26.05.2014 Views

2 University by the Bay 2014: Biophysics of Amyloids and Prions

Scientific Program and Abstracts

Scientific Program and Abstracts

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

Welcome to “<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

Angela Lombardi <strong>and</strong> Jan Stöhr<br />

Co-Chairs <strong>of</strong> <strong>the</strong> Organizing Committee<br />

Dear Colleagues, Welcome to Naples!<br />

On behalf <strong>of</strong> <strong>the</strong> Scientific <strong>and</strong> Organizing Committees it is our great pleasure to welcome<br />

you to Napoli <strong>and</strong> to <strong>the</strong> 1 st meeting covering <strong>the</strong> “<strong>Biophysics</strong> <strong>of</strong> amyloids <strong>and</strong> prions”.<br />

This focused meeting has been designed to cover biophysical approaches aiming to underst<strong>and</strong><br />

protein misfolding into amyloids <strong>and</strong> prions. We are excited to have a diverse program<br />

with presentations covering 1) <strong>the</strong> mechanism <strong>of</strong> protein folding/misfolding; 2) <strong>the</strong> underst<strong>and</strong>ing<br />

<strong>of</strong> <strong>the</strong> physical basis for <strong>the</strong> pathological aggregation <strong>of</strong> peptides <strong>and</strong> proteins;<br />

<strong>and</strong> 3) <strong>the</strong> formation, propagation, <strong>and</strong> biology <strong>of</strong> prions <strong>and</strong> prion-like proteins.<br />

We would like to thank <strong>the</strong> invited speakers for accepting our invitation <strong>and</strong> we are excited<br />

to hear about <strong>the</strong>ir latest findings.<br />

We are thrilled about <strong>the</strong> number <strong>and</strong> quality <strong>of</strong> submitted abstracts <strong>and</strong> would like to<br />

thank all participants for <strong>the</strong>ir contribution to this exciting meeting. We are confident that<br />

a focused meeting in an absolutely stunning location will promote stimulating scientific<br />

exchange <strong>and</strong> we hope that <strong>the</strong>se interaction lead to new ideas <strong>and</strong> collaborations.<br />

The meeting has been organized in an historical location, <strong>the</strong> beautiful Castel dell’Ovo,<br />

provided generously <strong>by</strong> <strong>the</strong> City <strong>of</strong> Naples. We are convinced that all participants will enjoy<br />

<strong>the</strong> cultural <strong>and</strong> historical heritage <strong>of</strong> Napoli. Historic buildings, beautiful churches, ancient<br />

fortresses as well as natural caves attract visitors worldwide to Naples. We hope that all<br />

participants find some time to enjoy this city <strong>and</strong> will take pleasant memories <strong>of</strong> Napoli<br />

back home.<br />

This meeting is an initiative <strong>by</strong> <strong>the</strong> <strong>University</strong> <strong>of</strong> California San Francisco <strong>and</strong> <strong>the</strong> Department<br />

<strong>of</strong> Chemical Science, <strong>University</strong> <strong>of</strong> Naples Federico II to facilitate international academic exchanges,<br />

scientific relationships, <strong>and</strong> to support collaborative research. This collaboration<br />

enjoys <strong>the</strong> high patronage <strong>of</strong> <strong>the</strong> mayor <strong>of</strong> Naples <strong>and</strong> <strong>the</strong> Italian Consulate in San Francisco.<br />

Finally, we would like to acknowledge <strong>the</strong> extremely generous funding <strong>by</strong> all our sponsors,<br />

which made possible <strong>the</strong> realization <strong>of</strong> this meeting.<br />

1<br />

We wish you a fantastic stay in Naples <strong>and</strong> hope that you are having a great conference.


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

SCIENTIFIC COMMITTEE<br />

Stanley B. Prusiner<br />

<strong>University</strong> <strong>of</strong> California, San Francisco<br />

William F. DeGrado<br />

<strong>University</strong> <strong>of</strong> California, San Francisco<br />

SCIENTIFIC PROGRAM<br />

Sunday, May 25 th<br />

9:00 - 9:45 Participants registration<br />

9:45 - 10:00 Introduction & welcome<br />

Room Compagna<br />

Jan Stöhr<br />

<strong>University</strong> <strong>of</strong> California, San Francisco<br />

Angela Lombardi<br />

<strong>University</strong> <strong>of</strong> Naples Federico II<br />

ORGANIZING COMMITTEE<br />

OPENING LECTURE<br />

Chair: William F. DeGrado<br />

10:00 - 10:50 PL-1: Stanley Prusiner<br />

<strong>University</strong> <strong>of</strong> California, USA<br />

“<strong>Prions</strong> Causing Neurodegeneration: A Unifying Etiology <strong>and</strong><br />

<strong>the</strong> Quest for Therapeutics”<br />

2 3<br />

Jan Stöhr (co-chair)<br />

<strong>University</strong> <strong>of</strong> California, San Francisco<br />

Angela Lombardi (co-chair)<br />

<strong>University</strong> <strong>of</strong> Naples Federico II<br />

10:50 - 11:30 C<strong>of</strong>fee break<br />

SESSION 1: STRUCTURAL STUDIES<br />

Chair: Detlev Riesner<br />

Flavia Nastri<br />

<strong>University</strong> <strong>of</strong> Naples Federico II<br />

William F. DeGrado<br />

<strong>University</strong> <strong>of</strong> California, San Francisco<br />

Stanley B. Prusiner<br />

<strong>University</strong> <strong>of</strong> California, San Francisco<br />

11:30 - 12:10 PL-2: Fabrizio Chiti<br />

<strong>University</strong> <strong>of</strong> Florence, Italy<br />

“The structural determinants <strong>of</strong> protein oligomer toxicity”<br />

12:10 - 12:30 OC-1: Stefano Ricagno<br />

<strong>University</strong> <strong>of</strong> Milano, Italy<br />

“D76N Beta-2 microglobulin, an amyloidogenic <strong>and</strong> pathologic<br />

mutant (clues on <strong>the</strong> native <strong>and</strong> on <strong>the</strong> fibrillar states)”<br />

12:30 - 12:50 OC-2: Holger Wille<br />

<strong>University</strong> <strong>of</strong> Alberta, Edmonton, Canada<br />

“A hybrid approach towards <strong>the</strong> structure <strong>of</strong> PrP Sc ”<br />

12:50 - 13:10 Exhibitor Talk (<strong>by</strong> Shimadzu)<br />

Roberto Castangia<br />

“Analysis <strong>and</strong> characterisation <strong>of</strong> Human Glycoproteins using<br />

MALDI TOF Mass Spectrometry”<br />

13:10 - 14:30 Lunch (Sponsored <strong>by</strong> Shimadzu)


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

SESSION 2: STRUCTURES, DYNAMICS<br />

AND INTERACTIONS BY NMR<br />

Chair: Koichi Kato<br />

14:30 - 15:10 PL-3: Astrid Gräslund<br />

Stockholm <strong>University</strong>, Sweden<br />

“Biophysical studies <strong>of</strong> <strong>the</strong> amyloid β peptide involved in<br />

Alzheimer´s disease: molecular interactions, secondary<br />

structure conversions <strong>and</strong> aggregation”<br />

15:10 - 15:30 OC-3: Giuliana Fusco<br />

<strong>University</strong> <strong>of</strong> Cambridge, United Kingdom<br />

“Unveiling <strong>the</strong> Nature <strong>of</strong> α-Synuclein in its Membrane-Bound<br />

State <strong>by</strong> Solid-State <strong>and</strong> Solution NMR”<br />

15.30 - 15:50 OC-4: Alfonso De Simone<br />

Imperial College London, United Kingdom<br />

“Order <strong>and</strong> disorder in amyloid formation”<br />

4 5<br />

15:50 - 16:40 Poster Session <strong>and</strong> C<strong>of</strong>fee break (Room Antro di Virgilio)<br />

SESSION 3: SPECTROSCOPIES IN FIBRILLATION PATHWAY<br />

Chair: Gaetano Irace<br />

16:40 - 17:20 PL-4: Daniel P. Raleigh<br />

Stony Brook <strong>University</strong>, USA<br />

“Islet Amyloid Formation From Basic <strong>Biophysics</strong> to Mechanisms<br />

<strong>of</strong> β- cell Death”<br />

17:20 - 17:40 OC-5: Andreas Barth<br />

Stockholm <strong>University</strong>, Sweden<br />

“Computational Infrared Spectroscopy <strong>of</strong> Proteins –<br />

Implications for <strong>the</strong> Spectrum <strong>of</strong> <strong>Amyloids</strong>”<br />

17.40 - 18:00 OC-6: Mauro Manno<br />

National Research Council <strong>of</strong> Italy (CNR), Palermo, Italy<br />

“Electrostatics promotes molecular crowding <strong>and</strong> selects <strong>the</strong><br />

fibrillation pathway in fibril-forming protein solutions”<br />

Monday, May 26 th<br />

SESSION 4: AGGREGATION PATHWAY<br />

Chairs: Giuseppe Graziano <strong>and</strong> Jesus R. Requena<br />

09:00 - 9:40 PL-5: Tuomas Knowles<br />

<strong>University</strong> <strong>of</strong> Cambridge, United Kingdom<br />

“Biophysical insights into protein aggregation”<br />

Room Compagna<br />

09:40 - 10:00 OC-7: Clara Iannuzzi<br />

Seconda Università di Napoli, Naples, Italy<br />

“Insights into <strong>the</strong> molecular mechanism <strong>of</strong> glycation-stimulated<br />

protein aggregation”<br />

10:00 - 10:20 OC-8: Sanjeevi Sivasankar<br />

Iowa State <strong>University</strong>, Ames, USA<br />

“Resolving prion protein aggregation at <strong>the</strong> single<br />

molecule level”<br />

10:20 - 10:40 OC-9: Aless<strong>and</strong>ro Marrone<br />

<strong>University</strong> “G. d’Annunzio”, Chieti, Italy<br />

“Investigation <strong>of</strong> <strong>the</strong> molecular electrostatic potential<br />

similarity in PrP model systems”<br />

10:40 - 11:10 C<strong>of</strong>fee break<br />

11:10 - 11:50 PL-6: Rol<strong>and</strong> Riek<br />

ETH Zürich, Switzerl<strong>and</strong><br />

“Structure-Activity Relationship <strong>of</strong> protein aggregates in<br />

health <strong>and</strong> disease”<br />

11:50 - 12:10 OC-10: Maria Andreasen<br />

Interdisciplinary Nanoscience Center, Aarhus <strong>University</strong>,<br />

Aarhus, Denmark<br />

“Cytotoxic α-synuclein oligomers <strong>and</strong> <strong>the</strong>ir role in aggregation”<br />

12:10 - 12:40 Special Note (<strong>by</strong> CreAgri)<br />

Roberto Crea<br />

“Biotechnology, Mediterranean Diet <strong>and</strong> <strong>the</strong> Brain”<br />

20:30 - 23:00 Gala Dinner at Tennis Club Napoli<br />

12:40 - 14:00 Lunch (Sponsored <strong>by</strong> CreAgri)


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

SESSION 5: MECHANISM OF DISEASE,<br />

PREVENTION AND THERAPEUTICS<br />

Chairs: Renata Piccoli <strong>and</strong> Vincenzo Pavone<br />

14:00 - 14:40 PL-7: Stephen C Meredith<br />

The College <strong>of</strong> <strong>the</strong> <strong>University</strong> <strong>of</strong> Chicago, USA<br />

“Brain Seeded b-Amyoid Fibrils”<br />

14:40 - 15.00 OC-11: David W. Col<strong>by</strong><br />

<strong>University</strong> <strong>of</strong> Delaware, Newark, United States<br />

“Detection <strong>of</strong> pathological tau conformations in CSF <strong>of</strong><br />

patients with neurodegenerative diseases”<br />

15:00 - 15:40 PL-8: James Shorter<br />

<strong>University</strong> <strong>of</strong> Pennsylvania, Philadelphia, USA<br />

“Potentiated protein disaggregases to combat<br />

neurodegeneration”<br />

6 7<br />

15:40 - 16:00 OC-12: Annalisa Pastore<br />

King’s College <strong>of</strong> London, United Kingdom<br />

“Protein-protein interactions as a strategy towards proteinspecific<br />

drug design”<br />

16:00 - 16:20 OC-13: Andriy Kovalenko<br />

National Institute for Nanotechnology, <strong>University</strong> <strong>of</strong> Alberta,<br />

Edmonton, Canada<br />

“Molecular recognition <strong>and</strong> optimization <strong>of</strong> translocation <strong>of</strong><br />

antiprion <strong>the</strong>rapeutic agents from molecular <strong>the</strong>ory <strong>of</strong><br />

solvation”<br />

16:20 - 16:40 OC-14: Jan Bieschke<br />

Washington <strong>University</strong> in St Louis, USA<br />

“From molecular mechanisms to intervention strategies:<br />

Stabilizing fibrils to inhibit prion replication”<br />

16:40 - 17:00 Closing remarks<br />

PLENARY LECTURES<br />

PL-1 <strong>Prions</strong> Causing Neurodegeneration: A Unifying Etiology <strong>and</strong> <strong>the</strong><br />

Quest for Therapeutics<br />

S.B. Prusiner<br />

PL-2 The structural determinants <strong>of</strong> protein oligomer toxicity<br />

F. Chiti<br />

PL-3 Biophysical studies <strong>of</strong> <strong>the</strong> amyloid b peptide involved in<br />

Alzheimer´s disease: molecular interactions, secondary structure<br />

conversions <strong>and</strong> aggregation<br />

A. Gräslund<br />

PL-4 Islet Amyloid Formation From Basic <strong>Biophysics</strong> to Mechanisms<br />

<strong>of</strong> beta-cell Death<br />

P. Cao, A. Abedini, C. T. Middleton, L.-H. Tu, H. Wang, A.M. Schmidt,<br />

M.T. Zanni, D.P. Raleigh<br />

PL-5 Biophysical insights into protein aggregation<br />

T. Knowles<br />

PL-6 Structure-Activity Relationship <strong>of</strong> protein aggregates in health<br />

<strong>and</strong> disease<br />

R. Riek<br />

PL-7 Brain Seeded b-Amyoid Fibrils<br />

S. Meredith<br />

PL-8 Potentiated protein disaggregases to combat<br />

neurodegeneration<br />

J. Shorter


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

ORAL PRESENTATIONS<br />

OC-1 D76N Beta-2 microglobulin, an amyloidogenic <strong>and</strong> pathologic<br />

mutant (clues on <strong>the</strong> native <strong>and</strong> on <strong>the</strong> fibrillar states)<br />

L. Halabelian, C. Santambrogio, E. Barbet-Massin, S. Giorgetti, A. Barbiroli,<br />

R. Gr<strong>and</strong>ori, V. Bellotti, G. Pintacuda, M. Bolognesi, S. Ricagno<br />

OC-2 A hybrid approach towards <strong>the</strong> structure <strong>of</strong> PrPSc<br />

H. Wille, E. Vázquez-Fernández, M. Vos, L. Cebey Zas, P.J. Peters,<br />

J.-J. Fernández, H. Young, J. R. Requena<br />

OC-10 Cytotoxic α-synuclein oligomers <strong>and</strong> <strong>the</strong>ir role in aggregation<br />

M. Andreasen, W. Paslawski, N. Lorenzen, S.B. Nielsen, K. Thomsen, J.D.<br />

Kaspersen, J.S. Pedersen, D.E. Otzen<br />

OC-11 Detection <strong>of</strong> pathological tau conformations in CSF <strong>of</strong><br />

patients with neurodegenerative diseases<br />

O. Morozova, Z. March, D. Col<strong>by</strong><br />

OC-12 Protein-protein interactions as a strategy towards proteinspecific<br />

drug design<br />

C. de Chiara, R.P. Menon, G. Kelly, A. Pastore<br />

OC-3 Unveiling <strong>the</strong> Nature <strong>of</strong> α-Synuclein in its Membrane-Bound<br />

State <strong>by</strong> Solid-State <strong>and</strong> Solution NMR<br />

G. Fusco, A. De Simone, G. Tata, V. Vostrikov, M. Vendruscolo, C.M. Dobson,<br />

G. Veglia<br />

8 9<br />

OC-4 Order <strong>and</strong> disorder in amyloid formation<br />

A. De Simone<br />

OC-13 Molecular recognition <strong>and</strong> optimization <strong>of</strong> translocation <strong>of</strong><br />

antiprion <strong>the</strong>rapeutic agents from molecular <strong>the</strong>ory <strong>of</strong> solvation<br />

A. Kovalenko, N. Cashman, N. Blinov<br />

OC-14 From molecular mechanisms to intervention strategies:<br />

Stabilizing fibrils to inhibit prion replication<br />

J. Bieschke<br />

OC-5 Computational Infrared Spectroscopy <strong>of</strong> Proteins – Implications<br />

for <strong>the</strong> Spectrum <strong>of</strong> <strong>Amyloids</strong><br />

E.-L. Karjalainen, A. Barth<br />

OC-6 Electrostatics promotes molecular crowding <strong>and</strong> selects <strong>the</strong><br />

fibrillation pathway in fibril-forming protein solutions<br />

S. Raccosta, V. Martorana, M. Manno<br />

OC-7 Insights into <strong>the</strong> molecular mechanism <strong>of</strong> glycation-stimulated<br />

protein aggregation<br />

C. Iannuzzi, R. Maritato, G. Irace, I. Sirangelo<br />

OC-8 Resolving prion protein aggregation at <strong>the</strong> single molecule level<br />

C.-F. Yen, A. Kanthasamy, S. Sivasankar<br />

OC-9 Investigation <strong>of</strong> <strong>the</strong> molecular electrostatic potential similarity<br />

in PrP model systems<br />

R. Paciotti, L. Storchi, A. Marrone<br />

EXHIBITOR TALK<br />

ET Analysis <strong>and</strong> characterisation <strong>of</strong> Human Glycoproteins using<br />

MALDI TOF Mass Spectrometry<br />

R. Castangia, M.S.F. Choo, O. Belgacem, A. Dell<br />

SPECIAL NOTE<br />

SN Biotechnology, Mediterranean Diet <strong>and</strong> <strong>the</strong> Brain<br />

R. Crea


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

POSTER PRESENTATIONS<br />

P-1 Anti-amyloidogenic Property <strong>of</strong> Human Gastrokine 1<br />

F. Altieri, C.S. Di Stadio, G. Miselli, E. Rippa, P. Arcari<br />

P-2 Novel approaches in <strong>the</strong> study <strong>of</strong> <strong>the</strong> Aβ peptide oligomers:<br />

shining light <strong>by</strong> time-resolved Fourier-transform infrared<br />

spectroscopy<br />

M. Baldassarre, A. Barth<br />

P-3 Structural restraints for early Ab-oligomers from propensity for<br />

aggregation predicted <strong>by</strong> molecular <strong>the</strong>ory <strong>of</strong> solvation<br />

N. Blinov, N. Cashman, A. Kovalenko<br />

P-4 Investigating <strong>the</strong> aggregation properties <strong>of</strong> β-synuclein <strong>and</strong> its<br />

effect on <strong>the</strong> aggregation <strong>of</strong> α-synuclein<br />

J. Brown, C. Galvagnion, A. Buell, C. Dobson<br />

10 11<br />

P-5 Molecular chaperones suppress <strong>the</strong> toxicity <strong>of</strong> misfolded protein<br />

oligomers<br />

R. Cascella, E. Evangelisti, B. Mannini, B. Tiribilli, A. Relini, J.N. Buxbaum,<br />

C.M. Dobson, M.R. Wilson, F. Chiti, C. Cecchi<br />

P-6 Computational design <strong>of</strong> Peptides that target <strong>the</strong> Amyloid<br />

precursor protein Transmembrane domain<br />

T. Lemmin, M. Chino, A. Lombardi, W.F. DeGrado<br />

P-7 Infrared Microspectroscopy as a Method <strong>of</strong> Choice for Structural<br />

Analysis <strong>of</strong> Minute Amounts <strong>of</strong> <strong>Prions</strong><br />

M.L. Daus, M. Beekes, P. Lasch<br />

P-10 Structural properties <strong>of</strong> amyloid-like fibers unveiled <strong>by</strong><br />

molecular dynamics studies<br />

L. Esposito, A. De Simone, L. Vitagliano<br />

P-11 Protein misfolded oligomer binding to membrane ganglioside<br />

GM1: a real-time single particle tracking study<br />

E. Evangelisti, R. Cascella, M. Calamai, F. Chiti, C. Cecchi, M. Stefani<br />

P-12 Interaction <strong>of</strong> N-methylated compounds with Aβ (25-35)<br />

Amyloid Peptide<br />

M. Grimaldi, A. Iuliano, S. Di Marino, M. Scrima, A. Polverino, G. Sorrentino,<br />

A.M. D’Ursi<br />

P-13 Oligomerisation <strong>of</strong> alpha-synuclein at nearly-physiological<br />

concentrations<br />

M. Iljina, M. Horrocks, D. Klenerman<br />

P-14 Flavone derivatives as inhibitors <strong>of</strong> insulin amyloid-like fibril<br />

formation<br />

R. Mališauskas, A. Botyriute, D. Dargužis, V. Smirnovas<br />

P-15 Nucleophosmin a-helical regions spontaneously undergo<br />

conformational transitions toward β-sheet-rich amyloid-like<br />

aggregates<br />

C. Di Natale, P.L. Scognamiglio, M. Leone, V. Punzo, G. Morelli, L. Vitagliano,<br />

D. Marasco<br />

P-16 Transglutaminase: an enzymatic approach to influence <strong>the</strong><br />

Amyloid fibril formation<br />

A. Sorrentino, C.V.L. Giosafatto, I. Sirangelo, P. Di Pierro, R. Porta,<br />

L. Mariniello<br />

P-8 Environmental factors affecting <strong>the</strong> aggregation state <strong>of</strong> Ab(25-<br />

35): role <strong>of</strong> unsaturated omega-3 fatty acid<br />

M. Sublimi Saponetti, M. Grimaldi, M. Scrima, S.L. Nori, F. Bobba, A. Cucolo,<br />

A.M. D’Ursi<br />

P-9 Interaction between amyloid peptide Aβ(1-42) with model<br />

phospholipid bilayers<br />

A. Emendato, G. D’Errico, A. Falanga, S. Galdiero, D. Picone, R. Spadaccini<br />

P-17 The length distribution <strong>of</strong> protein bi<strong>of</strong>ilaments<br />

T.C.T. Michaels, G.A. Garcia, T.P.J. Knowles<br />

P-18 HGA-induced aggregation <strong>and</strong> fibrillogenesis <strong>of</strong> amyloidogenic<br />

proteins: implications in alkaptonuria<br />

L. Millucci, D. Braconi, G. Bernardini, S. Gambassi, M. Laschi, M. Geminiani,<br />

L. Ghezzi, A. Santucci


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

P-19 Comparative analysis <strong>of</strong> two amyloidogenic variants <strong>of</strong> ApoA-I<br />

