27.05.2014 Views

Non-Invasive Ventilation

Non-Invasive Ventilation

Non-Invasive Ventilation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Επεμβαηικός και μη επεμβαηικός<br />

μητανικός αεριζμός ζηη ΧΑΠ<br />

Θεόδωρος Βαζιλακόποσλος<br />

Αναπληρωηής Καθηγηηής<br />

Ενηαηικής Θεραπείας-Πνεσμονολογίας<br />

Εθνικό και Καποδιζηριακό Πανεπιζηημίο Αθηνών<br />

Νοζοκομείο «ο Εσαγγελιζμός»


► Pathophysiology<br />

Outline<br />

► <strong>Non</strong> invasive ventilation during exacerbations to<br />

avoid intubation<br />

► Controlled mechanical ventilation<br />

► Partial support ventilation<br />

• Ventilator triggering<br />

• Wasted efforts<br />

► Weaning<br />

► <strong>Non</strong> <strong>Invasive</strong> <strong>Ventilation</strong> after weaning<br />

• Spontaneous breathing trial failure<br />

• Post extubation


Pathophysiology<br />

Barnes, P. J. N Engl J Med 2000;343:269-280


Flow Limitation<br />

Hyperinflation


IRV<br />

IRV<br />

Tidal breathing in COPD<br />

V T<br />

V T<br />

Normal<br />

COPD<br />

ERV<br />

ERV<br />

Trapped gas


ERV<br />

IRV<br />

Normal<br />

Hyperinflation<br />

Static Hyperinflation<br />

Dynamic<br />

Hyperinflation<br />

IC<br />

V T<br />

RV<br />

Gas Trapping in resting conditions<br />

Gas Trapping due to exercise


Φυσιολογική αναπνοή


Αναπνοή στη ΧΑΠ


600 ml<br />

PEEPi<br />

600 ml


Flow<br />

Pes<br />

W elastic<br />

W resistive<br />

W PEEPi<br />

P-V curve<br />

reduction bronchial caliber


Decreased zone Apposition<br />

Lower rib retraction


Length Tension Relationship:<br />

Diaphragmatic Weakness


Imbalance Load / Neuromuscular Capacity<br />

Vassilakopoulos T et al Eur Respir J 1996;9:2383-2400


<strong>Non</strong>-invasive ventilation<br />

during exacerbations to<br />

avoid intubation


700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

PTPdi/min (cmH20 x s/min)<br />

i-PSV n-PSV T-piece S.B.<br />

*<br />

*


% of patients<br />

Intubation rate in patients with acute<br />

exacerbation of COPD treated with and<br />

without NIPPV<br />

80<br />

73 74<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

31<br />

n=16 n=15<br />

26<br />

n=43 n=42<br />

NIPPV<br />

Control<br />

0<br />

Kramer et al 1995 Brochard et al 1995


Hospital stay (days) of patients with acute<br />

exacerbation of COPD treated with and without<br />

NIPPV<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

*<br />

NIPPV<br />

Control<br />

Brochard et al. NEJM 1995;333:817


% of patients<br />

In-hospital mortality (%) in patients with<br />

acute exacerbation of COPD treated with<br />

and without NIPPV<br />

35<br />

30<br />

30 29<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

10 9<br />

n=30 n=30<br />

n=43 n=42<br />

Bott et al 1993 Brochard et al 1995<br />

NIPPV<br />

Control


% of patients<br />

Early use of NIPPV for acute exacerbation of<br />

COPD on general wards<br />

30<br />

27<br />

25<br />

20<br />

15<br />

10<br />

15<br />

10<br />

20<br />

NIPPV<br />

Control<br />

5<br />

n=118 n=118 n=118 n=118<br />

0<br />

Need for intubation<br />

In-hospital mortality<br />

Plant et al. Lancet 2000;355:1931


NIV in hypercapnic encephalopathy<br />

Scala et al, Intensive Care Med 2007;33:2101-8


Helmet worsens patient-ventilator interaction in COPD<br />

Navalesi P et al, Intensive Care Med 2007;33:74-81


Controlled mechanical<br />

ventilation


Mechanical <strong>Ventilation</strong><br />

►Volume Control<br />

• Tidal Volume 520 ml<br />

• Respiratory Rate = 16 breaths/min<br />

• TI/TT = 0,25<br />

• PEEP = 0-5 cmH2O<br />

• FiO2 = 50%


Pressure (cmH 2 O)<br />

Flow (l/sec)<br />

1.5<br />

1<br />

0.5<br />

Dynamic hyperinflation<br />

0<br />

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4<br />

-0.5<br />

-1<br />

-1.5<br />

60<br />

Slope increase<br />

End expiratory flow<br />

50<br />

40<br />

Over-distension<br />

30<br />

20<br />

10<br />

0<br />

-1 -0.5 0<br />

-10<br />

0.5 1 1.5 2 2.5 3 3.5 4<br />

Time (sec)


