strong>s<br />

clouds,<br />

vegetati<strong>on</strong> mask<str<strong>on</strong>g>in</str<strong>on</strong>g>g,<br />

<str<strong>on</strong>g>snow</str<strong>on</strong>g> fracti<strong>on</strong><br />

Likely to c<strong>on</strong>t<str<strong>on</strong>g>in</str<strong>on</strong>g>ue<br />

rely<str<strong>on</strong>g>in</str<strong>on</strong>g>g heavily <strong>on</strong><br />

models<br />

81

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!