R. Del Giudice, D.M. Monti, A. Arciello, F. Itri, R. Piccoli<br />

P-20 Secondary structures <strong>and</strong> conformational stability <strong>of</strong><br />

β-2microglobulin mutants in solution, in single crystals <strong>and</strong> in form<br />

<strong>of</strong> fibrils: an FTIR study<br />

A. Natalello, S. Ricagno, D. Ami, L. Halabelian, M. Bolognesi, S.M. Doglia<br />

P-21 Examining disease-associated Aβ mutants as conformational<br />

strains<br />

M.C. Nick, J. Stöhr, W.F. DeGrado<br />

P-22 Interaction between Prion Protein <strong>and</strong> G-Quadruplex-Forming<br />

Nucleic Acids: a Biophysical Study<br />

B. Pagano, P. Cavaliere, V. Granata, S. Prigent, H. Rezaei, E. Novellino,<br />

C. Giancola, A. Zagari<br />

12 13<br />

P-23 Cu(II) induced oligomerization <strong>of</strong> amyloid-β on <strong>the</strong> millisecond<br />

time scale<br />

J. T. Pedersen, C.B. Borg, K. Teilum, L. Hemmingsen<br />

P-24 Fibril formation <strong>of</strong> a 3D domain swapping ribonuclease: a model<br />

based on <strong>the</strong> crystal structure <strong>of</strong> <strong>the</strong> protein<br />

A. Pica, A. Merlino, A.K. Buell, T. P.J. Knowles, E. Pizzo, G. D’Alessio, F. Sica,<br />

L. Mazzarella<br />

P-25 Evidence for a role <strong>of</strong> hydroxytyrosol in decreasing<br />

oligomerization in a model system <strong>of</strong> AD<br />

R. Crea, C. Bitler, P. Pontoniere<br />

P-26 Secondary nucleation in stirring induced alpha-lactalbumin<br />

amyloid fibril formation<br />

E. Rao, V. Vetri, V. Foderà, V. Militello, M. Leone<br />

P-27 Tetracycline <strong>and</strong> Epigallocatechin-3-Gallate differently affect <strong>the</strong><br />

Ataxin-3 Fibrillogenesis <strong>and</strong> Toxicity<br />

M. Bonanomi, C. Visentin, A. Natalello, A. Penco, G. Colombo, A. Relini,<br />

S.M. Doglia, M.E. Regonesi<br />

P-28 Interactions <strong>of</strong> <strong>the</strong> Glial Fibrillary Acidic Protein with<br />

Ceftriaxone revealed through SRCD<br />

P. Ruzza, G. Siligardi, R. Hussain, B. Biondi, A. Calderan, G.P. Sechi<br />

P-29 Early determinants <strong>of</strong> human prion protein conversion<br />

investigated <strong>by</strong> solution-state NMR, XAFS <strong>and</strong> nanobody-assisted<br />

crystallography<br />

G. Giachin, G. Salzano, G. Ilc, I. Biljan, R.N.N. Abskharon, A. Wohlkonig,<br />

S.H. Soror, E. Pardon, J. Steyaert, F. Benetti, P. D’Angelo, J. Plavec, G. Legname<br />

P-30 Elongation <strong>of</strong> mouse Prion Protein Amyloid-like Fibrils: effect <strong>of</strong><br />

temperature <strong>and</strong> denaturant concentration<br />

K. Milto, K. Michailova, V. Smirnovas<br />

P-31 α-synuclein aggregation: effect <strong>of</strong> protein charge on fibril<br />

elongation <strong>and</strong> membrane interaction<br />

A.I.M. van der Wateren, A.K. Büll, C. Galvagnion, C.M. Dobson<br />

P-32 Chaperon-like activity <strong>of</strong> intrinsically disordered caseins in Aβ<br />

fibrillogenesis<br />

S. Vilasi, R. Carrotta, G.C. Rappa, M.G. Ortore, C. Canale, P.L. San Biagio,<br />

D. Bulone<br />

P-33 Insights into structural features <strong>of</strong> intermediate states along<br />

<strong>the</strong> fibrillogenesis pathway <strong>of</strong> amyloid-like systems<br />

L. Vitagliano, A. De Simone, L. Esposito<br />

P-34 Assembly mechanism <strong>of</strong> hereditary amyloid-β variants<br />

promoted on <strong>the</strong>ir specific gangliosides<br />

M. Yagi-Utsumi, K. Kato, C.M. Dobson


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

GENERAL INFORMATION<br />

DATES AND VENUE<br />

Naples (Italy), May 25 <strong>and</strong> 26, <strong>2014</strong><br />

Castel dell’Ovo – Room Compagna 1 st floor<br />

Via Eldorado 3, Naples (Italy)<br />

ORGANIZING SECRETARIAT<br />

Rione Sirignano, 5 - 80121 Naples (Italy)<br />

Ph.: +39 081 7611086 – 668774<br />

Fax +39 081 664372<br />

Email: acanfora@mcmcongressi.it<br />

A desk <strong>of</strong> <strong>the</strong> Organizing secretariat will be available on site at <strong>the</strong> following<br />

date <strong>and</strong> time:<br />

• Sunday, May 25: from 8.00 to 18.00<br />

• Monday, May 26: from 8.30 to 15.00<br />

14 15<br />

REGISTRATION FEES<br />

The on-site registration fee will be as follows:<br />

• Participant: Euro 170,00<br />

• Student: Euro 120,00<br />

• Accompanying person: Euro 100,00<br />

(VAT 22% included)<br />

The registration fee for participants <strong>and</strong> students includes:<br />

• Congress badge <strong>and</strong> kit<br />

• Admission to scientific sessions <strong>and</strong> Exhibition<br />

• Conference kit<br />

• C<strong>of</strong>fee breaks <strong>and</strong> lunches as per <strong>the</strong> scientific program<br />

• Gala dinner on May 25<br />

The accompanying persons fee includes:<br />

• Gala Dinner on May 25<br />

• Half day excursion to <strong>the</strong> Ancient Naples on May 25 from h. 10 to 13.<br />

Meeting point at h. 10 at <strong>the</strong> secretariat desk at Castel dell’Ovo.<br />

PAYMENTS<br />

Payments can be made onsite <strong>by</strong> credit card or cheque<br />

COFFEE BREAKS AND LUNCHES<br />

C<strong>of</strong>fee breaks <strong>and</strong> lunches will be served at Castel dell’Ovo to all registered<br />

participants<br />

GALA DINNER<br />

The Gala dinner is organized on May 25 at h. 20.30 for all registered participants.<br />

It will be held at <strong>the</strong> exclusive Tennis Club Napoli located in Viale Dohrn, Villa<br />

Comunale. The Club is located at walking distance from Castel dell’Ovo (about<br />

15 minuts walk)<br />

Jacket <strong>and</strong> tie are compulsory<br />

ATTENDANCE CERTIFICATE<br />

An attendance certificate will be provided to all registered participants at <strong>the</strong><br />

end <strong>of</strong> <strong>the</strong> meeting at <strong>the</strong> secretariat desk.<br />

SCIENTIFIC INFORMATION<br />

Oral presentations<br />

Presenters are kindly requested to deliver <strong>the</strong>ir presentation on a USB pen to<br />

<strong>the</strong> technician available in <strong>the</strong> Room Compagna (Castel dell’Ovo 1 st floor) at<br />

least one hour prior to <strong>the</strong>ir presentation. Presentation should be in Power<br />

Point.<br />

Time at presenters’ disposal is 15 minutes + 5 minutes discussion.<br />

Poster presentations<br />

Posters can be fixed on <strong>the</strong> dedicated boards located in <strong>the</strong> Room Antro di<br />

Virgilio (Castel dell’Ovo 1 st floor) on May 25 in <strong>the</strong> morning <strong>and</strong> removed<br />

on May 26 at <strong>the</strong> end <strong>of</strong> <strong>the</strong> Meeting. Boards will be numbered as per <strong>the</strong><br />

scientific program, so Presenters are kindly requested to fix <strong>the</strong>ir poster on <strong>the</strong><br />

corresponding board.<br />

Pins are provided <strong>by</strong> <strong>the</strong> organizing secretariat.<br />

TECHNICAL EXHIBITION<br />

An exhibition <strong>of</strong> technical devices will be available during <strong>the</strong> Meeting days in<br />

<strong>the</strong> Room Antro di Virgilio.


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

ABSTRACTS<br />

16 17


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

<strong>Prions</strong> Causing Neurodegeneration: A Unifying Etiology <strong>and</strong> <strong>the</strong><br />

Quest for Therapeutics<br />

Stanley B. Prusiner<br />

<strong>University</strong> <strong>of</strong> California, Institute for Neurodegenerative Diseases,<br />

San Francisco, CA 94158, USA, stanley@ind.ucsf.edu<br />

PL-1<br />

Mounting evidence argues that prions feature in <strong>the</strong> pathogenesis <strong>of</strong> many, if not<br />

all, neurodegenerative diseases. Such disorders include Alzheimer’s, Parkinson’s,<br />

Lou Gehrig’s <strong>and</strong> Creutzfeldt-Jakob diseases as well as <strong>the</strong> fronto-temporal<br />

dementias. In each <strong>of</strong> <strong>the</strong>se illnesses, aberrant forms <strong>of</strong> a particular protein<br />

accumulate as pathological deposits referred to as amyloid plaques, neur<strong>of</strong>ibrillary<br />

tangles, Lewy bodies, as well as glial cytoplasmic <strong>and</strong>/or nuclear inclusions. The<br />

heritable forms <strong>of</strong> <strong>the</strong> neurodegenerative diseases are <strong>of</strong>ten caused <strong>by</strong> mutations<br />

ABSTRACTS<br />

in <strong>the</strong> genes encoding <strong>the</strong> mutant, prion proteins that accumulate in <strong>the</strong> CNS <strong>of</strong><br />

18 19<br />

PLENARY LECTURES<br />

patients with <strong>the</strong>se fatal disorders. The late onset <strong>of</strong> <strong>the</strong> inherited<br />

neurodegenerative diseases seems likely to be explained <strong>by</strong> <strong>the</strong> protein quality<br />

control systems being less efficient in older neurons <strong>and</strong> thus, more permissive for<br />

prion accumulation. To date, <strong>the</strong>re is not a single drug that halts or even slows one<br />

neurodegenerative disease.<br />

REFERENCES<br />

Prusiner, S. B. (2013). Biology <strong>and</strong> genetics <strong>of</strong> prions causing neurodegeneration. Annu. Rev. Genet.<br />

47, 601–623.<br />

Jucker, M., <strong>and</strong> Walker, L. C. (2013). Self-propagation <strong>of</strong> pathogenic protein aggregates in<br />

neurodegenerative diseases. Nature 501, 45–51.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

PL-2<br />

The structural determinants <strong>of</strong> protein oligomer toxicity<br />

Fabrizio Chiti<br />

Biophysical studies <strong>of</strong> <strong>the</strong> amyloid peptide involved in<br />

Alzheimer´s disease: molecular interactions, secondary<br />

structure conversions <strong>and</strong> aggregation.<br />

PL-3<br />

Department <strong>of</strong> Experimental <strong>and</strong> Clinical Biomedical Sciences, Section <strong>of</strong> Biochemistry,<br />

<strong>University</strong> <strong>of</strong> Florence, Italy, fabrizio.chiti@unifi.it<br />

Astrid Gräslund<br />

The conversion <strong>of</strong> soluble proteins into highly structured fibrils is associated with a<br />

number <strong>of</strong> human diseases, including Alzheimer’s disease, spongiform<br />

encephalopathies, amyloidosis <strong>and</strong> many o<strong>the</strong>rs. Although it is widely recognized<br />

that misfolded protein oligomers forming as on- or <strong>of</strong>f-pathway species early in <strong>the</strong><br />

process or released from <strong>the</strong> fibrils are toxic to cells, <strong>the</strong> structural <strong>and</strong> biological<br />

factors responsible for such toxicity are poorly understood.<br />

Using different solutions conditions, molecular chaperones <strong>and</strong> sitedirected<br />

mutagenesis we have converted a sample protein, namely HypF-N, from<br />

its denatured state to protein oligomers featuring different levels <strong>of</strong> toxicity, ranging<br />

from highly toxic to nontoxic. HypF-N oligomer toxicity was found to arise from <strong>the</strong><br />

ability <strong>of</strong> <strong>the</strong> oligomers, added to <strong>the</strong> extracellular medium <strong>of</strong> cultured<br />

neuroblastoma cells, to interact with <strong>the</strong> cell membrane <strong>and</strong> cause a dramatic<br />

calcium influx with consequent apoptosis. When added to cultured rat primary<br />

neurons, perfused into rat hippocampus slices or injected into rat brains <strong>the</strong><br />

oligomers were found to colocalise with presynaptic densities 95 (PSD95), inhibit<br />

long term potentiation (LTP) <strong>and</strong> cause a cognitive impairment in <strong>the</strong> water maze,<br />

thus reproducing all <strong>the</strong> effects <strong>of</strong> A oligomers associated with Alzheimer’s<br />

disease.<br />

By comparing HypF-N oligomers formed under different solution<br />

conditions, we show that exposure <strong>and</strong> flexibility <strong>of</strong> hydrophobic residues on <strong>the</strong><br />

oligomer surface is a key determinant <strong>of</strong> <strong>the</strong>ir toxicity, with <strong>the</strong> most toxic<br />

aggregates displaying <strong>the</strong> highest hydrophobic exposure. Using molecular<br />

chaperones as a tool to modulate <strong>the</strong> size <strong>of</strong> <strong>the</strong> oligomers we show that oligomer<br />

toxicity correlates inversely with oligomer size, with <strong>the</strong> most toxic oligomers having<br />

a small size. Finally, using a number <strong>of</strong> mutants <strong>of</strong> HypF-N that are able to form<br />

oligomers with different size, hydrophobic exposure <strong>and</strong> toxicity, we show that<br />

oligomer toxicity correlates with a combination <strong>of</strong> both small size <strong>and</strong> high<br />

hydrophobicity.<br />

Overall, <strong>the</strong> data indicate that <strong>the</strong> ability <strong>of</strong> protein misfolded oligomers to<br />

interact with <strong>the</strong> membrane <strong>and</strong> cause cell toxicity depends on two different<br />

determinants: (i) flexibility <strong>and</strong> solvent exposure <strong>of</strong> hydrophobic regions on <strong>the</strong><br />

oligomer surface <strong>and</strong> (ii) small size <strong>of</strong> <strong>the</strong> oligomers.<br />

Department <strong>of</strong> Biochemistry <strong>and</strong> <strong>Biophysics</strong>, Stockholm <strong>University</strong>, SE-106 91 Stockholm, Sweden,<br />

astrid.graslund@dbb.su.se<br />

The amyloid (A) peptide consists <strong>of</strong> 39-43 residues <strong>and</strong> is <strong>the</strong> major<br />

component <strong>of</strong> neuritic plaques in <strong>the</strong> brains <strong>of</strong> Alzheimer's disease patients. We<br />

study <strong>the</strong> structure conversions <strong>and</strong> aggregation properties <strong>of</strong> <strong>the</strong> A(1-40) peptide<br />

using mainly high resolution NMR spectroscopy. At low concentrations, low<br />

temperatures <strong>and</strong> low ionic conditions in an aqueous solution, A(1-40) is<br />

monomeric. Metal ions like Cu 2+ <strong>and</strong> Zn 2+ bind to amino acid lig<strong>and</strong>s in <strong>the</strong> N-<br />

terminus <strong>of</strong> <strong>the</strong> peptide <strong>and</strong> induce increased order in <strong>the</strong> N-terminus 1 . The<br />

interactions <strong>of</strong> A(1-40) with small molecules that modulate <strong>the</strong> aggregation can be<br />

studied in semi-stationary states <strong>by</strong> NMR. The kinetic effects on <strong>the</strong> aggregation<br />

process can be followed <strong>by</strong> optical spectroscopies, such as circular dichroism or<br />

fluorescence using suitable labels.<br />

By gradually adding a detergent (membrane mimetic) such as lithium<br />

dodecyl sulphate (LiDS) or SDS to a dilute aqueous solution <strong>of</strong> A(1-40),<br />

secondary structure conversions <strong>of</strong> A(1-40) can be observed 2 . An initial transition<br />

involves conversion <strong>of</strong> <strong>the</strong> weakly structured peptide to -sheet structure,<br />

concomitant with formation <strong>of</strong> co-aggregates. These co-aggregates, formed<br />

relatively slowly on a min/hr timescale, are in much faster dynamic exchange with<br />

free peptide 3 . The dynamic process, on a ms time scale, can be studied <strong>by</strong> NMR<br />

relaxation dispersion. Parallel studies with Small Angle X-ray Scattering (SAXS)<br />

give information about <strong>the</strong> size <strong>and</strong> slow growth <strong>of</strong> <strong>the</strong> co-aggregates. At LiDS<br />

concentrations close to <strong>the</strong> CMC or above, a new kind <strong>of</strong> structure transition makes<br />

<strong>the</strong> peptide rearrange to form a partly -helical structure, concomitant with<br />

disaggregation <strong>and</strong> formation <strong>of</strong> normal LiDS micelles which apparently partly<br />

dissolve <strong>the</strong> aggregates. This -helical structure is similar to that previously<br />

observed <strong>by</strong> NMR at high detergent concentrations 4 . A β-hairpin structure can be<br />

induced in A(1-40), in a specific complex with a small designed protein<br />

(Affibody) 5 . -structure in dynamic co-aggregates is also induced <strong>by</strong> interactions<br />

with certain small molecules such as Congo red 6 . The β-hairpin structure with <strong>the</strong><br />

weakly structured N-terminus appears to be a basic unit for formation <strong>of</strong> higher<br />

ordered amyloid structures.<br />

Taken toge<strong>the</strong>r, <strong>the</strong> results give evidence <strong>of</strong> a “chameleon” A peptide, whose<br />

structures <strong>and</strong> aggregation propensities in solution are strongly influenced <strong>by</strong><br />

20 21


<strong>Biophysics</strong> “<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>of</strong> <strong>and</strong> <strong>Amyloids</strong> <strong>Prions</strong> <strong>and</strong> <strong>Prions</strong>”<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong>May 25-26, <strong>2014</strong> - Naples, Italy<br />

PL-3<br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

molecular interactions with e.g. metal ions, small molecules <strong>and</strong>/or<br />

biomembranes 7 . This behavior is important for <strong>the</strong> formation <strong>of</strong> <strong>the</strong> amyloid states<br />

<strong>of</strong> <strong>the</strong> peptide in vivo <strong>and</strong> for its neurotoxic activities, which are associated with<br />

Alzheimer´s disease.<br />

Islet Amyloid Formation From Basic <strong>Biophysics</strong> to Mechanisms<br />

<strong>of</strong> beta-cell Death<br />

Ping Cao 1 , Andisheh Abedini 2 , Chris T. Middleton 3, Ling-Hsien Tu 1 ,<br />

Hui Wang 1 , Ann Marie Schmidt 2 , Martin T. Zanni 3 ,<br />

Daniel P. Raleigh 1<br />

1 Department <strong>of</strong> Chemistry, Stony Brook <strong>University</strong>, Stony Brook, NY, 11794-3400, USA,<br />

daniel.raleigh@stonybrook.edu<br />

2 Diabetes Research Program, Department <strong>of</strong> Medicine, NYU School <strong>of</strong> MedicineNew York, NY, USA.<br />

3 Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Wisconsin-Madison, Madison, WI, 53706-1393, USA.<br />

REFERENCES<br />

1. Danielsson, J., Pierattelli, R., Banci, L. <strong>and</strong> Gräslund, A. FEBS J. 274, 46-59 (2007).<br />

2. Wahlström, A., Hugonin, L., Peralvarez-Marin, A., Jarvet, J. <strong>and</strong> Gräslund, A. FEBS J. 275, 5117-<br />

5128 (2008).<br />

3. Abelein, A., Kaspersen, J.D., Nielsen, S.B., Vestergaard Jensen, G., Christiansen, G., Pedersen,<br />

J.S., Danielsson, J., Otzen, D.E. <strong>and</strong> Gräslund, A. J. Biol. Chem. 288 (2013), 23518-23528.<br />

4. Jarvet, J., Danielsson, J., Damberg, P., Oleszczuk, M. <strong>and</strong> Gräslund, A. J. Biomol. NMR 39, 63-72<br />

(2007).<br />

Amyloid formation <strong>by</strong> <strong>the</strong> hormone, islet amyloid polypeptide (IAPP or amylin),<br />

5. Lindgren, J., Segerfeldt, P., Sholts, S., Gräslund, A., Eriksson Karlström, A., Wärmländer, S. J. Inorg.<br />

causes pancreatic beta-cell death, consequences <strong>of</strong> which include diabetes <strong>and</strong><br />

Biochem. 120, 18-23 (2013).<br />

6. Abelein, A., Lang, L., Lendel, C., Gräslund, A. <strong>and</strong> Danielsson, J. FEBS Lett. 586, 3991-3995 (2012).<br />

islet transplant failure. The nature <strong>of</strong> <strong>the</strong> toxic species produced during IAPP<br />

7. Wärmländer, S., Tiiman, A., Abelein, A., Luo, J., Jarvet, J., Söderberg, K., Danielsson, J. <strong>and</strong><br />

amyloid formation <strong>and</strong> <strong>the</strong> cellular mechanisms <strong>by</strong> which it elicits cell death are<br />

Gräslund, A. ChemBioChem 14, 1692-1704 (2013).<br />

unknown. We define <strong>the</strong> toxic entity produced during IAPP amyloidosis: transient,<br />

22 23<br />

soluble, loosely packed, low order, pre-fibrillar, oligomeric lag phase intermediates<br />

with modest beta-sheet structure, which unregulated pro inflammatory markers <strong>and</strong><br />

are lig<strong>and</strong>s for <strong>the</strong> pattern recognition receptor RAGE. We demonstrate how <strong>the</strong><br />

emerging technique <strong>of</strong> two dimensional IR spectroscopy can provide unique site<br />

specific time resolved information about <strong>the</strong> pathway <strong>of</strong> amyloid assembly.<br />

PL-4


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>of</strong> <strong>and</strong> <strong>Amyloids</strong> <strong>Prions</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

PL-5<br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Biophysical insights into protein aggregation<br />

Tuomas Knowles<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Cambridge, UK, tpjk2@cam.ac.uk<br />

The molecular basis for protein aggregation has been challenging to probe since<br />

many <strong>of</strong> <strong>the</strong> conventional approaches that have been highly successful in<br />

biophysics work best for homogeneous preparations <strong>of</strong> soluble proteins. However,<br />

protein aggregation is characterised <strong>by</strong> heterogeneity, with structures formed<br />

ranging from soluble oligomers to insoluble high molecular weight aggregates,<br />

including amyloid fibrils. This talk outlines some <strong>of</strong> <strong>the</strong> approaches that we have<br />

developed <strong>and</strong> applied to <strong>the</strong> problem <strong>of</strong> protein aggregation, including<br />

micr<strong>of</strong>luidics <strong>and</strong> kinetic analysis. Using such techniques we aim to access <strong>the</strong><br />

fundamental molecular level events that underlie <strong>the</strong> transition <strong>of</strong> proteins from<br />