Assessment of mechanics<br />

Ppeak<br />

Pplateau<br />

PEEPi<br />

End expiratory occlusion<br />

Rrs = (Ppeak-Pplateau)/V’


When PEEPi is present during CMV<br />

► Hemodynamic<br />

compromise<br />

► Overdistension with<br />

risk of barotrauma<br />

► Reduce f<br />

► Reduce VT<br />

► Increase inspiratory<br />

flow to prolong TE


Partial Support Modes


Ventilator triggering


Ptr


Aslanian P, AJRCCM 1998;157:135-43


Partitioning of pressure time product during<br />

flow and pressure triggering<br />

9<br />

Pressure Support<br />

9<br />

Assist control<br />

8<br />

8<br />

7<br />

7<br />

6<br />

5<br />

4<br />

3<br />

PTPes<br />

PTPtr<br />

PTPpost<br />

PTPpeepi<br />

6<br />

5<br />

4<br />

3<br />

PTPes<br />

PTPtr<br />

PTPpost<br />

PTPpeepi<br />

2<br />

2<br />

1<br />

1<br />

0<br />

PT<br />

FT<br />

0<br />

PT<br />

FT<br />

Aslanian P, AJRCCM 1998;157:135-43


Paw (cmH 2 O)<br />

Flow (l/sec)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-2<br />

-0.2<br />

3 8 13 18<br />

-0.4<br />

-0.6<br />

-0.8<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-2<br />

-5<br />

3 8 13 18<br />

Fr = 12 b/min<br />

Time (sec)<br />

5 sec


Pes (cmH 2 O)<br />

Paw (cmH 2 O)<br />

Flow (l/sec)<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

-2<br />

-0,2<br />

3 8 13 18<br />

-0,4<br />

-0,6<br />

-0,8<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-2<br />

-5<br />

3 8 13 18<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-2 3 8 13 18<br />

-5<br />

Fr = 33 b/min<br />

Time (sec)<br />

5 sec<br />

Georgopoulos D


Ptr


Wasted effort<br />

PEEPi<br />

Ptr<br />

Dynamic<br />

Hyperinflation<br />

Vrel


Ineffective efforts increase as the level of<br />

ventilator support increases<br />

Leung P, AJRCCM 1997;155:1940-48


Ineffective efforts decrease as<br />

expiratory time increases<br />

ACV<br />

Tidal<br />

Volume<br />

constant<br />

Increased<br />

Flow<br />

Increased<br />

Expiratory<br />

time<br />

Kondili E, BJA<br />

2003;91:106-19


Ptr


Factors predisposing to ineffective efforts<br />

►The level of ventilator assistance<br />

►Large tidal volume of the preceding breath<br />

►Short expiratory time<br />

►PEEPi


Pes (cmH 2 O)<br />

Paw (cmH 2 O)<br />

Flow (l/sec)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-2<br />

-0.2<br />

3 8 13 18<br />

-0.4<br />

-0.6<br />

-0.8<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-2<br />

-5<br />

3 8 13 18<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-2 3 8 13 18<br />

-5<br />

Time (sec)<br />

5 sec


Pes (cmH 2 O)<br />

Flow (l/sec)<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

-0,2<br />

-0,4<br />

-0,6<br />

-0,8<br />

0 1 2 3 4 5 6<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

0 1 2 3 4 5 6<br />

Time (sec)<br />

5 sec<br />

Georgopoulos D


Wasted efforts reduction during pressure support<br />

Cycling off criterion<br />

increased<br />

in steps of 10%<br />

Thille et al Intensive Care<br />

Med 2008;34:1477-86<br />

Gradual reduction<br />

of PS level-steps of 2 cmH 2 0


Addition of external PEEP<br />

Ptr<br />

PEEP external


Chao et al, Chest 1997;112:1592-9<br />

Asynchrony between patient – ventilator<br />

► Presence of Dynamic Hyperinflation and PEEPi.<br />

Apply external PEEP (~ 5 cmH 2 O)