<strong>the</strong>ir normal soluble states into aggregated forms, <strong>and</strong> find ways <strong>of</strong> controlling <strong>and</strong><br />

curtailing <strong>the</strong> onset <strong>and</strong> progression <strong>of</strong> <strong>the</strong> aggregation process.<br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Structure-activity relationship <strong>of</strong> protein aggregates in health<br />

<strong>and</strong> disease<br />

Rol<strong>and</strong> Riek<br />

ETH Zürich, Physical Chemistry, Switzerl<strong>and</strong>, rol<strong>and</strong>.riek@phys.chem.ethz.ch<br />

<strong>Amyloids</strong> are highly ordered cross--sheet protein aggregates that are associated<br />

with many diseases including Alzheimer’s, Creutzfeldt-Jakob <strong>and</strong> Parkinson’s<br />

disease, but also have significant biological functions such as hormone storage in<br />

secretory granules <strong>and</strong> skin pigmentation in mammals.<br />

The cross--sheet entity, composed <strong>of</strong> an indefinitely repeating inter-molecular -<br />

sheet motif, is unique among protein folds. It can grow <strong>by</strong> recruitment <strong>of</strong> <strong>the</strong><br />

corresponding amyloid protein, while its repetitiveness can translate what would be<br />

a non-specific activity as monomer into a potent one through cooperativity.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> one-dimensional crystal-like repeat in <strong>the</strong> amyloid provides a<br />

structural framework for polymorphisms that arise from energetically similar but<br />

kinetically uncoupled alternative -sheet packings or even side chain<br />

conformations. Because <strong>of</strong> <strong>the</strong>se properties, <strong>the</strong> activities <strong>of</strong> amyloids are manifold<br />

<strong>and</strong> include peptide storage, template assistance, loss <strong>of</strong> function, gain <strong>of</strong> function,<br />

generation <strong>of</strong> toxicity, membrane binding, infectivity etc. In <strong>the</strong> presentation we<br />

summarise structure activity relationships <strong>of</strong> <strong>the</strong> HET-s prion, peptide hormone<br />

storage, <strong>and</strong> -synuclein aggregation.<br />

24 25<br />

PL-6


PL-7<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

Brain Seeded -Amyoid Fibrils<br />

Stephen Meredith<br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Departments <strong>of</strong> Pathology, <strong>and</strong> Biochemistry <strong>and</strong> Molecular Biology, The <strong>University</strong> <strong>of</strong> Chicago,<br />

Chicago, IL (USA), scmeredi@uchicago.edu<br />

-Amyoid (A) peptides aggregate into soluble oligomers <strong>and</strong> fibrils, <strong>and</strong> <strong>the</strong>se<br />

aggregates are <strong>the</strong> putative neurotoxins believed to cause neuronal damage <strong>and</strong><br />

death in Alzheimer’s disease. A, like o<strong>the</strong>r aggregating peptides, contrasts with<br />

“competent” proteins. Whereas competent proteins fold into one, or a small<br />

number <strong>of</strong> unique three-dimensional structures, determined <strong>by</strong> amino acid<br />

sequence, <strong>the</strong> three-dimensional structure <strong>of</strong> A aggregates is not uniquely<br />

determined <strong>by</strong> amino acid sequence. Thus, A peptide forms polymorphic<br />

aggregates, whose structures depend on fibril growth conditions. This seminar will<br />

describe <strong>the</strong> structure <strong>of</strong> A fibrils, both those made in vitro from syn<strong>the</strong>tic A<br />

peptide, <strong>and</strong> those formed using human Alzheimer’s Disease brain A fibrils. The<br />

latter fibrils are made <strong>by</strong> extracting amyloid from brains <strong>of</strong> patients with Alzheimer’s<br />

disease at autopsy, <strong>and</strong> <strong>the</strong>n growing seeded fibrils from this extract. Such<br />

seeding procedures yield replicate fibrils, which can be studied <strong>by</strong> biophysical<br />

methods, especially solid-state NMR spectroscopy <strong>and</strong> electron microscopy. We<br />

will focus on experiments using tissue from two Alzheimer’s disease patients with<br />

distinct clinical histories. Fibrils seeded using brain amyloid from each <strong>of</strong> <strong>the</strong>se<br />

patients each showed a single predominant A40 fibril structure. Fur<strong>the</strong>rmore,<br />

despite <strong>the</strong> typical polymorphism <strong>of</strong> purely syn<strong>the</strong>tic amyloid fibrils made in vitro,<br />

for each patient, brain amyloid from three different brain regions showed a single<br />

structure per patient. The structures <strong>of</strong> <strong>the</strong> fibrils from <strong>the</strong> two patients, however,<br />

were different from each o<strong>the</strong>r. A molecular structural model has been developed<br />

for A40 fibrils seeded from <strong>the</strong> first <strong>of</strong> <strong>the</strong>se patients. This structure reveals<br />

features that distinguish in vivo- from in vitro-produced fibrils. The finding <strong>of</strong> a<br />

single structure in different parts <strong>of</strong> <strong>the</strong> brain from each patient strongly suggests<br />

that fibrils may spread from a single nucleation site to o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> brain.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> fact that <strong>the</strong> two patients had different fibril structures indicates<br />

that fibril structure may reflect different fibrillization conditions in different patients.<br />

Since <strong>the</strong>se patients had different clinical presentations, <strong>the</strong>se data also suggest<br />

that structural variations may correlate with phenotypic variations in AD. Structurespecific<br />

amyloid imaging <strong>and</strong> <strong>the</strong>rapeutic agents may be an important future goal.<br />

More recently, we have examined replicate fibrils seeded from <strong>the</strong> brains <strong>of</strong><br />

several additional patients with Alzheimer’s Disease, Cerebral Amyloid Angiopathy,<br />

<strong>and</strong> Alzheimer’s Disease lesions at autopsy but no clinical history <strong>of</strong> cognitive<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

dysfunction. As in some <strong>of</strong> our earlier studies, we observed that some patients<br />

have two or more (up to four, thus far) fibril structures, as indicated <strong>by</strong> resonances<br />

in solid-state NMR spectra. Structure-specific amyloid imaging <strong>and</strong> <strong>the</strong>rapeutic<br />

agents may be an important future goal. Hence, our ultimate goal is to<br />

characterize a possible structure-malfunction relationship that will give us greater<br />

underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> relationship between aggregate structure <strong>and</strong> disease<br />

phenotype.<br />

26 27<br />

PL-7


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

PL-8<br />

Potentiated protein disaggregases to combat<br />

neurodegeneration<br />

James Shorter<br />

Department <strong>of</strong> Biochemistry & <strong>Biophysics</strong>, <strong>University</strong> <strong>of</strong> Pennsylvania, Philadelphia, PA (USA),<br />

jshorter@mail.med.upenn.edu<br />

There are no <strong>the</strong>rapies that reverse <strong>the</strong> deleterious protein-misfolding events that<br />

underpin various fatal neurodegenerative diseases including amyotrophic lateral<br />

sclerosis (ALS) <strong>and</strong> Parkinson disease (PD). Hsp104, a conserved hexameric<br />

AAA+ prion disaggregase from yeast, solubilizes disordered aggregates <strong>and</strong><br />

amyloid, but has no metazoan homologue <strong>and</strong> only limited activity against various<br />

human neurodegenerative disease proteins. Here, I will present our efforts to<br />

reprogram Hsp104 to rescue TDP-43, FUS, <strong>and</strong> α-synuclein proteotoxicity <strong>by</strong><br />

mutating single residues in <strong>the</strong> middle domain or first AAA+ nucleotide-binding<br />

ABSTRACTS<br />

28 domain. Surprisingly, loss <strong>of</strong> amino acid identity at specific, but disparate positions,<br />

29<br />

ra<strong>the</strong>r than mutation to specific side chains, unleashes Hsp104 activity against<br />

ORAL PRESENTATIONS<br />

diverse substrates. These potentiated Hsp104 variants effectively restore proper<br />

protein localization <strong>and</strong> clear protein aggregates. They also suppress dopaminergic<br />

neurodegeneration in a C. elegans PD model. Potentiating mutations rewire how<br />

Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, eliminate<br />

dependence on Hsp70, <strong>and</strong> empower ATPase, translocation, <strong>and</strong> unfoldase<br />

activity.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

OC-1<br />

D76N Beta-2 microglobulin, an amyloidogenic <strong>and</strong> pathologic<br />

mutant<br />

(clues on <strong>the</strong> native <strong>and</strong> on <strong>the</strong> fibrillar states)<br />

Levon Halabelian1, Carlo Santambrogio2, Emeline Barbet-Massin4, S<strong>of</strong>ia<br />

Giorgetti5 Alberto Barbiroli3, Rita Gr<strong>and</strong>ori4, Vittorio Bellotti6, Guido<br />

Pintacuda4, Martino Bolognesi1 Stefano Ricagno1<br />

1 Dept. <strong>of</strong> Bioscience, Univ. <strong>of</strong> Milan (Italy); Stefano.ricagno@unimi.it<br />

2 Dept. <strong>of</strong> Biotech <strong>and</strong> Biosc. Univ. <strong>of</strong> Milan Bicocca (Italy)<br />

3 Dept. DeFENS, Univ. <strong>of</strong> Milan (Italy);<br />

4 CRMN, CNRS/ENS Lyon/UCB Lyon 1 Lyon (France);<br />

5 Inst. <strong>of</strong> Biochemistry "Castellani", Univ. <strong>of</strong> Pavia (Italy)<br />

6 Center for Amyloidosis <strong>and</strong> Acute Phase proteins, UCL, London (UK).<br />

Beta-2 microglobulin (b2m) is an aggregation prone protein that is responsible for a<br />

human disorder known as dialysis related amyloidosis. In patient with kidney failure<br />

b2m is accumulated to high serum level eventually aggregates as amyloid fibrils. In<br />

2012 a new systemic familial amyloidosis was reported: an unreported b2m mutant<br />

(D76N) is <strong>the</strong> etiological agent <strong>of</strong> such disease. In vitro from <strong>the</strong> biophysical point<br />

<strong>of</strong> view <strong>the</strong> D76N b2m is much less stable <strong>and</strong> more amyloidogenic than wt b2m;<br />

however, its crystal structure reveals few minor conformational changes compared<br />

with <strong>the</strong> wt protein [1].<br />

30 31<br />

Such an unstable protein should be targeted for degradation <strong>by</strong> <strong>the</strong> Unfolded<br />

Protein Response in <strong>the</strong> ER, however this is not <strong>the</strong> case. Physiologically, b2m is<br />

part <strong>of</strong> <strong>the</strong> Major Histocompatibility Complex (MHC). In order to underst<strong>and</strong> what is<br />

<strong>the</strong> role <strong>of</strong> <strong>the</strong> MHC complex in <strong>the</strong> protection <strong>of</strong> D76N variant against degradation,<br />

<strong>the</strong> biophysical <strong>and</strong> structural aspects <strong>of</strong> MHC complex bearing <strong>the</strong> D76N mutation<br />

have been investigated <strong>and</strong> evaluated. The crystal structure <strong>of</strong> <strong>the</strong> mutated MHC<br />

was determined <strong>and</strong> several in solution techniques showed that <strong>the</strong> MHC assembly<br />

exerts a remarkable stabilisation effect on <strong>the</strong> D76N variant so that <strong>the</strong> mutated<br />

MHC has structural <strong>and</strong> biophysical properties utterly similar to <strong>the</strong> wild type<br />

complex [2].<br />

Finally some preliminary solid state NMR data on D76N in crystal <strong>and</strong> fibrillar will<br />

be shown.<br />

[1] Valleix et al. Hereditary systemic amyloidosis due to Asp76Asn variant β2-microglobulin. NEJM 2012<br />

Jun 14;366(24):2276-83<br />

[2] Halabelian et al. Class I Major Histocomapatibility Complex: <strong>the</strong> Trojan horse for secretion <strong>of</strong><br />

amyloidogenic β2-microglobulin. J Biol Chem. <strong>2014</strong> Feb 7;289(6):3318-27.<br />

A hybrid approach towards <strong>the</strong> structure <strong>of</strong> PrP Sc .<br />

H. Wille, 1,2 E. Vázquez-Fernández, 1,2,3 M. Vos, 4,5 L. Cebey Zas, 1,2 P. J.<br />

Peters, 5,6 J.-J. Fernández, 7 H. Young, 1 J. R. Requena, 3<br />

1 Department <strong>of</strong> Biochemistry, <strong>University</strong> <strong>of</strong> Alberta, Edmonton (Canada)<br />

2 Centre for <strong>Prions</strong> <strong>and</strong> Protein Folding Diseases, <strong>University</strong> <strong>of</strong> Alberta, Edmonton (Canada)<br />

3 CIMUS Biomedical Research Institute & Department <strong>of</strong> Medicine, <strong>University</strong> <strong>of</strong> Santiago de<br />

Compostela-IDIS (Spain)<br />

4 FEI Company, Eindhoven (The Ne<strong>the</strong>rl<strong>and</strong>s)<br />

5 Ne<strong>the</strong>rl<strong>and</strong>s Cancer Institute, Amsterdam (The Ne<strong>the</strong>rl<strong>and</strong>s)<br />

6 Institute <strong>of</strong> Nanoscopy, Maastricht <strong>University</strong>, Maastricht (The Ne<strong>the</strong>rl<strong>and</strong>s)<br />

7 National Centre for Biotechnology - CSIC, Madrid, (Spain)<br />

The structure <strong>of</strong> <strong>the</strong> infectious prion protein (PrP Sc ) <strong>and</strong> that <strong>of</strong> its proteolytically<br />

truncated homologue (PrP 27-30) have eluded experimental determination due to<br />

<strong>the</strong>ir insolubility <strong>and</strong> propensity to aggregate. Molecular modelling has been used<br />

to predict <strong>the</strong>ir structures, but <strong>the</strong> various modelling approaches produced<br />

conflicting models indicating <strong>the</strong> limitations <strong>of</strong> this method. In absence <strong>of</strong> a threedimensional<br />

(3D) structure, a variety <strong>of</strong> experimental techniques have been used<br />

to gain insights into <strong>the</strong> fold <strong>of</strong> PrP Sc . Negative stain electron microscopy, X-ray<br />

fiber diffraction, <strong>and</strong> molecular modelling indicated that <strong>the</strong> β-sheets <strong>of</strong> PrP Sc form<br />

a β-helix or β-solenoid structure with a height <strong>of</strong> four β-str<strong>and</strong>s (rungs) per<br />

molecule (= 19.2 Å).<br />

In our current efforts to analyze <strong>the</strong> structures <strong>of</strong> delta-GPI PrP Sc <strong>and</strong> PrP<br />

27-30 we have employed a hybrid approach. In particular, <strong>the</strong> helical periodicity<br />

that is inherent to most amyloid fibrils can be used to generate a three-dimensional<br />

structure from two-dimensional electron micrographs <strong>and</strong> electron tomograms.<br />

Cryo low-dose electron micrographs <strong>of</strong> delta-GPI PrP 27-30 amyloid fibrils<br />

routinely exhibit a 4.8 Å spacing, confirming <strong>the</strong> presence <strong>of</strong> β-str<strong>and</strong>s in a cross-β<br />

configuration. The 3D reconstructions <strong>of</strong> individual fibrils show two prot<strong>of</strong>ilaments<br />

coiled around a common axis with 4.8 Å striations running perpendicular to <strong>the</strong><br />

fibrils axis, suggesting that <strong>the</strong> β-str<strong>and</strong>s <strong>of</strong> PrP Sc are being visualized. The lack <strong>of</strong><br />

α-helices in <strong>the</strong>se reconstructions is notable, streng<strong>the</strong>ning earlier arguments<br />

against any remaining α-helical structure. Fur<strong>the</strong>rmore, single-particle analyses <strong>of</strong><br />

15,942 individual fibril segments show a repeating pattern <strong>of</strong> ~40 Å densities with<br />

~20 Å sized subunits, confirming earlier measurements regarding <strong>the</strong> molecular<br />

height <strong>of</strong> PrP Sc . Moreover, <strong>the</strong> observed ~40 Å periodicity suggests a head-to-head<br />

arrangement <strong>of</strong> <strong>the</strong> PrP Sc molecules along <strong>the</strong> fibril axis.<br />

ACKNOWLEDGEMENTS<br />

Generous funding was provided <strong>by</strong> grants from <strong>the</strong> Alberta Prion Research Institute (APRI), <strong>the</strong> Alberta<br />

Livestock & Meat Agency (ALMA), <strong>and</strong> EU FP7 222887 (Priority).<br />

OC-2


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

OC-3<br />

Unveiling <strong>the</strong> Nature <strong>of</strong> α-Synuclein in its Membrane-Bound<br />

State <strong>by</strong> Solid-State <strong>and</strong> Solution NMR.<br />

Giuliana Fusco 1 , Alfonso De Simone 2,* , Gopinath Tata 3 , Vitaly Vostrikov 3 ,<br />

Michele Vendruscolo 1 , Christopher M. Dobson 1,* , Gianluigi Veglia 3,*<br />

Order <strong>and</strong> disorder in amyloid formation<br />

Alfonso De Simone<br />

NMR centre <strong>and</strong> Department <strong>of</strong> Life Science, Imperial College London (UK), adesimon@imperial.ac.uk<br />

OC-4<br />

1<br />

Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Cambridge, Cambridge (UK).<br />

2<br />

Department <strong>of</strong> Life Sciences, Imperial College, London (UK).<br />

3<br />

Department <strong>of</strong> Chemistry & Department <strong>of</strong> Biochemistry, Molecular Biology & <strong>Biophysics</strong>, <strong>University</strong> <strong>of</strong><br />

Minnesota, Minneapolis (USA). vegli001@umn.edu; cmd44@cam.ac.uk; adesimon@imperial.ac.uk<br />

α-synuclein (αS) is a protein involved in neurotransmitter release in presynaptic<br />

terminals, <strong>and</strong> whose aberrant aggregation is associated with Parkinson’s disease.<br />

In dopaminergic neurons, αS exists in a tightly regulated equilibrium between<br />

water-soluble <strong>and</strong> membrane-associated forms. Underst<strong>and</strong>ing <strong>the</strong> structure <strong>and</strong><br />

dynamics <strong>of</strong> <strong>the</strong> membrane-bound state <strong>of</strong> αS is a major priority to clarify how for<br />

this protein <strong>the</strong> balance between functional <strong>and</strong> dysfunctional processes can be<br />

regulated. Using a combination <strong>of</strong> solid-state <strong>and</strong> solution-state NMR<br />

spectroscopy, we characterised <strong>the</strong> conformations <strong>of</strong> αS bound to lipid membranes<br />

mimicking <strong>the</strong> composition <strong>and</strong> physical properties <strong>of</strong> synaptic vesicles. Our<br />

approach proved to be highly effective in enabling <strong>the</strong> fine tuning between<br />

structural order <strong>and</strong> disorder in <strong>the</strong> membrane-bound state <strong>of</strong> αS to be probed<br />

directly without requiring any chemical modification <strong>of</strong> <strong>the</strong> protein or changes to its<br />

amino acid sequence. The study evidences key regions <strong>of</strong> <strong>the</strong> protein possessing<br />

distinct structural <strong>and</strong> dynamical properties <strong>and</strong> having specific roles in determining<br />

<strong>the</strong> way <strong>the</strong> protein partitions between membrane-bound <strong>and</strong> unbound states.<br />

Taken toge<strong>the</strong>r, our data define <strong>the</strong> nature <strong>of</strong> <strong>the</strong> interactions <strong>of</strong> αS with biological<br />

membranes <strong>and</strong> provide insights into <strong>the</strong>ir function as well as in <strong>the</strong> processes <strong>of</strong><br />

αS aggregation under pathological conditions.<br />

Protein molecules adopt well-defined functional <strong>and</strong> soluble states under<br />

physiological conditions. In some circumstances, however, proteins can aggregate<br />

into fibrillar assemblies designated as amyloid fibrils. In vivo <strong>the</strong>se processes are<br />

normally associated with severe pathological conditions. It is now clear that <strong>the</strong><br />

primary mechanism for controlling protein aggregation involves <strong>the</strong> existence <strong>of</strong><br />

intrinsic free energy barriers that govern <strong>the</strong> propensity to engage functional<br />

protein-protein interactions <strong>by</strong> disfavouring unwanted aggregation events. Our<br />

underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong>se barriers is currently limited. By using novel methods at <strong>the</strong><br />

interface between NMR experiments <strong>and</strong> statistical mechanics, we investigated<br />

how conformational free energy l<strong>and</strong>scapes <strong>of</strong> proteins control <strong>the</strong> population <strong>of</strong><br />

dangerous aggregation-prone species [1, 2] <strong>and</strong> how intrinsically disordered<br />

regions modulate <strong>the</strong> propensity <strong>of</strong> proteins to aggregate [3]. Our studies identified<br />

<strong>the</strong> nature <strong>of</strong> <strong>the</strong> balance between structural order <strong>and</strong> disorder as a crucial<br />

modulator in <strong>the</strong> processes <strong>of</strong> protein aggregation into amyloids.<br />

32 33<br />

ACKNOWLEDGEMENTS<br />

Financial support from <strong>the</strong> Leverhulme Trust, EMBO, EPSRC <strong>and</strong> EU FP7 is acknowledged for this<br />

works<br />

REFERENCES<br />

[1] Camilloni C, Schaal D, Schweimer K, Schwarzinger S, De Simone A, 2012, Biophys J 102(1):158-<br />

167.<br />

[2] De Simone A, Dhulesia A, Soldi G, Vendruscolo M, Hsu ST, Chiti F, Dobson CM, 2011, Proc Natl<br />

Acad Sci USA 108(52):21057-62.<br />

[3] De Simone A, Kitchen C, Kwan A, Sunde M, Dobson CM, Frenkel D, 2012, Proc Natl Acad Sci USA<br />

109(18):6951-6.<br />

ACKNOWLEDGEMENTS<br />

Financial support from Parkinson’s UK, Wellcome Trust, MRC, Leverhulme Trust, NIH


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

OC-5<br />

Computational Infrared Spectroscopy <strong>of</strong> Proteins - Implications<br />

for <strong>the</strong> Spectrum <strong>of</strong> <strong>Amyloids</strong><br />

Electrostatics promotes molecular crowding <strong>and</strong> selects <strong>the</strong><br />

fibrillation pathway in fibril-forming protein solutions.<br />

OC-6<br />

E.-L. Karjalainen, A. Barth<br />

Samuele Raccosta, 1 Vincenzo Martorana, 1 Mauro Manno 1<br />

Department <strong>of</strong> Biochemistry <strong>and</strong> <strong>Biophysics</strong>, Stockholm <strong>University</strong>, Stockholm, Sweden,<br />

barth@dbb.su.se<br />

1 National Research Council <strong>of</strong> Italy (CNR), Institute <strong>of</strong> <strong>Biophysics</strong> (IBF), Via Ugo La Malfa 153,<br />

Palermo (Italy), mauro.manno@cnr.it.<br />

The protein backbone gives rise to <strong>the</strong> amide I absorption in <strong>the</strong> infrared spectrum<br />

<strong>of</strong> proteins. It is sensitive to secondary structure but also to additional structural<br />

features, some <strong>of</strong> which are discussed here. We have developed a Matlab program<br />

to calculate <strong>the</strong> amide I absorption <strong>of</strong> proteins [1]. It gives good agreement<br />

between simulation <strong>and</strong> experiment although this task was deliberately made more<br />

difficult <strong>by</strong> <strong>the</strong> use <strong>of</strong> resolution enhanced spectra. These spectra contain more<br />

distinct features than unprocessed absorption spectra, which have to be simulated<br />

adequately. The simulation protocol includes (i) <strong>the</strong> effects <strong>of</strong> transition dipole<br />

coupling for long range interaction between amide vibrations, (ii) nearest neighbour<br />

coupling from density functional <strong>the</strong>ory data, <strong>and</strong> (iii) influences on <strong>the</strong> intrinsic<br />

frequency <strong>by</strong> (iiia) <strong>the</strong> local conformation, (iiib) hydrogen bonding to o<strong>the</strong>r amide<br />

groups, <strong>and</strong> (iiic) hydrogen bonding to water.<br />

Earlier calculations which included only long-range coupling (i) indicate that<br />

stacking <strong>of</strong> beta sheets, as it occurs in <strong>the</strong> formation <strong>of</strong> amyloid fibrils, shifts <strong>the</strong><br />

amide I b<strong>and</strong> maximum upwards <strong>by</strong> a few cm -1 [2]. Such shifts can easily be<br />

detected experimentally <strong>and</strong> <strong>the</strong> effect should be considered in <strong>the</strong> interpretation <strong>of</strong><br />

experimental spectra. A similar upshift has been calculated for <strong>the</strong> vibrational<br />

coupling between helices, which explains <strong>the</strong> high amide I maximum <strong>of</strong><br />

bacteriorhodopsin [3].<br />

34 35<br />

REFERENCES<br />

[1] E-L. Karjalainen, T. Ersmark, A. Barth (2012), J. Phys. Chem. B, 2012, 116, 4831−4842,<br />

(http://dx.doi.org/10.1021/jp301095v). Optimization <strong>of</strong> model parameters for describing <strong>the</strong> amide I<br />

spectrum <strong>of</strong> a large set <strong>of</strong> proteins.<br />

[2] E-L. Karjalainen, H. Kumar, A. Barth, J. Phys. Chem. B, 2011, 115, 749–757,<br />

(http://dx.doi.org/10.1021/jp109918c). Simulation <strong>of</strong> <strong>the</strong> amide I absorption <strong>of</strong> stacked beta-sheets.<br />

[3] E-L. Karjalainen, A. Barth, J. Phys. Chem. B, 2012, 116, 4448−4456,<br />

(http://dx.doi.org/10.1021/jp300329k). Vibrational coupling between helices influences <strong>the</strong> amide I<br />

infrared absorption <strong>of</strong> proteins. Application to bacteriorhodopsin <strong>and</strong> rhodopsin.<br />

The role <strong>of</strong> intermolecular interaction in fibril-forming protein solutions <strong>and</strong> its<br />

relation with molecular conformation is a crucial aspect for <strong>the</strong> control <strong>and</strong> inhibition<br />

<strong>of</strong> amyloid structures. Here, we use optical spectroscopies, x-ray, neutron <strong>and</strong> light<br />

scattering to study <strong>the</strong> fibril formation <strong>and</strong> <strong>the</strong> protein-protein interactions <strong>of</strong><br />

different model proteins: lysozyme, insulin <strong>and</strong> alpha-chymotrypsinogen. In <strong>the</strong><br />

case <strong>of</strong> lysozyme, <strong>the</strong> monomeric solution is kept in a <strong>the</strong>rmodynamically<br />

metastable state <strong>by</strong> strong electrostatic repulsion, even in denaturing conditions. At<br />

high temperature proteins are driven out <strong>of</strong> metastability through conformational<br />

sub-states, which are kinetically populated <strong>and</strong> experience lower activation energy<br />

for fibril formation. This explains how electrostatic repulsion may act as a<br />

gatekeeper in selecting <strong>the</strong> appropriate pathway to fibrillation. [1]<br />

The protein density fluctuations are measured <strong>by</strong> light scattering <strong>and</strong> analyzed in<br />

terms <strong>of</strong> classical second virial coefficient approach <strong>and</strong> a new model-free<br />

approach based on Kirkwood-Buff integrals. [2] The latter allows taking into<br />

account <strong>the</strong> role <strong>of</strong> density fluctuations even at high concentrations <strong>and</strong> to highlight<br />

a regime dominated <strong>by</strong> interaction <strong>and</strong> a regime dominated <strong>by</strong> concentrations.<br />

Such a “crowding” effect is observed at moderately high concentrations due to<br />

repulsion. Fur<strong>the</strong>r, <strong>by</strong> photon correlation spectroscopy (PCS) <strong>and</strong> fluorescence<br />

correlation spectroscopy (FCS) we measure protein collective <strong>and</strong> self-diffusion.<br />

Both PCS <strong>and</strong> FCS evidence how an increase <strong>of</strong> concentration hinders protein<br />

self-diffusion, likely due to both hydrodynamics <strong>and</strong> crowding effect. [3]<br />

REFERENCES<br />

[1] S. Raccosta, V. Martorana, M. Manno J. Phys. Chem. B, 2012, 116, 12078-12087.<br />

[2] M. Blanco, T. Perevozchikova, V. Martorana, M. Manno, C. J. Roberts, <strong>2014</strong>, submitted.<br />

[3] S. Raccosta, V. Martorana, M. Manno J. Phys. Chem. B, <strong>2014</strong>, submitted.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

OC-7<br />

Insights into <strong>the</strong> molecular mechanism <strong>of</strong> glycation-stimulated<br />

protein aggregation<br />

Resolving prion protein aggregation at <strong>the</strong> single molecule level<br />

Chi-Fu Yen 1,2 , Anumantha Kanthasamy 3 <strong>and</strong> Sanjeevi Sivasankar 1,2<br />

OC-8<br />

C. Iannuzzi, R. Maritato, G. Irace, I. Sirangelo<br />

Dept. <strong>of</strong> Biochemistry, <strong>Biophysics</strong> <strong>and</strong> General Pathology, Seconda Università di Napoli, Naples, Italy,<br />

clara.iannuzzi@unina2.it.<br />

Reducing sugars play important roles in modifying proteins, forming advanced<br />

glycation end-products (AGEs) in a non-enzymatic process named glycation.<br />

Several proteins linked to neurodegenerative diseases, such as ß-amyloid, tau,<br />

prions <strong>and</strong> transthyretin have been found glycated in vivo.<br />

Although it is now accepted that <strong>the</strong>re is a direct correlation between AGEs<br />

formation <strong>and</strong> amyloidosis, several questions still remain unanswered: whe<strong>the</strong>r<br />

glycation is <strong>the</strong> triggering event or just an additional factor acting on <strong>the</strong><br />

aggregation pathway. In this study we have investigated <strong>the</strong> effect <strong>of</strong> glycation on<br />

<strong>the</strong> aggregation pathway <strong>of</strong> <strong>the</strong> amyloidogenic W7FW14F apomyoglobin. Although<br />

this protein is not related to any amyloid disease, it represents a good model to<br />

resemble proteins that intrinsically evolve toward <strong>the</strong> formation <strong>of</strong> amyloid<br />

aggregates in physiological conditions. Thus, this protein allows biophysical studies<br />

without <strong>the</strong> interference <strong>of</strong> denaturing agents [1-3]. We show that D-ribose rapidly<br />

induces <strong>the</strong> W7FW14F apomyoglobin to generate AGEs <strong>and</strong> this strongly<br />

contributes to accelerate its aggregation kinetics. We propose that ribosylation <strong>of</strong><br />

<strong>the</strong> W7FW14F apomyoglobin induces <strong>the</strong> formation <strong>of</strong> intermolecular cross-links<br />

that strongly reduce protein flexibility thus promoting fibril formation [4]. On <strong>the</strong><br />

o<strong>the</strong>r side, glycation <strong>of</strong> <strong>the</strong> wild-type apomyoglobin promotes conformational<br />

changes without inducing amyloid aggregation. These results indicate that AGEs<br />

formation cannot be considered a trigger factor but an active player in later stages<br />

<strong>of</strong> <strong>the</strong> amyloid aggregation.<br />

36 37<br />

REFERENCES<br />

[1] I. Sirangelo, C. Malmo, C. Iannuzzi, A. Mezzogiorno, M. R. Bianco, M. Papa, G. Irace J. Biol.<br />

Chem., 2004, 279, 13183-13189.<br />

[2] C. Malmo, S. Vilasi, C. Iannuzzi, S. Tacchi, C. Cametti, G. Irace, I. Sirangelo Faseb Journal, 2006,<br />

20, 346-347.<br />

[3] C. Iannuzzi, S. Vilasi, M. Portaccio, G. Irace, I. Sirangelo Protein Science, 2007, 16, 507-516.<br />

[4] C. Iannuzzi, R. Maritato, Irace, I. Sirangelo. PLoS ONE, 2013, 8, e80768.<br />

1 Dept. <strong>of</strong> Physics <strong>and</strong> Astronomy, Iowa State <strong>University</strong>, Ames, IA (USA)<br />

2 Dept. <strong>of</strong> Electrical <strong>and</strong> Computer Engineering, Iowa State <strong>University</strong>, Ames, IA (USA)<br />

3 College <strong>of</strong> Veterinary Medicine, Iowa State <strong>University</strong>, Ames, IA (USA)<br />

Corresponding Author (Sanjeevi Sivasankar): sivasank@iastate.edu<br />

In Transmissible Spongiform Encephalopathies, cellular prion proteins (PrP)<br />

misfold to form proteinase-K resistant, neurotoxic, aggregates. Cellular PrP consist<br />

<strong>of</strong> an unstructured, N-terminal region containing four octapeptide repeats that bind<br />

divalent ions <strong>and</strong> an α-helix rich, C-terminal domain. However, biophysical studies<br />

<strong>of</strong> PrP aggregation have primarily focused on PrP lacking <strong>the</strong> N-terminal region;<br />

<strong>the</strong> role <strong>of</strong> octapeptide repeats in PrP binding remains unresolved. Fur<strong>the</strong>rmore,<br />

while divalent metal ions are known to play an important role in PrP aggregation,<br />

<strong>the</strong> underlying mechanisms are poorly understood at molecular level.<br />

Here we use single molecule force measurements with an Atomic Force<br />

Microscope (AFM) <strong>and</strong> single molecule fluorescence imaging with a Confocal<br />

Fluorescence Microscopy (CFM) to (i) identify <strong>the</strong> role <strong>of</strong> <strong>the</strong> N-terminal<br />

octapeptide repeats in PrP aggregation, (ii) determine how divalent metal ions<br />

promote aggregation in vitro, <strong>and</strong> (iii) isolate a monomeric form <strong>of</strong> PrP that is<br />

resistant to Proteinsae-K digestion. Using single molecule AFM force<br />

measurements, we measure <strong>the</strong> rate constants for <strong>the</strong> aggregation <strong>of</strong> PrP with <strong>and</strong><br />

without octapeptide repeats <strong>and</strong> in <strong>the</strong> presence <strong>of</strong> different divalent metal ions.<br />

We show that while Cu 2+ ions increase <strong>the</strong> affinity for full length PrP aggregation<br />

almost a thous<strong>and</strong> fold, exposure to Ni 2+ , Zn 2+ , <strong>and</strong> Mn 2+ does not significantly<br />

enhance PrP binding affinity. The effect <strong>of</strong> Cu 2+ ions is eliminated in PrP truncation<br />

mutants that lack <strong>the</strong> N-terminal domain. Finally, using CFM we demonstrate that<br />

<strong>the</strong> binding <strong>of</strong> Cu 2+ to <strong>the</strong> N-terminal octapeptide repeats induces a conformational<br />

change that makes PrP monomers resistant to Proteinase-K digestion. Our results<br />

provide <strong>the</strong> first quantitative, biophysical characterization <strong>of</strong> PrP aggregation at <strong>the</strong><br />

single molecule level.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

OC-9<br />

Investigation <strong>of</strong> <strong>the</strong> molecular electrostatic potential similarity in<br />

PrP model systems<br />

Roberto Paciotti 1 , Loriano Storchi 1 , Aless<strong>and</strong>ro Marrone 1<br />

Cytotoxic α-synuclein oligomers <strong>and</strong> <strong>the</strong>ir role in aggregation<br />

M. Andreasen 1,2 , W. Paslawski 1,2 , N. Lorenzen 1 , S. B. Nielsen 1,2 , K.<br />

Thomsen 1 , J. D. Kaspersen 1,3 , J. S. Pedersen 1,3 <strong>and</strong> D. E. Otzen 1,2<br />

OC-10<br />

1 Dept. <strong>of</strong> Pharmacy, Università “G d’Annunzio” di Chieti-Pescara, Italy, amarrone@unich.it<br />

Misfolding can be considered <strong>the</strong> structural alteration with <strong>the</strong> most cogent<br />

pathogenic impact on protein functionality due to <strong>the</strong> involvement <strong>of</strong> both<br />

secondary <strong>and</strong> tertiary structure impairment. Prion diseases are fatal<br />

neurodegenerative disorders characterized <strong>by</strong> <strong>the</strong> post-translational misfolding <strong>of</strong><br />

<strong>the</strong> cellular prion protein, PrP C , yielding <strong>the</strong> pathological form PrP Sc . [1,2] Recently,<br />

<strong>the</strong> role <strong>of</strong> high [Ca 2+ ] in catalyzing <strong>the</strong> formation <strong>of</strong> PrP Sc has been evaluated. [3] It<br />

was found that <strong>the</strong> binding <strong>of</strong> one Ca 2+ ion between <strong>the</strong> H1 helix <strong>and</strong> <strong>the</strong> H2-H3<br />

loop <strong>of</strong> PrP C may induce a specific pattern <strong>of</strong> charges on <strong>the</strong> protein surface<br />

significantly similar to that detected on <strong>the</strong> pathogenic E200K mutant. [3]<br />

Here, a multi-level<br />

computational workflow was<br />

designed to study in major<br />

details <strong>the</strong> effect <strong>of</strong> Ca 2+<br />

binding on <strong>the</strong> PrP C<br />

molecular properties. The<br />

specific patterns <strong>of</strong> ei<strong>the</strong>r<br />

charged or hydrophobic<br />

groups on <strong>the</strong> surface <strong>of</strong><br />

ei<strong>the</strong>r wild type (I), E200K (II)<br />

or Ca 2+ -bound (III) PrP C were<br />

obtained <strong>by</strong> <strong>the</strong> use <strong>of</strong><br />

multiple structure subsets. By<br />

<strong>the</strong> analysis <strong>of</strong> molecular<br />

electrostatic potential (MEP) <strong>and</strong> hydrophobic fields, we obtained a measure <strong>of</strong> <strong>the</strong><br />

electrostatic <strong>and</strong> hydrophobic similarity within <strong>the</strong> considered PrP C models as a<br />

function <strong>of</strong> <strong>the</strong> protein space. Interestingly, we found that Ca 2+ binding at PrP C<br />

increased <strong>the</strong> MEP similarity with <strong>the</strong> pathogenic E200K mutant which parallels <strong>the</strong><br />

catalyzing effect <strong>of</strong> [Ca 2+ ] in <strong>the</strong> formation <strong>of</strong> PrP Sc . [3]<br />

38 39<br />

[1] S. B. Prusiner N. Engl. J. Med., 2001, 344, 1516–1526.<br />

[2] J. Collinge Annu. Rev. Neurosci., 2001, 24, 519–550.<br />

[3] S. Sorrentino, T. Bucciarelli et al. PLoSONE, 2012, 7, e38314.<br />

1 Interdisciplinary Nanoscience Center (iNANO), Aarhus <strong>University</strong> (Denmark)<br />

2 Dept. <strong>of</strong> Molecular Biology <strong>and</strong> Genetics, Aarhus <strong>University</strong> (Denmark)<br />

3 Department <strong>of</strong> Chemistry, Aarhus <strong>University</strong> (Denmark)<br />

Many neurodegenerative diseases (ND) are connected with formation <strong>of</strong> amyloid<br />

deposits with cytotoxic oligomers as <strong>the</strong> main suspected culprit <strong>of</strong> pathology.[1,2]<br />

These oligomers are generally viewed as transient species present in very small<br />

amounts making <strong>the</strong>m hard to study.[3] Here we report on two α-synuclein (αSN)<br />

oligomeric species <strong>and</strong> <strong>the</strong>ir role in aggregation.<br />

The two oligomers <strong>of</strong> αSN display same overall morphology <strong>and</strong> are found to be<br />

ellipsoid with a high degree <strong>of</strong> flexibility as seen <strong>by</strong> small angle X-ray scattering.<br />

They also have <strong>the</strong> same degree <strong>of</strong> β-sheet structure which is intermediate to that<br />

<strong>of</strong> <strong>the</strong> disordered monomer <strong>and</strong> <strong>the</strong> fibrils, <strong>and</strong> both oligomers are capable <strong>of</strong><br />

permeabilizing lipid vesicles in vitro.[4] However one <strong>of</strong> <strong>the</strong> oligomers (oligo I) is in<br />

equilibrium with <strong>the</strong> monomer <strong>and</strong> is probably an on-pathway oligomer. This<br />

oligomer show a higher degree <strong>of</strong> protection against hydrogen/deuterium exchange<br />

(HDX) for <strong>the</strong> back-bone amide groups but it is a short lived species. The o<strong>the</strong>r<br />

oligomer (oligo II) is less protected against HDX but displays higher stability.[5]<br />

This second type <strong>of</strong> oligomer is an <strong>of</strong>f-pathway oligomer which does not elongate<br />

fibril seeds. Fur<strong>the</strong>rmore oligo II resist dissociation at extreme pH values, elevated<br />

temperatures up to 120 °C, in <strong>the</strong> presence <strong>of</strong> SDS <strong>and</strong> using urea dissociation a<br />

ΔG dis <strong>of</strong> 2.5 ± 0.1 kcal/mol is found. Even after prolonged incubation at 37 °C no<br />

dissociation <strong>of</strong> monomers from oligo II are seen. However oligo II associate to form<br />

non-fibrillar aggregates which retain <strong>the</strong> secondary structure <strong>of</strong> <strong>the</strong> oligomers.<br />

Hence <strong>the</strong>se oligomers are nei<strong>the</strong>r elusive nor short-lived making it even more<br />

important to fur<strong>the</strong>r underst<strong>and</strong> <strong>the</strong>ir role in αSN aggregation in vivo <strong>and</strong> <strong>the</strong><br />

relationship between <strong>the</strong> two oligomer types.<br />

ACKNOWLEDGEMENTS<br />

Financial support from <strong>the</strong> Michael J. Fox Foundation, The Danish Council for Independent Research |<br />

Natural Sciences , <strong>the</strong> Danish Research Foundation (inSPIN) <strong>and</strong> Lundbeckfonden is acknowledged.<br />

REFERENCES (STYLE LIGHT REFER)<br />

[1] Chiti, F.; Dobson, C. M. Annual review <strong>of</strong> biochemistry 2006, 75, 333<br />

[2] Lashuel, H. A.; Hartley, D.; Petre, B. M.; Walz, T.; Lansbury, P. T., Jr. Nature 2002, 418, 291<br />

[3] Uversky, V. N. Febs J 2010, 277, 2940<br />

[4] Lorenzen, N.; Nielsen, S.; Buell, A.; Kaspersen, J.; Arosio, P.; Vad, B.; Paslawski, W.; Christiansen,<br />

G.; Hansen, Z.; Andreasen, M.; Enghild, J.; Pedersen, J.; Dobson, C.; Knowles, T.; Otzen, D. JACS<br />

<strong>2014</strong>, 136, 3859<br />

[5] Paslawski, W.; Mysling, S.; Thomsen, K.; Jørgensen, T.J.D.; Otzen, D.E. Angew. Chem. In press


OC-11<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Detection <strong>of</strong> pathological tau conformations in CSF <strong>of</strong> patients<br />

with neurodegenerative diseases<br />

O. Morozova 1 , Z. March 1 , D. Col<strong>by</strong> 1<br />

1 Dept. <strong>of</strong> Chemical <strong>and</strong> Biomolecular Engineering, <strong>University</strong> <strong>of</strong> Delaware (USA), col<strong>by</strong>@udel.edu<br />

The formation <strong>of</strong> tau amyloids is associated with more than twenty<br />

neurodegenerative diseases, including Alzheimer’s disease (AD). Although it is<br />

established that tau protein concentrations are elevated in CSF <strong>of</strong> patients with<br />

many <strong>of</strong> <strong>the</strong>se diseases, its conformational state <strong>the</strong>re has been largely<br />

unexplored. We have developed a method for <strong>the</strong> detection <strong>and</strong> amplification <strong>of</strong> tau<br />

amyloid strains that preserves <strong>the</strong>ir underlying structures. We have performed<br />

ultrastructural analysis on <strong>the</strong>se tau strains using electron microscopy, circular<br />

dichroism, <strong>and</strong> chemical denaturation. Using this method, we can detect<br />

amyloidogenic tau in <strong>the</strong> CSF <strong>of</strong> patients with AD, Corticobasal Degeneration<br />

(CBD), <strong>and</strong> Progressive Supranuclear Palsy (PSP). Tau amyloids present in CSF<br />

consist <strong>of</strong> strains which appear to be distinct for each disease. When recombinant<br />

tau protein is seeded with paired helical filaments (PHFs) isolated from AD brain,<br />

<strong>the</strong> amyloid formed shares many <strong>of</strong> <strong>the</strong> structural features <strong>of</strong> <strong>the</strong> PHF seeds. In<br />

contrast, tau amyloids formed with heparin as an inducing agent—a common<br />

biochemical model <strong>of</strong> tau misfolding—are structurally distinct from brain-derived<br />