Weaning


Pressure Support vs T-piece weaning in COPD<br />

COPD Screened<br />

77 patients<br />

Excluded<br />

2<br />

Eligible T-tube trial<br />

75<br />

Trial Success<br />

23 (31%)<br />

Trial Failure<br />

52 (69%)<br />

T-tube<br />

26<br />

PS<br />

26<br />

Successful Weaning<br />

20 (77%)<br />

Successful Weaning<br />

19 (73%)<br />

Failed Weaning<br />

6 (23%)<br />

Failed Weaning<br />

7 (27%)<br />

Vitacca et al. Am J Respir Crit Care 2001; 164: 225


PSV<br />

T-piece<br />

AJRCCM 2001;164:225-230.


<strong>Non</strong> <strong>Invasive</strong> <strong>Ventilation</strong> as weaning technique<br />

in COPD patients who fail SBT after 2 days of MV<br />

NIV<br />

Nava et al. Ann Intern Med 1998;128:721


% of patients<br />

60 days mortality (%) in patients with<br />

acute exacerbation of COPD<br />

using NIPPV as a weaning technique<br />

40<br />

35<br />

30<br />

28<br />

*<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

8<br />

NIPPV<br />

Control<br />

Nava et al. Ann Intern Med 1998;128:721


<strong>Non</strong> <strong>Invasive</strong> <strong>Ventilation</strong> during persistent<br />

(3 days) spontaneous breathing trial failure<br />

NIV<br />

NIV<br />

COPD 25/43 patients<br />

Ferrer et al. Am J Respir Crit Care Med 2003;168:70-76


<strong>Non</strong>-<strong>Invasive</strong> <strong>Ventilation</strong><br />

(n.114)<br />

Conventional Therapy<br />

(n.107)<br />

Absolute Risk Difference<br />

Relative Risk (95% CI)<br />

p-value<br />

Mortality<br />

25%<br />

14%<br />

11.4% (0.85-21.63)<br />

1.75 (0.99-3.09)<br />

0.05<br />

Reintubation<br />

49%<br />

49%<br />

0%<br />

0.99 (0.76-1.30)<br />

ns


Did this RCT “killed” NIV ?


Mortality %<br />

80<br />

70<br />

60<br />

6/9<br />

50<br />

40<br />

30<br />

7/14<br />

General<br />

COPD<br />

20<br />

10<br />

28/114<br />

*<br />

15/107<br />

0<br />

NIV<br />

Standard therapy<br />

Esteban, A. et al. N Engl J Med 2004;350:2452-2460


TIME to REINTUBATION<br />

%<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

patients<br />

deaths<br />

0-12 hr<br />

13-24 hr<br />

25-48 hr<br />

49-72 hr<br />

Epstein and Ciubotaru AJRCCM 1998;158:489-93


Another way to see the problem:<br />

If timing is a key factor, why should<br />

we wait until post-extubation<br />

respiratory failure is overt ?


NIV to prevent extubation failure<br />

in patients with successful SBT<br />

Αναπνεσζηική<br />

ανεπάρκεια<br />

33%<br />

16%<br />

Ferrer et al. Am J Respir Crit Care Med 2006;173:164-70


Survival of patients receiving NIV to prevent<br />

extubation failure in patients with successful SBT<br />

subgroup<br />

analysis<br />

Ferrer et al. Am J Respir Crit Care Med 2006;173:164-70


Ferrer et al, Lancet 2009;374:1082-88


NIV after extubation in patients who develop<br />

hypercapnia during a spontaneous breathing trial<br />

Ferrer et al, Lancet 2009;374:1082-88


Time elapsed from extubation to development of<br />

respiratory failure<br />

NIV immediately after extubation<br />

in patients who develop hypercapnia during a spontaneous breathing trial<br />

Ferrer et al, Lancet 2009;374:1082-88


► NIV is beneficial<br />

Summary<br />

• To avoid intubation<br />

• When spontaneous breathing trial fails in COPD<br />

• To prevent extubation failure in COPD patients<br />

► During CMV check mechanics and PEEPi<br />

• To avoid hemodynamic compromise<br />

• To avoid overdistention<br />

► Triggering: not really clinically important<br />

► Wasted efforts<br />

• Decrease support<br />

• Apply external PEEP<br />

► Weaning: No difference between different techniques<br />

• PS vs T-piece<br />

• The best technique is the one you know well

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!