PHFs. Our findings have implications for <strong>the</strong> prion-like propagation <strong>of</strong> misfolded tau<br />

protein in <strong>the</strong> pathogenesis <strong>of</strong> neurodegenerative diseases <strong>and</strong> provide new insight<br />

into <strong>the</strong> tau amyloid strains present in disease states.<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Protein-protein interactions as a strategy towards proteinspecific<br />

drug design<br />

Cesira de Chiara, Ramesh P. Menon, G. Kelly, A. Pastore 1<br />

1 Dept. <strong>of</strong> Clinical Neurosciences, King’s College LondonI, London (UK),<br />

apastor@nimr.mrc.ac.uk.<br />

Protein aggregation <strong>and</strong> amyloid formation seems to be a universal structural<br />

solution that most if not all proteins may be able to adopt. It is <strong>the</strong>refore important<br />

to underst<strong>and</strong> <strong>the</strong> mechanism that protect proteins from aggregating <strong>and</strong> allow<br />

correct protein function. I shall discuss different examples that suggest <strong>the</strong><br />

importance, Here, we show how partner recognition <strong>of</strong> <strong>the</strong> AXH domain <strong>of</strong> <strong>the</strong><br />

transcriptional co-regulator ataxin-1 is fine-tuned <strong>by</strong> a subtle balance between self<strong>and</strong><br />

hetero-associations. Ataxin-1 is <strong>the</strong> protein responsible for <strong>the</strong> hereditary<br />

spinocerebellar ataxia type 1, a disease linked to protein aggregation <strong>and</strong><br />

transcriptional dysregulation. Expansion <strong>of</strong> a polyglutamine tract is essential for<br />

ataxin-1 aggregation, but <strong>the</strong> sequence-wise distant AXH domain plays an<br />

important aggravating role in <strong>the</strong> process. The AXH domain is also a key element<br />

for non-aberrant function as it intervenes in interactions with multiple protein<br />

partners. Previous data have shown that AXH is dimeric in solution <strong>and</strong> forms a<br />

dimer <strong>of</strong> dimers when crystallized. By solving <strong>the</strong> structure <strong>of</strong> a complex <strong>of</strong> AXH<br />

with a peptide from <strong>the</strong> interacting transcriptional repressor CIC, we show that <strong>the</strong><br />

dimer interface <strong>of</strong> AXH is displaced <strong>by</strong> <strong>the</strong> new interaction <strong>and</strong> that, when blocked<br />

<strong>by</strong> <strong>the</strong> CIC peptide AXH aggregation <strong>and</strong> misfolding is impaired. This is a unique<br />

example in which palindromic self- <strong>and</strong> hetero-interactions within a sequence with<br />

chameleon properties discriminate <strong>the</strong> partner. We propose a drug design strategy<br />

for <strong>the</strong> treatment <strong>of</strong> SCA1 that is based on <strong>the</strong> information gained from <strong>the</strong><br />

AXH/CIC complex.<br />

40 41<br />

OC-12


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

OC-13<br />

Molecular recognition <strong>and</strong> optimization <strong>of</strong> translocation <strong>of</strong><br />

antiprion <strong>the</strong>rapeutic agents from molecular <strong>the</strong>ory <strong>of</strong> solvation<br />

Andriy Kovalenko, 1,2 Neil Cashman, 3 <strong>and</strong> Nikolay Blinov, 1,2<br />

From molecular mechanisms to intervention strategies:<br />

Stabilizing fibrils to inhibit prion replication<br />

OC-14<br />

1 National Institute for Nanotechnology, Edmonton (Canada), <strong>and</strong>riy.kovalenko@nrc-cnrc.gc.ca.<br />

2 Dept. <strong>of</strong> Mechanical Engineering, <strong>University</strong> <strong>of</strong> Alberta, Edmonton (Canada), nblinov@ualberta.ca.<br />

3 Dept. <strong>of</strong> Medicine, <strong>University</strong> <strong>of</strong> British Columbia, Vancouver (Canada), Neil.Cashman@vch.ca.<br />

Elucidation <strong>of</strong> <strong>the</strong> mechanisms <strong>of</strong> recognition <strong>and</strong> inhibition <strong>of</strong> neurotoxic<br />

aggregates <strong>by</strong> <strong>the</strong> <strong>the</strong>rapeutic agents as well as <strong>the</strong>ir efficient delivery to <strong>the</strong><br />

central nervous system is important for development <strong>of</strong> <strong>the</strong>rapy against<br />

neurodegenerative diseases.[1,2] Experimental screening can be time consuming<br />

<strong>and</strong> expensive, thus molecular modelling can be useful for initial selection <strong>of</strong> drug<br />

c<strong>and</strong>idates <strong>and</strong> optimization <strong>of</strong> anti-prion drugs <strong>and</strong> conformational antibodies<br />

targeting neurotoxic aggregates for efficient delivery.[3]<br />

Solvation is a major factor in biomolecular processes,<br />

including slow exchange <strong>and</strong> localization <strong>of</strong> solvent, ions,<br />

protein-lig<strong>and</strong> recognition, <strong>and</strong> membrane translocation.<br />

Statistical-mechanical, 3D-RISM-KH molecular <strong>the</strong>ory <strong>of</strong><br />

solvation [4] accurately describes solvation effects in<br />

protein-lig<strong>and</strong> recognition protocols.[5,6] In a single<br />

formalism, <strong>the</strong> 3D-RISM-KH method efficiently accounts<br />

for electrostatic <strong>and</strong> non-polar effects, including hydrogen bonding, hydrophobicity,<br />

structural solvation / desolvation in crowded inter- <strong>and</strong> intracellular environments.<br />

42 43<br />

The new multiscale modeling platform for optimization <strong>of</strong> molecular recognition <strong>and</strong><br />

translocation <strong>of</strong> antiprion <strong>the</strong>rapeutic agents is based on <strong>the</strong> implementations <strong>of</strong> <strong>the</strong><br />

3D-RISM-Dock protocol in AutoDock suite,[5] 3D-RISM-KH solvent analysis in<br />

Molecular Operating Environment package,[6] <strong>and</strong> multi-time-step MD steered with<br />

3D-RISM-KH effective solvation forces in Amber package.[7,8] We apply <strong>the</strong> new<br />

platform to study binding modes <strong>of</strong> antiprion compounds, molecular recognition at<br />

<strong>the</strong> initial stages <strong>of</strong> oligomerization <strong>of</strong> Aβ peptides, structural solvation effects on<br />

stability <strong>of</strong> amyloid fibrils, <strong>and</strong> optimization <strong>of</strong> antiprion agents for efficient delivery.<br />

REFERENCES<br />

[1] B. Frost <strong>and</strong> M. I. Diamond Nat. Rev. Neurosci., 2010, 11,155-9.<br />

[2] Y. Biran et al. J. Cell Mol. Med., 2009, 13, 61-6.<br />

[3] G. Subramaniana <strong>and</strong> D. B. Kitchen J. Comput. Aid. Mol. Des., 2003,17, 643–4.<br />

[4] A. Kovalenko, in: Molecular Theory <strong>of</strong> Solvation, Hirata(ed.), Kluwer,Dordrecht 2003,169-275.<br />

A. Kovalenko. Pure Appl. Chem., 2013, 85, 159-99.<br />

[5] D. Nikolic, et al. J.Chem. Theory Comput., 2012, 8, 3356-2. N. Blinov, et al. Molec.Simul., 2011, 37, 718-8.<br />

[6] http://www.chemcomp.com/MOE-Structure_Based_Design.htm<br />

[7] T. Luchko, et al. J. Chem. Theory Comput., 2010, 6, 607-4.<br />

[8] I. Omelyan <strong>and</strong> A. Kovalenko. J. Chem. Phys., 2013, 139, 244106-23.<br />

Bieschke, Jan 1<br />

1 Department <strong>of</strong> Biomedical Engineering, Washington <strong>University</strong> in St. Louis, One Brookings<br />

Drive, St. Louis, MO 63130, USA, bieschke@wustl.edu<br />

In protein misfolding disorders, such as Alzheimer's disease (AD) <strong>and</strong> Parkinson's<br />

disease (PD), <strong>and</strong> prion diseases proteins accumulate in insoluble aggregates in<br />

<strong>the</strong> affected tissue. Recently, it became clear that protein misfolding in prion<br />

diseases, AD <strong>and</strong> PD follows a common mechanism <strong>of</strong> seeded polymerization.<br />

Prion-like autocatalytic replication <strong>of</strong> seeds are found on a molecular, if not<br />

organismal level are also observed in alpha-synuclein (aS) <strong>and</strong> Amyloid beta<br />

(Abeta) misfolding in PD <strong>and</strong> AD, respectively. These findings suggest that<br />

inhibiting prion replication could be a promising <strong>the</strong>rapeutic strategy not just in<br />

prion disease, but also in AD <strong>and</strong> PD.<br />

We have recently found that derivatives <strong>of</strong> Orcein, a phenoxazine dye that can be<br />

isolated from <strong>the</strong> lichen Rocella tinctoria, accelerate fibril formation 1 . At <strong>the</strong> same<br />

time <strong>the</strong>se compounds deplete toxic oligomeric <strong>and</strong> prot<strong>of</strong>ibrillar forms <strong>of</strong> <strong>the</strong><br />

peptide reducing toxic oligomers. The <strong>the</strong>ory <strong>of</strong> nucleated polymerization posits<br />

that stabilizing amyloid fibrils should decrease <strong>the</strong>ir seeding potential <strong>and</strong> thus<br />

should choke <strong>of</strong>f prion replication. We have tested this hypo<strong>the</strong>sis in vitro <strong>and</strong> in<br />

cell culture for a number <strong>of</strong> amyloidogenic proteins <strong>and</strong> peptides, including Abeta,<br />

aS, <strong>and</strong> tau.<br />

Drug treatment stabilized fibrils against fragmentation, decreased <strong>the</strong>ir seeding<br />

efficacy <strong>and</strong> reduced <strong>the</strong>ir replication rate in serial protein misfolding cyclic<br />

amplification (serial PMCA) experiments. At <strong>the</strong> same time it decreased cellular<br />

uptake <strong>and</strong> seeding in neuronal cell models <strong>and</strong> rescued Abeta <strong>and</strong> aS toxicity.<br />

These results serve as pro<strong>of</strong>-<strong>of</strong>-principle for a new <strong>the</strong>rapeutic strategy <strong>of</strong><br />

stabilizing mature amyloid fibrils in order to prevent prion replication in AD, PD <strong>and</strong><br />

o<strong>the</strong>r protein msifolding diseases.<br />

ACKNOWLEDGEMENTS<br />

Financial support from NIH Grant No. 5 P30 DK020579, DFG, BI 1409/1-1, BMBF GERAMY<br />

01GM1107C is acknowledged.<br />

REFERENCES<br />

[1] Bieschke, J.; Herbst, M.;et al., Small-molecule conversion <strong>of</strong> toxic oligomers to nontoxic beta-sheetrich<br />

amyloid fibrils. Nature chemical biology 2012, 8 (1), 93-101.


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Analysis <strong>and</strong> characterisation <strong>of</strong> Human Glycoproteins using<br />

MALDI TOF Mass Spectrometry<br />

R. Castangia 1 , Mat<strong>the</strong>w S. F. Choo 2 ; Omar Belgacem 1 <strong>and</strong><br />

ET<br />

Anne Dell 2<br />

1 Global MALDI Applications Development Group, Manchester, UK roberto.castangia@kratos.co.uk<br />

2 Division <strong>of</strong> Molecular Biosciences, Faculty <strong>of</strong> Natural Sciences, Imperial College London, UNITED<br />

KINGDOM<br />

The diversity <strong>of</strong> protein structures <strong>and</strong> functions can be considered a direct<br />

consequence <strong>of</strong> <strong>the</strong> posttranslational modifications (PTMs) variability. Among<br />

<strong>the</strong>m, glycosylation represents a key process that is yet to be fully understood<br />

due to its combinatorial nature <strong>and</strong> biological implications.<br />

In this respect, mass spectrometry gives a pr<strong>of</strong>ound impact in <strong>the</strong> investigation<br />

ABSTRACTS<br />

44 <strong>of</strong> glycoprotein structure <strong>and</strong> functions, unveiling structural details not 45<br />

EXHIBITOR TALK<br />

accessible with o<strong>the</strong>r analytical methods.<br />

This presentation will outline a full approach in <strong>the</strong> analysis <strong>of</strong> human<br />

glycoproteins using MALDI TOF mass spectrometry. The analytical method<br />

relies on desorption <strong>of</strong> molecules <strong>by</strong> direct laser irradiation. Intact molecules<br />

are ionised producing fragment-less m/z (mass over charge) signals in a broad<br />

mass range (typically 100-500kDa). Moreover, <strong>the</strong> combination with a highenergy<br />

collision, allows <strong>the</strong> fragmentation <strong>of</strong> <strong>the</strong> molecules unveiling detailed<br />

structural properties.<br />

We have applied MALDI TOF analysis to a broad set <strong>of</strong> glycoproteins including<br />

IgGs, Factor IX, <strong>and</strong> Erythropoietin. Glycans were also investigated <strong>and</strong><br />

identified <strong>by</strong> means <strong>of</strong> a proprietary database able to distinguish between<br />

structural isomers. In addition, a de-novo approach to glycans identification will<br />

be presented. This method employs a quick <strong>and</strong> easy access to signal<br />

assignment based a sensitive MS n analysis.


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong>May 25-26, <strong>2014</strong> - Naples, Italy<br />

Biotechnology, Mediterranean Diet <strong>and</strong> <strong>the</strong> Brain<br />

Roberto Crea<br />

SN<br />

President <strong>and</strong> CSO. CreAgri, Inc., Hayward, California 94545.<br />

The cellular mechanism <strong>of</strong> inflammation, one <strong>the</strong> most important scientific<br />

discoveries <strong>of</strong> <strong>the</strong> past twenty years in cell <strong>and</strong> molecular biology, has been pivotal<br />

to <strong>the</strong> development <strong>of</strong> numerous drugs (biologics) both <strong>by</strong> <strong>the</strong> Pharma <strong>and</strong> <strong>the</strong><br />

Biotechnology industry to help manage <strong>the</strong> devastating effects <strong>of</strong> uncontrolled<br />

inflammation [1].<br />

Chronic inflammation plays a key role in <strong>the</strong> pathogenesis <strong>of</strong> some <strong>of</strong> today’s major<br />

public health epidemics including diseases such as Alzheimer’s, Parkinson, heart<br />

failure <strong>and</strong> arthritis [2]. Especially injurious among <strong>the</strong> aging population, <strong>the</strong><br />

outcome <strong>of</strong> uncontrolled inflammation is causing a widespread health emergency<br />

<strong>by</strong> utterly taxing family budgets <strong>and</strong> emotions. By causing an incalculable loss <strong>of</strong><br />

working hours is also becoming an economic emergency <strong>and</strong> is fueling potential<br />

ABSTRACTS<br />

46 47<br />

SPECIAL NOTE<br />

societal instability.<br />

The Mediterranean diet, consisting <strong>of</strong> high concentration <strong>of</strong> natural polyphenols<br />

<strong>and</strong> flavonoids, is associated with a low incidence <strong>of</strong> neurodegenerative diseases,<br />

cancer, diabetes <strong>and</strong> cardiovascular disorders [3]. Olive polyphenols, in particular<br />

hydroxytyrosol, have been associated with one <strong>of</strong> <strong>the</strong> strongest anti-inflammatory<br />

activity among many naturally occurring antioxidants [4]. CreAgri Inc., <strong>and</strong> o<strong>the</strong>r<br />

laboratories have discovered that hydroxytyrosol, <strong>and</strong> o<strong>the</strong>r minor olive<br />

polyphenols obtained from <strong>the</strong> vegetation water <strong>of</strong> olives during <strong>the</strong> production <strong>of</strong><br />

olive oil, exercise <strong>the</strong>ir anti-inflammatory activity <strong>by</strong> down-modulating <strong>the</strong> activation<br />

<strong>of</strong> <strong>the</strong> cellular pathway Nuclear Factor Kappa - Beta (“NF-kb”) [5].<br />

In recent research <strong>and</strong> scientific literature <strong>the</strong> NF-kb cellular complex, a five protein<br />

complex <strong>of</strong> transcription factors, has emerged as a central regulator <strong>of</strong> chronic<br />

inflammatory activity [6]. Its activation <strong>by</strong> a number <strong>of</strong> toxic stimuli leads to <strong>the</strong><br />

expression <strong>of</strong> more than 500 proteins with a strong pro-inflammatory activity.<br />

Cellular NF-kb activation seems to be remarkably modulated <strong>by</strong> hydroxytyrosol in<br />

inactivating <strong>the</strong> expression <strong>of</strong> numerous pro-inflammatory cytokines, chemokines<br />

<strong>and</strong> o<strong>the</strong>r pro-inflammatory factors [5].<br />

Present in small concentration in olive oil, Hydroxytyrosol is an orally bioavailable<br />

phenolic compound, particularly active as anti-inflammatory agent. Its low<br />

molecular weight, high bioavailability, chemical similarity to dopamine <strong>and</strong> high<br />

perfusion through tissues <strong>and</strong> cellular membranes, have made it a strong<br />

c<strong>and</strong>idate in addressing <strong>the</strong> management <strong>of</strong> brain inflammation caused <strong>by</strong> a variety<br />

<strong>of</strong> pathologies, including <strong>the</strong> gradual deposition <strong>of</strong> protein units that form amyloid<br />

plaques <strong>and</strong> tau tangles (Pasinetti, G. et al., unpublished study).


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>of</strong> <strong>and</strong> <strong>Amyloids</strong> <strong>Prions</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

SN<br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

We propose here that a balanced <strong>and</strong> healthy diet, fur<strong>the</strong>r enriched in polyphenols<br />

<strong>and</strong> hydroxytyrosol, might mitigate <strong>the</strong> onset <strong>of</strong> neurodegenerative <strong>and</strong> cognitive<br />

diseases <strong>and</strong> provide a non toxic, inexpensive <strong>and</strong> natural solution to brain ageing<br />

<strong>and</strong> chronic inflammation. Hydroxytyrosol is now readily available <strong>by</strong> <strong>the</strong> use <strong>of</strong> an<br />

aqueous process that produces it in large quantities from <strong>the</strong> vegetation water <strong>of</strong><br />

olives (juice) without any use <strong>of</strong> solvents or toxic chemicals. Combined with its<br />

strong safety pr<strong>of</strong>ile [6-7], increasing clinical evidence supports its <strong>the</strong>rapeutic<br />

potential in <strong>the</strong> management <strong>of</strong> chronic inflammatory diseases in <strong>the</strong> brain.<br />

REFERENCES<br />

[1] Makarov, S et al. (2001), Arthritis Res. 3, 200-206<br />

[2] Manabe, I. et al. (2011) Circ. J. 75, 2739-2748<br />

[3] Lourida et al. , Epidemiology, 2013, 4,479-89<br />

[4] Bitler, C. et al. , J. <strong>of</strong> Nutritional 2005,135, 1475-1479<br />

ABSTRACTS<br />

[5] Richard N. et al. , Planta Medica, 2011, 77, 1890-97<br />

[6] Killeen, M et al., Drug Discovery Today, <strong>2014</strong>, 383-38<br />

[7] Christian M.S., et al. Drug <strong>and</strong> Chemical Toxicology, 2004, 27-4, 309-330<br />

48 49<br />

POSTER PRESENTATIONS


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-1<br />

ANTI-AMYLOIDOGENIC PROPERTY OF HUMAN GASTROKINE 1<br />

F. Altieri, C.S. Di Stadio, G. Miselli, E. Rippa, P. Arcari.<br />

Department <strong>of</strong> Molecular Medicine <strong>and</strong> Medical Biotechnologies, <strong>University</strong> <strong>of</strong> Naples Federico II,<br />

Naples, Italy.<br />

Gastrokine 1 (GKN1) is a stomach-specific protein that plays an important role in<br />

maintaining <strong>the</strong> physiological function <strong>of</strong> <strong>the</strong> gastric mucosa [1]. The protein<br />

contains <strong>the</strong> BRICHOS domain <strong>of</strong> about 100 amino acids, present also in several<br />

unrelated proteins associated with major human diseases like BRI2, related to<br />

familial British <strong>and</strong> Danish dementia; chondromodulin-I (ChM-I), linked to<br />

chondrosarcoma; surfactant protein C (SP-C), associated with respiratory distress<br />

syndrome; <strong>and</strong> gastrokines linked to gastric cancer [2]. Recent researches have<br />

shown that recombinant Bri2 <strong>and</strong> SP-C precursor (proSP-C) BRICHOS domains<br />

were able to prevent fibril formation <strong>of</strong> amyloid-beta peptide (Aβ). Aβ is <strong>the</strong> major<br />

component <strong>of</strong> extracellular amyloid deposits in Alzheimer's disease <strong>and</strong> derives<br />

from <strong>the</strong> partial hydrolysis <strong>of</strong> <strong>the</strong> amyloid precursor protein (APP) catalyzed <strong>by</strong> β-<br />

<strong>and</strong> γ-secretase.<br />

Having available purified recombinant GKN1 (rGKN1) [3], we investigated on <strong>the</strong><br />

interaction <strong>of</strong> <strong>the</strong> protein versus Aβ(1-40). Human rGKN1 was incubated in<br />

presence or absence <strong>of</strong> Aβ at 1:10 molar ratios. Chicken cystatin was used as<br />

negative control. SDS-PAGE was <strong>the</strong>n used to highlight Aβ solubility. Thi<strong>of</strong>lavine T<br />

binding assay was also used to evaluate <strong>the</strong> aggregation <strong>of</strong> Aβ. Blue Native Page<br />

(BN-PAGE), BIAcore technique <strong>and</strong> mass spectrometry analysis were performed to<br />

characterize <strong>the</strong> interaction.<br />

The results showed that rGKN1 prevented in vitro amyloid aggregation <strong>and</strong> fibrils<br />

formation <strong>by</strong> inhibiting Aβ(1-40) aggregation. BN-PAGE, ITC <strong>and</strong> mass<br />

spectrometry showed <strong>the</strong> formation <strong>of</strong> rGKN1/Aβ complex. BIAcore kinetics <strong>of</strong><br />

rGKN1/Aβ interaction led to calculate a dissociation constant (k D ) <strong>of</strong> 34 µM. Taking<br />

advantage from <strong>the</strong> presence in <strong>the</strong> recombinant protein <strong>of</strong> <strong>the</strong> His 6 -Tag sequence,<br />

we also investigated <strong>the</strong> interaction <strong>by</strong> confocal microscopy <strong>and</strong> NiNTA pull-down<br />

assay <strong>and</strong> probing with anti-APP antibody.<br />

The preliminary data obtained strongly suggested that GKN1 is endowed <strong>by</strong> antiamyloid<br />

activity thus it might play a role as chaperone directed against unfolded<br />

peptide segments. In particular, GKN1 showed <strong>the</strong> ability to recognize APP <strong>and</strong> to<br />

bind amyloid-beta peptide preventing its aggregation.<br />

Novel approaches in <strong>the</strong> study <strong>of</strong> <strong>the</strong> Aβ peptide oligomers:<br />

shining light <strong>by</strong> time-resolved Fourier-transform infrared<br />

spectroscopy<br />

Maurizio Baldassarre, Andreas Barth<br />

Department <strong>of</strong> Biochemistry <strong>and</strong> <strong>Biophysics</strong>, Stockholm <strong>University</strong>, Stockholm, Sweden<br />

Although amyloid fibrils represent <strong>the</strong> hallmark in <strong>the</strong> onset <strong>and</strong> evolution <strong>of</strong><br />

Alzheimer's disease, <strong>the</strong> focus on <strong>the</strong> actual pathogenic species in this brain<br />

disorder has shifted from fibrils to soluble oligomers <strong>of</strong> <strong>the</strong> Aβ peptide. Our efforts<br />

aim at elucidating <strong>the</strong> following aspects. (a) Validity <strong>of</strong> <strong>the</strong> β-hairpin model for <strong>the</strong><br />

Aβ peptide within <strong>the</strong> oligomers. (b) Structural organisation <strong>of</strong> <strong>the</strong> oligomers,<br />

allowing to confirm/confute <strong>the</strong> main models proposed <strong>by</strong> o<strong>the</strong>r authors (stacks <strong>of</strong><br />

β-hairpins, β-barrels, Y-shaped dimers). (c) Extent <strong>of</strong> β-sheet in <strong>the</strong> monomer. (d)<br />

Residue-level resolution <strong>of</strong> <strong>the</strong> kinetics <strong>of</strong> oligomer <strong>and</strong> fibril formation. Our<br />

research brings toge<strong>the</strong>r several cutting-edge approaches <strong>of</strong>ten used separately in<br />

infrared spectroscopy: (1) high-sensitivity rapid scanning infrared spectrometers<br />

capable <strong>of</strong> acquiring spectra with millisecond resolution; (2) UV flash-induced<br />

photolysis <strong>of</strong> “caged” sulfate, inducing instant (~100 μs) pH drops <strong>and</strong> triggering in<br />

situ aggregation <strong>of</strong> <strong>the</strong> Aβ peptide; <strong>and</strong> in future (3) 13 C-labelling <strong>of</strong> peptide<br />

carbonyls in selected peptide groups, allowing to study secondary structure<br />

transitions, as well as formation <strong>of</strong> intra- <strong>and</strong> inter-molecular contacts with singleresidue<br />

resolution; (4) Calculation <strong>of</strong> <strong>the</strong>oretical infrared absorption spectra for<br />

c<strong>and</strong>idate structures, allowing for straightforward comparison with infrared spectra<br />

obtained experimentally. The poster will present our approach <strong>and</strong> our recent<br />

results with Aβ 42.<br />

50 51<br />

P-2<br />

REFERENCES<br />

[1] TE Martin, CT Powell, Z Wang, S Bhattacharyya, MM Walsh-reitz, K Agarwal, FG Toback AJP<br />

Gastrointesinal <strong>and</strong> Liver Physiology 2003, 285, G332–G343.<br />

[2] H Will<strong>and</strong>er, J Presto, G Askarieh, H Biverstål, B Frohm, SD Knight, J Johansson, S Linse J Biol<br />

Chem 2012, 287, 31608-31617.<br />

[3] LM Pavone, P Del Vecchio, P Mallardo, F Altieri, V De Pasquale, S Rea, NM Martucci, CS Di<br />

Stadio, P Pucci, A Flagiello, M Masullo, P Arcari, E Rippa Mol Biosyst 2013, 9, 412-421.<br />

Figure 1. Theroretical scheme showing how transitions <strong>of</strong> Aβ1-40 from statistical r<strong>and</strong>om coil<br />

conformations (blue circles) to β-hairpins (orange circles), induced <strong>by</strong> a pH drop from high to low pH,<br />

are expected to change <strong>the</strong> infrared absorption <strong>of</strong> <strong>the</strong> peptide in <strong>the</strong> amide I region. (A) Unlabelled<br />

peptide. (B) Peptide 13C-labelled at two positions, showing <strong>the</strong> expected effect <strong>of</strong> coupling (red arrow).


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-3<br />

Structural restraints for early A-oligomers from propensity for<br />

aggregation predicted <strong>by</strong> molecular <strong>the</strong>ory <strong>of</strong> solvation<br />

Investigating <strong>the</strong> aggregation properties <strong>of</strong> β-synuclein <strong>and</strong> its<br />

effect on <strong>the</strong> aggregation <strong>of</strong> α-synuclein<br />

P-4<br />

Nikolay Blinov, 1,2 Neil Cashman, 3 <strong>and</strong> Andriy Kovalenko 1,2<br />

1 National Institute for Nanotechnology, Edmonton (Canada), <strong>and</strong>riy.kovalenko@nrc-cnrc.gc.ca.<br />

2 Dept. <strong>of</strong> Mechanical Engineering, <strong>University</strong> <strong>of</strong> Alberta, Edmonton (Canada), nblinov@ualberta.ca.<br />

3 Dept. <strong>of</strong> Medicine, <strong>University</strong> <strong>of</strong> British Columbia, Vancouver (Canada), Neil.Cashman@vch.ca.<br />

James Brown, Céline Galvagnion, Alex Buell, Chris Dobson<br />

Small A oligomers have been linked to neurodegeneration in Alzheimer's<br />

disease.[1] Information about 3D structure <strong>of</strong> <strong>the</strong> oligomers can provide a basis for<br />

interference with <strong>the</strong> pathways <strong>of</strong> aggregation <strong>and</strong> for inhibition <strong>of</strong> neurotoxicity.<br />

Experimental characterization <strong>of</strong> <strong>the</strong> oligomers has been complicated <strong>by</strong> <strong>the</strong>ir<br />

transient nature <strong>and</strong> structural flexibility. In this<br />

situation, molecular modelling can provide a<br />

valuable insight into <strong>the</strong> mechanisms <strong>of</strong><br />

oligomerization <strong>and</strong> structural characteristics <strong>of</strong><br />

oligomers <strong>and</strong> amyloid fibrils.[2]<br />

52 53<br />

Here we use a novel approach providing<br />

prediction <strong>of</strong> <strong>the</strong> propensity for aggregation <strong>of</strong><br />

amyloidogenic peptides to identify possible<br />

structural restraints for A-oligomers at <strong>the</strong> initial<br />

stages <strong>of</strong> oligomerization. The approach is<br />

based on <strong>the</strong> 3D-RISM-KH molecular <strong>the</strong>ory <strong>of</strong><br />

solvation which efficiently <strong>and</strong> accurately<br />

describes solvation effects with consistent account for solvent molecular<br />

specificities, composition, <strong>and</strong> <strong>the</strong>rmodynamic state.[3] The <strong>the</strong>ory has been<br />

recently used to study <strong>the</strong>rmodynamics <strong>and</strong> solvation structure <strong>of</strong> -sheet<br />

oligomers, A <strong>and</strong> prion amyloid fibrils, <strong>and</strong> to predict binding modes <strong>of</strong> antiprion<br />

compounds.[4] We use this methodology to build/screen plausible models <strong>of</strong> A<br />

(toxic) oligomers with account for restraints derived from conformational antibodyoligomer<br />

binding experiments.<br />

REFERENCES<br />

[1] C. Haass <strong>and</strong> D. J. Selkoe Nat. Rev. Mol. Cell Biol., 2007, 8, 101-112.<br />

[2] J. E. Straub <strong>and</strong> D. Thirumalai Curr. Opin. Struct. Biol., 2010, 20, 187-195.<br />

[3] A. Kovalenko, in: Molecular Theory <strong>of</strong> Solvation, Hirata (ed.), Kluwer, Dordrecht, 2003,169-275.<br />

[4] N. Blinov, et al. Biophys. J., 2010, 98, 282-296; N. Blinov, et al. Mol. Sim., 2011, 37, 718-728; T.<br />

Yamazaki, et al. Biophys. J., 2009, 95, 4540-8, D. Nikolic, et al., J. Chem. Theory Comput., 2012, 8,<br />

3356-3372.<br />

Dept. <strong>of</strong> Chemistry, Cambridge <strong>University</strong>, Cambridge (UK), jb882@cam.ac.uk<br />

α-synuclein is an intrinsically disordered protein known to be directly involved in <strong>the</strong><br />

pathogenesis <strong>of</strong> Parkinson's disease through <strong>the</strong> formation <strong>of</strong> toxic oligomers <strong>and</strong><br />

amyloid fibrils. 1,2 It localises to synaptic vesicles in vivo <strong>and</strong> <strong>the</strong> presence <strong>of</strong> certain<br />

phospholipid vesicles modulates aggregation in vitro. 3 β-synuclein has very similar<br />

structural properties to α-synuclein however has a greatly reduced aggregation<br />

propensity. 4 Experiments were performed to investigate <strong>the</strong> difference between α-<br />

<strong>and</strong> β-synuclein aggregation kinetics in a phospholipid vesicle aggregation model<br />

<strong>and</strong>, fur<strong>the</strong>r, <strong>the</strong> effect <strong>of</strong> β-synuclein on α-synuclein aggregation kinetics (Fig. 1).<br />

Our strategy consists <strong>of</strong> trying to resolve <strong>the</strong> effect <strong>of</strong> <strong>the</strong> sequence difference<br />

between α- <strong>and</strong> β-synuclein on <strong>the</strong> various mechanistic steps that are involved in<br />

amyloid formation, such as primary nucleation <strong>of</strong> aggregates, aggregate growth<br />

<strong>and</strong> proliferation. We find that β-synuclein interferes with α-synuclein primary<br />

nucleation <strong>and</strong> secondary nucleation processes, but has no significant effect on<br />

fibril elongation.<br />

a b c<br />

Fig. 1. A set <strong>of</strong> experiments to determine <strong>the</strong> effect <strong>of</strong> βsyn on different αsyn aggregation processes.<br />

(a) Lipid-nucleated aggregation (350 uM DMPS small unilamellar vesicles, pH 6.5, 30 °C) <strong>of</strong> 100 uM<br />

(dark purple) <strong>and</strong> 50 uM (light purple) αsyn in <strong>the</strong> presence <strong>of</strong> a 1:1 molar ratio <strong>of</strong> βsyn (dark <strong>and</strong><br />

light green, respectively). (b) Elongation from 1% αsyn seed fibrils (pH 6.5, 30 °C). 100 uM αsyn<br />

(purple) in <strong>the</strong> presence <strong>of</strong> 50 uM (light green) <strong>and</strong> 100 uM (green) βsyn. βsyn (100 uM, darkest<br />

green) does not elongate from <strong>the</strong>se seeds. (c) Secondary nucleation 5 (pH 4.8, 30 °C, 10 nM αsyn<br />

seed) <strong>of</strong> 55 uM αsyn (purple) in <strong>the</strong> presence <strong>of</strong> 55 uM (light green) <strong>and</strong> 110 uM (dark green) βsyn.<br />

REFERENCES<br />

[1] M.R. Cookson Annu. Rev. Biochem. 2005<br />

[2] N. Cremades et. al. Cell 2012<br />

[3] C. Galvagnion et. al. Submitted<br />

[4] C. Roodveldt et.al. Biochemistry 2012<br />

[5] A.K. Buell et. al. PNAS Accepted


P-5<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>of</strong> <strong>and</strong> <strong>Amyloids</strong> <strong>Prions</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Molecular chaperones suppress <strong>the</strong> toxicity <strong>of</strong> misfolded<br />

protein oligomers<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

COMPUTATIONAL DESIGN OF PEPTIDES THAT TARGET THE<br />

AMYLOID PRECURSOR PROTEIN TRANSMEMBRANE DOMAIN<br />

P-6<br />

R. Cascella 1 , E. Evangelisti 1 , B. Mannini 1 , B. Tiribilli 2 A. Relini 3 , J.N.<br />

Buxbaum 4 , C.M. Dobson 5 , M.R. Wilson 6 , F. Chiti 1 <strong>and</strong> C. Cecchi 1<br />

1 Dept. <strong>of</strong> Experimental <strong>and</strong> Clinical Biomedical Sciences, <strong>University</strong> <strong>of</strong> Florence, V.le GB Morgagni 50,<br />

50134 Florence, Italy, roberta.cascella@unifi.it.<br />

2 Consiglio Nazionale delle Ricerche (CNR), Istituto dei Sistemi Complessi, Via Madonna del Piano 10,<br />

50019 Sesto Fiorentino, Florence, Italy<br />

3 Dept. <strong>of</strong> Physics, <strong>University</strong> <strong>of</strong> Genoa, 16146 Genoa, Italy<br />

4 Dept. <strong>of</strong> Molecular <strong>and</strong> Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037,<br />

USA<br />

5 Dept <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom<br />

6 School <strong>of</strong> Biological Sciences, <strong>University</strong> <strong>of</strong> Wollongong, Wollongong 2522, Australia<br />

Molecular chaperones are proteins known to assist <strong>the</strong> folding process <strong>of</strong> newly<br />

54 55<br />

syn<strong>the</strong>sised or temporarily misfolded proteins, inhibit protein aggregation <strong>and</strong><br />

promote disaggregation <strong>and</strong> clearance <strong>of</strong> misfolded aggregates inside cells. We<br />

have tested <strong>the</strong> effects <strong>of</strong> different chaperones (human αB-crystallin, Hsp70,<br />

clusterin, haptoglobin, α 2 -macroglobulin, <strong>and</strong> three different types <strong>of</strong> TTR) on <strong>the</strong><br />

toxicity <strong>of</strong> misfolded oligomers preformed from different amyloidogenic<br />

peptides/proteins (HypF-N <strong>and</strong> Aβ 42 ) added extracellularly to cultured cells.<br />

Chaperones were found to decrease oligomer toxicity significantly, even at very low<br />

chaperone/protein molar ratios. Infrared spectroscopy <strong>and</strong> site-directed labeling<br />

experiments using pyrene ruled out structural reorganizations within <strong>the</strong> discrete<br />

oligomers following incubation with chaperones. Ra<strong>the</strong>r, confocal microscopy,<br />

SDS-PAGE, <strong>and</strong> intrinsic fluorescence measurements indicated tight binding<br />

between oligomers <strong>and</strong> chaperones. Moreover, atomic force microscopy (AFM)<br />

indicated that larger assemblies <strong>of</strong> oligomers are formed in <strong>the</strong> presence <strong>of</strong> <strong>the</strong><br />

chaperones, suggesting that <strong>the</strong> chaperones bind to <strong>the</strong> oligomers <strong>and</strong> promote<br />

<strong>the</strong>ir assembly into larger species. Overall, <strong>the</strong> data indicate a generic ability <strong>of</strong><br />

chaperones to efficiently neutralize <strong>the</strong> toxicity <strong>of</strong> oligomers formed <strong>by</strong> misfolded<br />

proteins <strong>and</strong> reveal that fur<strong>the</strong>r assembly <strong>of</strong> protein oligomers into larger species<br />

can be an effective strategy to neutralize such species.<br />

T. Lemmin 1 , M. Chino 2 , A. Lombardi 2 , W. F. DeGrado 1<br />

1 Dept. <strong>of</strong> Pharmaceutical Chemistry, <strong>University</strong> <strong>of</strong> California, San Francisco (USA),<br />

thomas.lemmin@ucsf.edu<br />

2 Dept. <strong>of</strong> Chemical Sciences, <strong>University</strong> Federico II, Napoli (Italy), marco.chino@unina.it<br />

The Amyloid Precursor protein (APP) proteolytic cleavage <strong>by</strong> γ-secretase <strong>of</strong> <strong>the</strong><br />

transmembrane (TM) domain leads to <strong>the</strong> formation <strong>of</strong> amyloid-β (Aβ) peptides, <strong>the</strong><br />

deposition <strong>of</strong> which is an early indicator <strong>of</strong> Alzheimer’s disease (AD). [1] Even though<br />

<strong>the</strong> APP pathological degradation is well established, <strong>the</strong>re is still debate about its<br />

biological function. The simultaneous presence <strong>of</strong> two (small)xxx(small) motifs<br />

(G 700 xxxG 704 xxxG 708 ; G 709 xxxA 713 ), as found in glycophorin A, suggests <strong>the</strong><br />

existence <strong>of</strong> biological partners in homo- or hetero-dimerization. While mutation <strong>of</strong><br />

<strong>the</strong>se residues dramatically influences <strong>the</strong> cleavage positions, <strong>the</strong>se mutations also<br />

affect <strong>the</strong> cholesterol regulation in <strong>the</strong> brain, in which APP may be found as bound<br />

to sterol regulatory proteins <strong>and</strong> to <strong>the</strong> cholesterol itself. [2,3]<br />

Computed helical anti-membrane proteins (CHAMP) have proven to be useful tools<br />

in <strong>the</strong> study <strong>of</strong> protein-protein interactions <strong>of</strong> TM domains both in vitro <strong>and</strong> in vivo.<br />

[4] A fully automated de novo design protocol was implemented within <strong>the</strong> Rosetta<br />

s<strong>of</strong>tware <strong>by</strong> means <strong>of</strong> a structural-based pairwise potential. The protocol<br />

development <strong>and</strong> <strong>the</strong> design <strong>of</strong> anti-TM-APP peptides, which would target<br />

specifically each motif will be reported. The strategy adopted aims to predict,<br />

identify <strong>and</strong> biophysically evaluate <strong>the</strong> dimerization partners <strong>of</strong> TM-APP <strong>by</strong><br />

selectively targeting only one binding site.<br />

ACKNOWLEDGEMENTS<br />

Financial support for T.L. from <strong>the</strong> Swiss National Science Foundation is acknowledged.<br />

Financial support for M.C. from Regione Campania STRAIN program <strong>and</strong> from <strong>University</strong> Federico II<br />

Short Term Mobility program are acknowledged.<br />

REFERENCES<br />

[1] R.E. Tanzi, J.F. Gusella, P.C. Watkins, G.A. Bruns, P. St George-Hyslop, M.L. Van Keuren, D.<br />

Patterson, S. Pagan, D.M. Kurnit, R.L. Neve. Science, 1987, 235, 880-884.<br />

[2] T. Lemmin, M. Dimitrov, P. C. Fraering, M. Dal Peraro. Journal <strong>of</strong> Biological Chemistry, <strong>2014</strong>, jbc-<br />

M113.<br />

[3] Y. Song, A.K. Kenworthy, C.R. S<strong>and</strong>ers. Protein Science, 2013, 23, 1-22.<br />

[4] H. Yin, J.S. Slusky, B.W. Berger, R.S. Walters, G. Vilaire, R.I. Litvinov, J.D. Lear, G.A. Caputo, J.S.<br />

Bennett, W.F. DeGrado. Science, 2007, 315, 1817-1822.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-7<br />

Infrared Microspectroscopy as a Method <strong>of</strong> Choice for Structural<br />

Analysis <strong>of</strong> Minute Amounts <strong>of</strong> <strong>Prions</strong><br />

Martin L. Daus, Michael Beekes <strong>and</strong> Peter Lasch<br />

ZBS6-Centre for Biological Threats <strong>and</strong> Special Pathogens, Proteomics <strong>and</strong> Spectroscopy,<br />

Robert Koch-Institut, Berlin (Germany)<br />

Environmental factors affecting <strong>the</strong> aggregation state <strong>of</strong><br />

Aβ(25-35): role <strong>of</strong> unsaturated omega-3 fatty acid.<br />

Matilde Sublimi Saponetti 1 , Manuela Grimaldi 2 , Mario Scrima 2 ,<br />

Stefania Lucia Nori 3 , Fabrizio Bobba 1 , Annamaria Cucolo 1 ,<br />

Anna Maria D’Ursi 2*<br />

P-8<br />

Infrared spectroscopy allows <strong>the</strong> structural analysis <strong>of</strong> proteins. Oligomers <strong>of</strong><br />

misfolded prions form ra<strong>the</strong>r large protein aggregates with poor crystal forming<br />

properties. Therefore no high resolution structure <strong>by</strong> NMR or X-ray diffraction <strong>of</strong> a<br />

complete misfolded prion protein is so far available. Infrared spectroscopy gives<br />

structural information mainly about secondary structural elements <strong>and</strong> can help to<br />

discriminate different prion strains. There are several advantages <strong>of</strong> this technique<br />

as i) no sample labelling or staining is needed, ii) spectra can be obtained from tiny<br />

amounts <strong>of</strong> purified proteins, iii) it is relatively simple in use <strong>and</strong> iv) can provide<br />

data within a very short time. We will present a technical advance that allows<br />

spectroscopy with unprecedented sensitivity using dried protein extracts that have<br />

been analysed <strong>by</strong> linking an IR-microscope to an IR-spectrometer. Spectroscopy<br />

was applied on protein extracts <strong>of</strong> as little as about 3 nanograms. This may help to<br />

discriminate differentially folded prions on a structural level even when just minute<br />

amount <strong>of</strong> tissue/sample material is available. Biochemical <strong>and</strong> biological assays<br />

may additionally enhance <strong>the</strong> validity <strong>of</strong> biophysical results.<br />

56 57<br />

ACKNOWLEDGEMENTS<br />

Financial support from <strong>the</strong> Alberta Prion Research Institute<br />

1 SPIN-CNR <strong>and</strong> Department <strong>of</strong> Physics, “E.R. Caianello” <strong>University</strong> <strong>of</strong> Salerno,<br />

2 Department <strong>of</strong> Pharmacy, <strong>University</strong> <strong>of</strong> Salerno,<br />

3 Department <strong>of</strong> Medicine, <strong>University</strong> <strong>of</strong> Salerno,<br />

*Department <strong>of</strong> Pharmacy, <strong>University</strong> <strong>of</strong> Salerno, dursi@unisa.it<br />

Aβ amyloid peptide has an important role in <strong>the</strong> manifestation <strong>and</strong> in <strong>the</strong><br />

progression <strong>of</strong> Alzheimer disease. It has tendency to aggregate in low–molecular<br />

weight soluble oligomers, higher-molecular weight prot<strong>of</strong>ibrillar oligomers <strong>and</strong><br />

insoluble fibrils. The relative importance <strong>of</strong> <strong>the</strong>se single oligomeric-polymeric<br />

species in relation with <strong>the</strong> morbidity <strong>of</strong> <strong>the</strong> disease is nowadays debated. We have<br />

previously analyzed <strong>by</strong> EPR spectroscopy <strong>the</strong> effect <strong>of</strong> unsaturated omega-<br />

3 fatty acid (DHA) on <strong>the</strong> ability <strong>of</strong> (25–35) to be interfaced with DPPC<br />

bilayers.[2] Here we present an atomic force microscopy (AFM) study <strong>of</strong> (25–35)<br />

aggregation in three different environmental conditions: phosphate buffer, lipid<br />

dioleoylphosphocholine (DOPC) bilayers <strong>and</strong> lipid DOPC bilayer containing<br />

unsaturated omega-3 fatty acid (DHA). (25–35) is <strong>the</strong> smallest fragment<br />

retaining much <strong>of</strong> <strong>the</strong> biological activity <strong>of</strong> <strong>the</strong> full-lenght peptide, whereas<br />

phosphate buffer, lipid DOPC <strong>and</strong> lipid DHA/DOPC bilayers have been selected as<br />

paradigm <strong>of</strong> aqueous physiological solution <strong>and</strong> cell membrane mimic<br />

environments characterized <strong>by</strong> different fluidity. Our study shows that <strong>the</strong><br />

aggregation process <strong>of</strong> (25–35) on lipids is always characterized <strong>by</strong> <strong>the</strong><br />

presence <strong>of</strong> annular oligomers. Their conformational evolution during time, as<br />

monitored <strong>by</strong> in-liquid AFM experiments, show that on DOPC bilayers <strong>the</strong>y cause<br />

damages in <strong>the</strong> membrane inducing pores <strong>and</strong> delipidation. On <strong>the</strong> opposite <strong>the</strong><br />

addition <strong>of</strong> DHA to <strong>the</strong> lipid, making <strong>the</strong> lipid substrate more fluid, helps to preserve<br />

<strong>the</strong> membrane integrity against <strong>the</strong> protein aggression.<br />

REFERENCES<br />

[1] Sorrentino P, Iuliano A, Polverino A, Jacini F, Sorrentino G FEBS Lett., <strong>2014</strong>, 588(5), 641-652.<br />

[2] Vitiello G, Di Marino S, D'Ursi AM, D'Errico G. Langmuir, 2013, 29(46),14239-45.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-9<br />

Interaction between amyloid peptide Aβ(1-42) with model<br />

phospholipid bilayers<br />

A. Emendato 1 , G. D’Errico 1,2 , A. Falanga 3 , S. Galdiero 3 , D. Picone 1 , R.<br />

Spadaccini 4<br />

1 Dept. <strong>of</strong> Chemical Science, <strong>University</strong> “Federico II”, Napoli (Italy), alexeme@fastwebnet.it<br />

2 CSGI: Consorzio interuniversitario per lo Sviluppo dei sistemi a Gr<strong>and</strong>e Interfase, Firenze (Italy)<br />

3 Dept. <strong>of</strong> Molecular Diagnostic <strong>and</strong> Pharmaceutics, <strong>University</strong> “Federico II”, Napoli (Italy)<br />

4 Dept. <strong>of</strong> Science <strong>and</strong> Technology, <strong>University</strong> <strong>of</strong> Sannio, Benevento Italy<br />

Alzheimer disease is an irreversible neurodegenerative pathology that causes loss<br />

<strong>of</strong> memory <strong>and</strong> cognitive processes, <strong>and</strong> after few years death. The biochemical<br />

hallmark <strong>of</strong> this pathology is <strong>the</strong> occurrence, in neuronal cells, <strong>of</strong> insoluble<br />

aggregates formed <strong>by</strong> short peptides, derived from proteolytic cleavage <strong>of</strong> a transmembrane<br />

protein, <strong>the</strong> Amyloid Precursor Protein (APP). The interaction <strong>of</strong> <strong>the</strong>se<br />

peptides with phospholipid bilayers is a very important topic in current Alzheimer<br />

literature, although not well understood.[1] The major component <strong>of</strong> Amyloid<br />

aggregates, <strong>the</strong> fragment 1-42, called Aβ (1-42), is a highly hydrophobic peptide<br />

that shows a sequence <strong>and</strong> a three-dimensional structure similar to viral fusion<br />

peptides.[2] Recent literature data report experimental evidences <strong>of</strong> membrane<br />

fusion <strong>and</strong> permeabilization induced <strong>by</strong> this peptide.[3,4] In this work we have<br />

studied, with an integrated experimental approach, <strong>the</strong> interaction between this<br />

peptide <strong>and</strong> model phospholipid bilayers: a simple one, formed only <strong>by</strong> POPC, <strong>and</strong><br />

a more complex biomimetic one, formed <strong>by</strong> o<strong>the</strong>r components <strong>of</strong> neuronal cell<br />

membrane. The conformational preference <strong>of</strong> <strong>the</strong> peptide interacting with <strong>the</strong><br />

membranes was studied using circular dichroism spectroscopy (CD); <strong>the</strong> effect <strong>of</strong><br />

this interaction on <strong>the</strong> microstructure <strong>of</strong> <strong>the</strong> model bilayers was studied <strong>by</strong> electron<br />

paramagnetic resonance spectroscopy (EPR). Our data show that <strong>the</strong> Aβ (1-42) is<br />

readily incorporated in <strong>the</strong> simpler <strong>and</strong> fluid bilayer, <strong>and</strong> CD spectra shows <strong>the</strong><br />

occurrence <strong>of</strong> soluble aggregates; in contrast, with more rigid <strong>and</strong> complex<br />

membrane, <strong>the</strong> interaction is slower <strong>and</strong> superficial, <strong>and</strong> <strong>the</strong> aggregates are<br />

detectable only after a prolonged incubation. The leakage activity <strong>of</strong> <strong>the</strong> peptide<br />

towards <strong>the</strong>se lipid compositions was investigated <strong>by</strong> a FRET-based experiment;<br />

<strong>the</strong> data show a very strong permeabilization effect towards <strong>the</strong> liposomes<br />

composition studied. These data represent a fur<strong>the</strong>r step in <strong>the</strong> underst<strong>and</strong>ing <strong>of</strong><br />

<strong>the</strong> Aβ peptide-membrane interaction.<br />

58 59<br />

ACKNOWLEDGEMENTS: Financial support from F.A.R.O.<br />

REFERENCES<br />

[1] K. Matsuzaki, Biochimica et Biophysica Acta, 2007, 1768, 1935-1942<br />

[2] O. Crescenzi, et al. European Journal <strong>of</strong> Biochemistry, 2002, 269, 5642-5648<br />

[3] S. Dante, T. Hauß, A. Br<strong>and</strong>t, N. A. Dencher, Journal <strong>of</strong> Molecular Biology, 2008, 376, 393-404<br />

[4] M.C. Vestergaard, et al., Biochimica et Biophysica Acta, 2013, 1828, 1314-1321<br />

Structural properties <strong>of</strong> amyloid-like fibers unveiled <strong>by</strong><br />

molecular dynamics studies<br />

L. Esposito 1 , A. De Simone 2 , L. Vitagliano 1<br />

1 Institute <strong>of</strong> Biostructures <strong>and</strong> Bioimaging, CNR, Napoli (Italy), luciana.esposito@unina.it.<br />

2 Division <strong>of</strong> Molecular Biosciences, Imperial College South Kensington Campus, London (UK)<br />

Neurodegenerative diseases are widespread <strong>and</strong> severe pathologies whose<br />

etiology is largely unknown. In this scenario, it is not surprising that <strong>the</strong>rapeutic<br />

approaches for <strong>the</strong>se diseases are largely ineffective. A complete underst<strong>and</strong>ing <strong>of</strong><br />

<strong>the</strong> molecular basis <strong>of</strong> <strong>the</strong>se diseases requires detailed information on <strong>the</strong> factors<br />

that destabilize/stabilize <strong>the</strong> globular state as well as <strong>the</strong> amyloid-like fibrils. The<br />

structural characterization <strong>of</strong> <strong>the</strong>se fibrils has long been hampered <strong>by</strong> <strong>the</strong>ir very low<br />

solubility <strong>and</strong> <strong>by</strong> <strong>the</strong> non-crystalline nature <strong>of</strong> <strong>the</strong>se aggregates. Major advances in<br />

this field have been recently accomplished <strong>by</strong> <strong>the</strong> use <strong>of</strong> model peptides, whose<br />

solid aggregates exhibit most <strong>of</strong> <strong>the</strong> features <strong>of</strong> amyloid fibrils.[1] High resolution<br />

crystallographic analyses <strong>of</strong> <strong>the</strong>se amyloidogenic peptides have shown that <strong>the</strong>y<br />

have a tendency to adopt a common motif denoted as cross-β spine steric<br />

zipper.[1] In order to obtain fur<strong>the</strong>r insights into <strong>the</strong> structure determinants <strong>of</strong><br />

amyloid fiber structure/formation <strong>and</strong> to analyse <strong>the</strong> effects <strong>of</strong> crystal packing on<br />

aggregate structure, we have undertaken molecular dynamics (MD) simulations on<br />

a variety <strong>of</strong> different models arranged in a cross-β spine structure.[2-5] These<br />

studies, <strong>by</strong> analyzing peptides assemblies in a crystalline-free context, have<br />

provided information on <strong>the</strong> intrinsic propensities <strong>of</strong> peptide fragments to associate<br />

in amyloid-like states. They have also provided reliable estimates <strong>of</strong> <strong>the</strong> energetic<br />

factors involved in <strong>the</strong> aggregation process. More recently, we evaluated <strong>the</strong><br />

dynamic properties <strong>of</strong> a model peptide which is able to form two different steric<br />

zipper assemblies in <strong>the</strong> crystalline state.[6] The structural features <strong>of</strong> <strong>the</strong>se two<br />

polymorphic structures have been related to <strong>the</strong> occurrence <strong>of</strong> strain in<br />

neurodegenerative diseases.<br />

REFERENCES<br />

[1] D. Eisenberg, M. Jucker Cell. 2012, 148, 1188-203.<br />

[2] L. Esposito, C. Pedone, L. Vitagliano PNAS, 2006, 103, 11533-11538.<br />

[3] A. Merlino, L. Esposito, L. Vitagliano Proteins, 2006, 63, 918-927.<br />

[4] L. Esposito, A. Paladino, C. Pedone, L. Vitagliano Biophysical J., 2008, 94, 4031-4040.<br />

[5] L. Vitagliano, F. Stanzione, A. De Simone, L. Esposito Biopolymers, 2009, 91, 1161-1171.<br />

[6] F. Stanzione, A. De Simone, L. Esposito, L. Vitagliano Protein Pept.Lett., 2012, 19, 846-51.<br />

P-10


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-11<br />

Protein misfolded oligomer binding to membrane ganglioside<br />

GM1: a real-time single particle tracking study<br />

E. Evangelisti 1 , R. Cascella 1 , M. Calamai 2 , F. Chiti 1 , C. Cecchi 1 , M. Stefani 1<br />

1 Department <strong>of</strong> Experimental <strong>and</strong> Clinical Biomedical Sciences, <strong>University</strong> <strong>of</strong> Florence, Florence<br />

(Italy), elisa.evangelisti@unifi.it.<br />

2 European Laboratory for Non-linear Spectroscopy (LENS), <strong>University</strong> <strong>of</strong> Florence, Sesto Fiorentino,<br />

Italy<br />

Interaction <strong>of</strong> N-methylated compounds with Aβ(25-35) Amyloid<br />

Peptide<br />

M. Grimaldi 1 , A. Iuliano 2,3 , S. Di Marino 1 , M. Scrima 1 , A. Polverino 2,3 , G.<br />

Sorrentino 2 , A. M. D’Ursi 1<br />

1 Department <strong>of</strong> Pharmacy, <strong>University</strong> <strong>of</strong> Salerno, Fisciano (SA), Italy<br />

2 Department <strong>of</strong> Sciences <strong>of</strong> movement, <strong>University</strong> <strong>of</strong> Naples Par<strong>the</strong>nope, Napoli, Italy.<br />

3 Istituto di Diagnosi e Cura Hermitage Capodimonte, Napoli, Italy<br />

P-12<br />

Recent results suggest an important role <strong>of</strong> ordered lipid domains <strong>of</strong> <strong>the</strong> plasma<br />

membrane, in terms <strong>of</strong> protein <strong>and</strong> lipid content, as modulators <strong>of</strong> <strong>the</strong> formation <strong>of</strong><br />

amyloid fibrils <strong>and</strong> <strong>the</strong>ir precursor oligomers, <strong>and</strong> <strong>of</strong> <strong>the</strong> cytotoxicity <strong>of</strong> <strong>the</strong>se<br />

species. We investigated <strong>the</strong> contribution to <strong>the</strong> toxicity <strong>of</strong> <strong>the</strong> membrane<br />

ganglioside GM1 in SH-SY5Y neuroblastoma cells exposed to oligomeric<br />

conformers <strong>of</strong> Aβ1-42 <strong>and</strong> HypF-N endowed with different ultrastructural properties<br />

<strong>and</strong> cytotoxicities. By means <strong>of</strong> real-time single particle tracking, we show that<br />

oligomers interact with GM1 decreasing its lateral diffusion on <strong>the</strong> plasma<br />

membrane <strong>of</strong> living cells. In turn, <strong>the</strong> cell biochemical response to <strong>the</strong> oligomeric<br />

species results from <strong>the</strong> membrane content <strong>of</strong> GM1 <strong>and</strong> its clustering.<br />

Deposition <strong>of</strong> senile plaques composed <strong>of</strong> fibrillar aggregates <strong>of</strong> Aβ-amyloid<br />

peptide is a characteristic hallmark <strong>of</strong> Alzheimer’s disease. Amyloid plaques are<br />

primarily composed <strong>of</strong> β-amyloid peptides Aβ(1-40) <strong>and</strong> Aβ(1-42). Aβ(25-35)<br />

represents <strong>the</strong> biologically active region <strong>of</strong> Aβ, as it includes <strong>the</strong> shortest fragment<br />

capable to form large β-sheet aggregates. Depending on conditions, amyloid<br />

peptides undergo a conformational transition from r<strong>and</strong>om coil or α-helical<br />

monomers to <strong>the</strong> highly toxic β-sheet oligomers, which form <strong>the</strong> mature fibrils. [1] A<br />

widely employed approach in <strong>the</strong> research <strong>of</strong> anti-Alzheimer agents involves <strong>the</strong><br />

identification <strong>of</strong> substances able to prevent amyloid aggregation, or to disaggregate<br />

<strong>the</strong> amyloid fibrils through a direct interaction with ei<strong>the</strong>r soluble or aggregated<br />

peptide. A selective mode <strong>of</strong> interaction <strong>of</strong> <strong>the</strong>se compounds with soluble oligomers<br />

or amyloid aggregates has still not been clearly established. The development <strong>of</strong><br />

small molecules able to interact with amyloid peptides is considered strategic in<br />

view <strong>of</strong> identifying <strong>the</strong> structural parameters responsible for Aβ stabilization <strong>and</strong>/or<br />

aggregation.<br />

In <strong>the</strong> present contribution, we study <strong>the</strong> interaction <strong>of</strong> Aβ(25-35) with a panel <strong>of</strong> N-<br />

methylated compounds using a combined approach based on circular dichroism,<br />

nuclear magnetic resonance <strong>and</strong> thi<strong>of</strong>lavin fluorescence spectroscopy. Aβ(25-35)<br />

Amylod peptide is known to be able to activate Phospholipases. [2]<br />

To investigate <strong>the</strong> consequence <strong>of</strong> <strong>the</strong> modulation <strong>of</strong> Aβ aggregation in a biological<br />

context we evaluated <strong>the</strong> amyloid induced phosphorylation <strong>of</strong> phospholipase A2<br />

(cPLA2) in a cholinergic cell line (LAN-2) with or without N-methylated compounds.<br />

Our data show that N-methylated compounds are able to preserve <strong>the</strong> soluble form<br />

<strong>of</strong> <strong>the</strong> peptide; moreover given that <strong>the</strong> activation <strong>of</strong> phosphorilated form <strong>of</strong> cPLA is<br />

dependent on <strong>the</strong> aggregation state <strong>of</strong> Aβ, in presence <strong>of</strong> specific N-methylated<br />

compunds, cPLA2 phosphorylation is lost.<br />

60 61<br />

REFERENCES<br />

[1] P. Sorrentino, A. Iuliano, A. Polverino, F. Jacini, G. Sorrentino, FEBS Lett., <strong>2014</strong>, 588(5), 641-652.<br />

[2] J.N. Kanfer, G. Sorrentino <strong>and</strong> D. Sitar, Neurosci Lett., 1998, 257: 93-96.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-13<br />

Oligomerisation <strong>of</strong> alpha-synuclein at nearly-physiological<br />

concentrations<br />

Marija Iljina 1 , Ma<strong>the</strong>w Horrocks 1 , David Klenerman 1<br />

1 Dept. <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Cambridge, UK, mi291@cam.ac.uk.<br />

Alpha-synuclein is a small intracellular protein naturally abundant in <strong>the</strong> brain at<br />

low-micromolar concentrations. Its fibrillar aggregates are <strong>the</strong> major constituents <strong>of</strong><br />

intracellular inclusions, known as Lewy bodies, which are <strong>the</strong> pathological<br />

hallmarks <strong>of</strong> Parkinson disease <strong>and</strong> related neurodegenerative disorders.<br />

However, increasing evidence suggest that oligomers, ra<strong>the</strong>r than fibrils, are <strong>the</strong><br />

most toxic <strong>and</strong> damaging to brain neurons. In this presentation, I will discuss <strong>the</strong><br />

recent results <strong>of</strong> in-vitro studies <strong>of</strong> alpha-synuclein oligomer formation at<br />

physiologically-relevant concentrations using single-molecule FRET spectroscopy.<br />

Flavone derivatives as inhibitors <strong>of</strong> insulin amyloid-like fibril<br />

formation<br />

Ričardas Mališauskas 1,2 , Akvilė Botyriūtė 1 , Domantas Dargužis 2 , Vytautas<br />

Smirnovas 1<br />

1 Dept. <strong>of</strong> Bio<strong>the</strong>rmodynamics <strong>and</strong> Drug Design, Vilnius <strong>University</strong> Institute <strong>of</strong> Biotechnology, Vilnius<br />

(Lithuania), vytautas.smirnovas@bti.vu.lt<br />

2 Dept. <strong>of</strong> Chemistry <strong>and</strong> Bioengineering, Vilnius Gediminas Technical <strong>University</strong>, Vilnius (Lithuania)<br />

ricardas.malisauskas@vgtu.lt<br />

Several natural <strong>and</strong> syn<strong>the</strong>tic flavone derivatives were reported as inhibitors <strong>of</strong><br />

amyloid fibril formation, discriminating inhibition potential <strong>by</strong> <strong>the</strong> number <strong>and</strong> <strong>the</strong><br />

position <strong>of</strong> hydroxyl groups. In most <strong>of</strong> studies <strong>the</strong> main value used to rate <strong>the</strong><br />

inhibition potential <strong>of</strong> flavones is fluorescence intensity <strong>of</strong> Thi<strong>of</strong>lavin T (ThT) binding<br />

assay.<br />

P-14<br />

62 63<br />

ACKNOWLEDGEMENTS<br />

Tayyeb-Hussain Scholarship, Christ’s College Cambridge<br />

We studied impact <strong>of</strong> 260 commercially available flavone derivatives on insulin fibril<br />

formation. In addition to ThT fluorescence intensity we also fitted kinetic curves to<br />

obtain halftime <strong>of</strong> aggregation (t 50 ). A third <strong>of</strong> all derivatives changed final ThT<br />

fluorescence at least two fold, however most <strong>of</strong> <strong>the</strong>se derivatives had much smaller<br />

impact on t50, with no clear correlation between <strong>the</strong>se two values.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-15<br />

Nucleophosmin -helical regions spontaneously undergo<br />

conformational transitions toward β-sheet-rich amyloid-like<br />

aggregates<br />

C. Di Natale 1,2 , P. L. Scognamiglio 1,2 , M. Leone 3 , V. Punzo 1 , G Morelli 1 , L.<br />

Vitagliano 3 <strong>and</strong> D. Marasco 1<br />

1 Dep. <strong>of</strong> Pharmacy, CIRPEB, DFM, <strong>University</strong> <strong>of</strong> Naples “Federico II”, Naples, (Italy),<br />

daniela.marasco@unina.it<br />

2 Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples,<br />

(Italy)<br />

3 Institute <strong>of</strong> Biostructures <strong>and</strong> Bioimaging, National Research Council, 80134, Naples, Italy<br />

Conformational alterations <strong>of</strong> proteins <strong>and</strong> peptides are very relevant because <strong>of</strong><br />

<strong>the</strong>ir association with many diseases [1]. Nucleophosmin (NPM1) is a<br />

multifunctional protein that is involved in a variety <strong>of</strong> fundamental biological<br />

processes <strong>and</strong> its deregulation is implicated in <strong>the</strong> pathogenesis <strong>of</strong> several human<br />

64 Q101<br />

65<br />

malignancies. Notably, NPM1 has been identified as <strong>the</strong> most frequently mutated<br />

gene in acute myeloid leukemia (AML) patients, accounting for approximately 30%<br />

<strong>of</strong> cases [2]. AML-linked mutations affect <strong>the</strong> NPM1 C-terminal domain (CTD)<br />

which adopts a globular structure consisting <strong>of</strong> a three helix bundle motif, whose<br />

destabilization abolishes <strong>the</strong> correct nucleolar localization <strong>of</strong> <strong>the</strong> protein. In recent<br />

biophysical characterizations <strong>of</strong> CTD folded state we highlighted <strong>the</strong> mutual<br />

influence <strong>of</strong> NPM1 distinct domains [3]. Moreover, through a protein dissection<br />

approach, we have also identified <strong>the</strong> role <strong>of</strong> specific protein regions involved in G-<br />

quadruplex DNA recognition mechanism [4]. These studies also showed that <strong>the</strong><br />

first helix <strong>of</strong> <strong>the</strong> bundle is intrinsically endowed with an unusual <strong>the</strong>rmal stability.<br />

Here we have fur<strong>the</strong>r investigated <strong>the</strong> structural determinants <strong>of</strong> CTD folding<br />

process focusing on <strong>the</strong> region encompassing <strong>the</strong> second helix <strong>of</strong> <strong>the</strong> bundle. To<br />

this purpose we have designed <strong>and</strong> syn<strong>the</strong>sized several peptides corresponding to<br />

extended <strong>and</strong> truncated variants <strong>of</strong> <strong>the</strong> native helix. Unexpectedly, biophysical<br />

characterizations <strong>of</strong> <strong>the</strong>se peptides demonstrate that <strong>the</strong>y spontaneously undergo<br />

structural transitions toward β-sheet-rich amyloid-like states.<br />

REFERENCES<br />

[1] F. Chiti, C. M. Dobson Ann Rev Biochem, 2006, 75, 333-366<br />

[2] B. Falini, N.Bolli, A. Liso, M.P. Martelli, R. Mannucci, S. Pileri, I. Nicoletti Leukemia, 2009, 10,1731-<br />

43.<br />

[3] D. Marasco, A. Ruggiero, C. Vascotto, M. Poletto, P.L. Scognamiglio, G. Tell, L. Vitagliano Biochem<br />

Biophys Res Commun, 2013, 430, 523-528.<br />

[4] P.L. Scognamiglio, C. Di Natale, M. Leone, M. Poletto, L. Vitagliano, G. Tell, D. Marasco Biochim<br />

Biophys Acta <strong>2014</strong>, 6, 2050-2059.<br />

TRANSGLUTAMINASE: AN ENZYMATIC APPROACH TO<br />

INFLUENCE THE AMYLOID FILBRIL FORMATION<br />

A. Sorrentino 1 , C. V. L. Giosafatto 2 , I. Sirangelo 3 , P. Di Pierro 2 ,<br />

R. Porta 2 , L. Mariniello 2<br />

1 Dept. <strong>of</strong> Agriculture, <strong>University</strong> Federico II, Napoli (Italy), angela.sorrentino@unina.it.<br />

2 Dept. <strong>of</strong> Chemical Sciences, <strong>University</strong> Federico II, Napoli (Italy), loredana.mariniello@unina.it.<br />

3 Dept. <strong>of</strong> Biochemistry <strong>and</strong> <strong>Biophysics</strong> “F. Cedrangolo”, Second <strong>University</strong> <strong>of</strong> Naples (Italy),<br />

ivana.sirangelo@unina2.it.<br />

Transglutaminases (E.C. 2.3.2.13, TG) are enzymes that catalyze <strong>the</strong> formation <strong>of</strong><br />

isopeptide bonds inside <strong>the</strong> proteins between glutamine (acyl-donor) <strong>and</strong> lysine<br />

(acyl-acceptor) residues, as well as <strong>the</strong> incorporation <strong>of</strong> small primary amines into<br />

proteins, such as biogenic amines [1].<br />

In our studies we have demonstrated that a<br />

microbial is<strong>of</strong>orm <strong>of</strong> transglutaminase is able to<br />

modify a recombinant ovine Prion Protein (PrP)<br />

[2] <strong>and</strong> o<strong>the</strong>r amyloid proteins such as<br />

apomyoglobin (Apo) (Figure). In particular,<br />

intramolecular crosslinks <strong>and</strong> enzymatic<br />

polymerization were obtained for PrP <strong>and</strong> Apo<br />

respectively, while several primary amines <strong>and</strong><br />

biogenic polyamines (hydroxylamine,<br />

monodansylcadaverine, putrescine, spermidine<br />

<strong>and</strong> spermine) effectively counteracted both<br />

transglutaminase-mediated PrP intracrosslinking<br />

<strong>and</strong> Apo polymerization [2].<br />

Fur<strong>the</strong>rmore, TG-crosslinked PrP showed a<br />

higher proneness in forming amyloid<br />

aggregates <strong>and</strong> was less susceptible to<br />

Proteinase K digestion, compared to <strong>the</strong><br />

unmodified one [2].<br />

Apomyoglobin<br />

(Apo)<br />

K 19<br />

Q 6<br />

Finally, we suggest a possible use <strong>of</strong> both transglutaminase <strong>and</strong> biogenic primary<br />

amines in elucidating <strong>the</strong> molecular basis <strong>of</strong> <strong>the</strong> amyloid aggregation.<br />

REFERENCES<br />

[1] J. E. Folk. Ann. Rev. Biochem., 1980, 49,517-531.<br />

[2] A. Sorrentino, C. V. L. Giosafatto, I. Sirangelo, C. De Simone, P. Di Pierro, R. Porta <strong>and</strong> L.<br />

Mariniello. Biochim. Biophys. Acta, 2012, 1822,1509-1515.<br />

G96<br />

K 10<br />

Q 17<br />

A<br />

B<br />

K104<br />

A136<br />

K107<br />

K109<br />

K197<br />

K113<br />

Q189<br />

Q163<br />

Prion Protein<br />

(PrP)<br />

K188<br />

Q215<br />

K207<br />

R154<br />

S-S<br />

Q171<br />

Q175<br />

Q220<br />

C<br />

Q222 Q226Q230<br />

P-16


P-17<br />

<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

<br />

<br />

<br />

! " "#$<br />

! " ! <br />

! ! !"# !"! !<br />

$!%%! !&' ! !!$!! ! !"%<br />

!! !!!(!! "! !! !<br />

!!! " !!!!!!<br />

% !" !<br />

!! !!!!% <br />

!" """ !"( !" !<br />

! ! ! !"!<br />

!!! !% ! ! !!()!<br />

!""! !! !!! <br />

%!!"!!!! !*<br />

! !!" % ! ! !<br />

!!$!" ! """ !" <br />

!"!!!!$ "!*+ ,!! !<br />

! !) !!!<br />

! <br />

%!!%!!<br />

"!!! <br />

""! ! !<br />

! !! !<br />

!! (<br />

! -<br />

$ ! ! !!<br />

! ! ! <br />

! !!! !) !<br />

! ! "! !"!!!!!"<br />

!% ! ! .!!(!<br />

! ! !*" * ! !<br />

" !!!" ) ! !<br />

<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

66 67<br />

/0.1,11/2<br />

.! ("! !2!+" "34!2# ! <br />

34 !/ !<br />

HGA-induced aggregation <strong>and</strong> fibrillogenesis <strong>of</strong> amyloidogenic proteins:<br />

implications in alkaptonuria<br />

L. Millucci, D. Braconi , G. Bernardini, S. Gambassi, M. Laschi, M. Geminiani, L. Ghezzi<br />

<strong>and</strong> A. Santucci<br />

Dipartimento diBiotecnologie, Chimica e Farmacia, UniversitàdegliStudi di Siena, Siena (Italy), annalisa.santucci@unisi.it.<br />

Alkaptonuria (AKU) is an ultra-rare disease developed from <strong>the</strong> lack <strong>of</strong> homogentisic acid oxidase activity,<br />

causing homogentisic acid (HGA) accumulation that producesochronotic pigment, <strong>of</strong> unknown composition,<br />

responsible <strong>of</strong> organ damage. There is no <strong>the</strong>rapy for AKU. We provided experimental evidence that AKU is<br />

a secondary serum amyloid A (SAA)-based amyloidosis. [1–3]. Ochronotic pigment <strong>and</strong> amyloid co-localized<br />

in AKU tissues indicating a close structural correlation between <strong>the</strong>se two types <strong>of</strong> deposits. Aberrant<br />

expression <strong>of</strong> proteins involved in amyloidogenesis, folding <strong>and</strong> proteases was found in AKU cells<br />

suggesting an increase in protein oxidation/aggregation [4]. In <strong>the</strong> present work we evaluated <strong>the</strong> HGAmediated<br />

induction <strong>of</strong> protein aggregation <strong>and</strong> fibrillogenesis <strong>of</strong> amyloidogenic proteins. Our in vitro models<br />

were based on well-known amyloidogenic proteins <strong>and</strong> peptides such as Aβ(1-42) peptide, transthyretin<br />

(Ttr), α-synuclein (α-Syn) <strong>and</strong> SAA incubated at 37°C with HGA. Our results indicate that HGA can<br />

significantly accelerate <strong>the</strong> aggregation <strong>of</strong> proteins/peptides leading to <strong>the</strong> production <strong>of</strong> Congo Red- positive<br />

aggregates (Figure, panelsA, B) up to formation <strong>of</strong> oligomers, prot<strong>of</strong>ibrils <strong>and</strong> fibrils (Figure, panels C, D).<br />

Our findings indicate a role <strong>of</strong> <strong>the</strong> key metabolite in AKU, HGA, in <strong>the</strong> SAA-amyloid production in this<br />

disease. We hypo<strong>the</strong>size that HGA auto-oxidation to benzoquinone (BQA) can be at <strong>the</strong> basis <strong>of</strong><br />

amyloidogenesis in AKU, as supported <strong>by</strong> our findings on <strong>the</strong> binding <strong>of</strong> BQA to α-Syn <strong>and</strong> SAA. Overall, <strong>the</strong><br />

results obtained, helping <strong>the</strong> clarification <strong>of</strong> AKU pathogenesis <strong>and</strong> related amyloidogenesis, could lay <strong>the</strong><br />

basis to set up more appropriate pharmacological interventions for <strong>the</strong> disease.<br />

ACKNOWLEDGEMENTS<br />

Financial support from <strong>the</strong> FMPS 2008-2009-2010, TLSF-Orphan 0108, Telethon GGP10058, FP7-304985, is acknowledged.<br />

The authors thank P. Lupetti for TEM analysis.<br />

REFERENCES<br />

[1] L. Millucci L, A. Spreafico, L. Tinti, D. Braconi, L. Ghezzi, E. Paccagnini, G. Bernardini, L. Amato, M. Laschi, E. Selvi, M. Galeazzi, A.<br />

Mannoni, M. Benucci, P. Lupetti, F. Chellini, M.Orl<strong>and</strong>ini, A. Santucci. BiochimBiophysActa., 2012, 1822(11):1682-9.<br />

[2] A. Spreafico, L.Millucci, L. Ghezzi, M. Geminiani, D. Braconi, L. Amato, F. Chellini, B. Frediani, E. Moretti, G. Collodel, G. Bernardini,<br />

A. Santucci. Rheumatology (Oxford)., 2013, 52(9):1667-73.<br />

[3] D. Braconi, M. Laschi, A. Taylor, G. Bernardini, A. Spreafico, L. Tinti, JA. Gallagher, A. Santucci. J Cell Biochem.,2010,111:922–932.<br />

[4] D. Braconi, G. Bernardini, C. Bianchini, M. Laschi, L. Millucci, L. Amato, L. Tinti, T. Serchi, F. Chellini, A. Spreafico, A. Santucci. J<br />

Cell Physiol. ,2012, 227(9):3333-43.<br />

P-18


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>of</strong> <strong>and</strong> <strong>Amyloids</strong> <strong>Prions</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

P-19<br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

A comparative analysis <strong>of</strong> two amyloidogenic variants <strong>of</strong> ApoA-I<br />

R. Del Giudice 1 , D. M. Monti 1 , A. Arciello 1 , F. Itri 1 , R. Piccoli 1<br />

1 Dept. <strong>of</strong> Chemical Sciences, <strong>University</strong> Federico II, Napoli (Italy), mdmonti@unina.it.<br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Secondary structures <strong>and</strong> conformational stability <strong>of</strong><br />

β-2microglobulin mutants in solution, in single crystals <strong>and</strong> in<br />

form <strong>of</strong> fibrils: an FTIR study<br />

P-20<br />

Nineteen variants <strong>of</strong> apolipoprotein A-I (ApoA-I) are associated with hereditary<br />

systemic amyloidoses, characterized <strong>by</strong> amyloid deposition in peripheral organs <strong>of</strong><br />

patients [1-3]. As <strong>the</strong>se are heterozygous for <strong>the</strong> amyloidogenic variants, <strong>the</strong>ir<br />

isolation from plasma is impracticable <strong>and</strong> recombinant expression systems are<br />

needed. We report <strong>the</strong> physicochemical characterization <strong>of</strong> recombinant ApoA-I<br />

amyloidogenic variant Leu75 with Pro (L75P) <strong>and</strong> Leu174 with Ser (L174S)<br />

expressed <strong>and</strong> isolated from bacterial cells, with respect to wild-type ApoA-I.<br />

Proteins were isolated from <strong>the</strong> cell lysate following a one-step procedure <strong>and</strong><br />

characterized <strong>by</strong> circular dichroism (CD) <strong>and</strong> fluorescence analyses. At<br />

physiologic-like conditions (pH 6.4) all proteins were characterized <strong>by</strong> a high α-<br />

helix content, whereas upon incubation at 37°C for 48h both ApoA-I variants<br />

underwent a conformational transition to a β-sheet rich structure with a concomitant<br />

increase <strong>of</strong> thi<strong>of</strong>lavin T fluorescence. On <strong>the</strong> contrary, conformational changes <strong>of</strong><br />

wt ApoA-I occurred more slowly (1 week). Fluorescence analyses demonstrated<br />

that at pH 8.0 <strong>the</strong> L75P variant conformation was altered with respect to wt ApoA-I,<br />

along with a decreased chemical <strong>and</strong> <strong>the</strong>rmal stability. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, even<br />

though <strong>the</strong> presence <strong>of</strong> L174S mutation has no effect on protein conformation, this<br />

variant undergoes denaturation at lower temperature <strong>and</strong> denaturant concentration<br />

with respect to wt ApoA-I.<br />

pH-induced destabilization <strong>of</strong> amyloidogenic proteins is known to induce protein<br />

aggregation. Following <strong>the</strong> transition from pH 8.0 to 4.0, we observed that L75P<br />

variant undergoes an immediate transition towards a β-sheet rich structure, along<br />

with a strong decrease <strong>of</strong> CD signal, while <strong>the</strong> α-helix content <strong>of</strong> L174S variant<br />

decreases over time, suggesting protein aggregation. Our results clearly indicate<br />

that amyloidogenic ApoA-I variants are more susceptible to environmental changes<br />

<strong>and</strong> are more prone to aggregate when destabilizing conditions occur.<br />

68 69<br />

REFERENCES<br />

[1] L. Obici, G. Franceschini, L. Calabresi, S. Giorgetti, M. Stoppini, G. Merlini, V. Bellotti Amyloid,<br />

2006,13,191 205.<br />

[2] M. Eriksson, S. Schonl<strong>and</strong>, S. Yumlu, U. Hegenbart, H. von Hutten, Z. Gioeva, P. Lohse, et al J. Mol.<br />

Diagn., 2009, 11, 257 262.<br />

[3] D. Rowczenio, A. Dogan, J.D. Theis, J.A. Vrana, H.J. Lachmann, A.D. Wechalekar, J.A. Gilbertson,<br />

et al Am. J. Pathol., 2011, 179, 1978-1987.<br />

A. Natalello 1 , S. Ricagno 2 , D. Ami 1 , L. Halabelian 2 , M. Bolognesi 2 , S.M.<br />

Doglia 1<br />

1 Dept. <strong>of</strong> Physics <strong>and</strong> Dept. <strong>of</strong> Biotechnology <strong>and</strong> Biosciences, <strong>University</strong> <strong>of</strong> Milano-Bicocca (Italy);<br />

2 Dept. <strong>of</strong> Bioscience, <strong>University</strong> <strong>of</strong> Milan (Italy), antonino.natalello@unimib.it<br />

β-2 microglobulin (β2m) is an amyloidogenic protein involved in <strong>the</strong> dialysis related<br />

amyloidosis.<br />

Here, we characterized <strong>by</strong> Fourier transform infrared (FTIR) spectroscopy <strong>the</strong> wild<br />

type protein <strong>and</strong> its mutants Asp59Pro, Trp60Gly, <strong>and</strong> Trp60Val. Although <strong>the</strong>y<br />

displayed very similar 3D structures, <strong>the</strong> FTIR measurements in solution pointed to<br />

significant differences in <strong>the</strong>rmal stability <strong>and</strong> aggregation propensity. To<br />

comprehend <strong>the</strong>se features, we studied each β2m variants in form <strong>of</strong> single<br />

crystals <strong>by</strong> FTIR microscopy. Significant spectral differences were observed<br />

between <strong>the</strong> protein in solution <strong>and</strong> in <strong>the</strong> crystalline state involving mainly <strong>the</strong> main<br />

β-sheet b<strong>and</strong>. Fur<strong>the</strong>rmore, appreciable differences in secondary structures were<br />

found among <strong>the</strong> variants [1].<br />

We investigated also <strong>the</strong> β2m fibrils obtained after incubation for one week <strong>of</strong> each<br />

variant under fibrillogenic conditions. Attenuated total reflection (ATR)<br />

measurement displayed a comparable hydrogen/deuterium exchange behaviour <strong>of</strong><br />

<strong>the</strong> intermolecular β-sheets, indicating similar accessibility <strong>and</strong> dynamics <strong>of</strong> <strong>the</strong>se<br />

structures.<br />

This study illustrates <strong>the</strong> potential <strong>of</strong> FTIR (micro)spectroscopy to obtain<br />

complementary structural information on <strong>the</strong> protein under different physical states,<br />

namely in solution, in form <strong>of</strong> insoluble aggregates, <strong>and</strong> as single protein crystals.<br />

REFERENCES<br />

[1] D. Ami, S. Ricagno, M. Bolognesi, V. Bellotti, S.M. Doglia, A. Natalello<br />

Biophys. J., 2012, 102, 1676-1684.


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-21<br />

EXAMINING DISEASE-ASSOCIATED Aβ MUTANTS AS<br />

CONFORMATIONAL STRAINS<br />

Mimi C Nick 1 , Jan Stöhr 2 , William F DeGrado 3<br />

1 Dept. <strong>of</strong> Pharmaceutical Chemistry, <strong>University</strong> <strong>of</strong> California, San Francisco (USA),<br />

Mimi.Nick@ucsf.edu<br />

2 Institute for Neurodegenerative Diseases, <strong>University</strong> <strong>of</strong> California, San Francisco (USA),<br />

JStoehr@ind.ucsf.edu<br />

3 Dept. <strong>of</strong> Pharmaceutical Chemistry, <strong>University</strong> <strong>of</strong> California, San Francisco (USA),<br />

Bill.DeGrado@ucsf.edu<br />

INTERACTION BETWEEN PRION PROTEIN <strong>and</strong><br />

G-QUADRUPLEX-FORMING NUCLEIC ACIDS:<br />

a BIOPHYSICAL STUDY<br />

Bruno Pagano 1 , Paola Cavaliere 2 , Vincenzo Granata 3 , Stephanie Prigent 4 ,<br />

Human Rezaei 4 , Ettore Novellino 1 , Concetta Giancola 1 , Adriana Zagari 3<br />

1 Dept. <strong>of</strong> Pharmacy, <strong>University</strong> <strong>of</strong> Naples Federico II, Napoli (Italy), bruno.pagano@unina.it.<br />

2 Dept. <strong>of</strong> Microbiology, Institut Pasteur, Paris (France).<br />

3 CEINGE-Biotecnologie Avanzate, Napoli (Italy).<br />

4 Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique,<br />

Jouy-en-Josas (France).<br />

P-22<br />

Alzheimer’s Disease (AD), <strong>the</strong> most common form <strong>of</strong> dementia, cruelly strips<br />

patients <strong>of</strong> memory, cognitive ability, <strong>and</strong> independence, <strong>and</strong> is a leading cause <strong>of</strong><br />

death for people aged 65 <strong>and</strong> older.[1] The major pathological hallmark <strong>of</strong> AD is<br />

<strong>the</strong> accumulation <strong>of</strong> β-amyloid (Aβ) peptide within amyloid plaques in <strong>the</strong> brain.[2,3]<br />

When forming <strong>the</strong> cross-β structure typical <strong>of</strong> amyloid fibrils, <strong>the</strong>re is some inherent<br />

flexibility regarding <strong>the</strong> intermolecular contacts that <strong>the</strong> Aβ peptide can adopt. As a<br />

result, <strong>the</strong> fibril structure may vary, resulting in distinct conformational strains.[4-6]<br />

While a specific primary sequence is able to adopt multiple strain conformations, it<br />

is not known how disease-associated mutations occurring within that sequence<br />

may alter <strong>the</strong> fibril structure. We are using biophysical methods to determine<br />

whe<strong>the</strong>r certain Aβ mutants form unique fibril strains that propagate <strong>the</strong>ir particular<br />

structure irrespective <strong>of</strong> primary sequence.<br />

70 71<br />

ACKNOWLEDGEMENTS<br />

Financial support from <strong>the</strong> Glenn Foundation is acknowledged.<br />

REFERENCES<br />

[1] W Thies, L Bleiler, Alzheimer’s Association. Alzheimers Dement, 2013, 9(2), 208-245.<br />

[2] GG Glenner, CW Wong. Biochem Biophys Res Commun, 1984, 120(3), 885-890.<br />

[3] RE Tanzi, JF Gusella, PC Watkins, GA Bruns, P St George-Hyslop, ML Van Keuren, D Patterson, S<br />

Pagan, DM Kurnit, RL Neve. Science, 1987, 235, 880-884.<br />

[4] M Tanaka, P Chien, N Naber, R Cooke, JS Weissman. Nature, 2004, 428, 323-328.<br />

[5] AT Petkova, RD Leapman, Z Guo, WM Yau, MP Mattson, R Tycko. Science, 2005, 307, 262-265.<br />

[6] AK Paravastu, RD Leapman, WM Yau, R Tycko. Proc Natl Acad Sci USA, 2008, 105, 18349-18354.<br />

Several studies have been recently carried out about <strong>the</strong> Prion protein (PrP)<br />

interaction with nucleic acids, looking for <strong>the</strong> biological relevance that <strong>the</strong>se<br />

interactions may hold inside cell environment.[1] G-quadruplex-forming nucleic<br />

acids have been found to specifically bind to both cellular <strong>and</strong> pathological PrP<br />

is<strong>of</strong>orms.[2] To clarify <strong>the</strong> relevance <strong>of</strong> <strong>the</strong>se interactions, <strong>the</strong>rmodynamic, kinetic<br />

<strong>and</strong> structural studies have been performed, using iso<strong>the</strong>rmal titration calorimetry,<br />

surface plasmon resonance <strong>and</strong> circular dichroism methodologies.[3]<br />

Three G-quadruplex-forming sequences <strong>and</strong> various<br />

forms <strong>of</strong> PrP were selected for this study. Our results<br />

showed that <strong>the</strong> investigated G-quadruplexes exhibit a<br />

high affinity <strong>and</strong> specificity toward PrP, with K d values<br />

within <strong>the</strong> range 62÷630 nM, <strong>and</strong> a weaker affinity<br />

toward a PrP-β oligomer, which mimics <strong>the</strong> pathological<br />

is<strong>of</strong>orm. We demonstrated that <strong>the</strong> G-quadruplex<br />

architecture is <strong>the</strong> structural determinant for <strong>the</strong><br />

recognition <strong>by</strong> both PrP is<strong>of</strong>orms. Fur<strong>the</strong>rmore, we<br />

spotted both PrP N-terminal <strong>and</strong> C-terminal domains as <strong>the</strong> binding regions<br />

involved in <strong>the</strong> interaction with DNA/RNAs, using several PrP truncated forms.<br />

Interestingly, a reciprocally induced structure loss was observed upon PrP-nucleic<br />

acid interaction. Our results indicate <strong>the</strong> formation <strong>of</strong> dynamic complexes between<br />

PrP <strong>and</strong> G-quadruplex-forming nucleic acids, that may have a feedback in vivo.<br />

REFERENCES<br />

[1] (a) Y. Cordeiro, F. Machado, L. Juliano, M. A. Juliano, R. R. Brentani, D. Foguel, J. L Silva J. Biol.<br />

Chem., 2001, 276, 49400–9. (b) S. Gilch, H. M. Schatzl Cell. Mol. Life Sci., 2009, 66, 2445-55. (c) M. P.<br />

Gomes, T. C. Vieira, Y. Cordeiro, J. L. Silva Wiley Interdiscip. Rev. RNA, 2012, 3, 415-28.<br />

[2] K. Murakami, F. Nishikawa, K. Noda, T. Yokoyama, S. Nishikawa Prion, 2008, 2, 73-80.<br />

[3] P. Cavaliere, B. Pagano, V. Granata, S. Prigent, H. Rezaei, C. Giancola, A. Zagari Nucleic Acids<br />

Res., 2013, 41, 327-39.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-23<br />

Cu(II) induced oligomerization <strong>of</strong> amyloid-β on <strong>the</strong> millisecond<br />

time scale<br />

J. T. Pedersen 1 , C.B. Borg 2 , K. Teilum 2 , L. Hemmingsen 3<br />

1 Dept. <strong>of</strong> Pharmacy, <strong>University</strong> <strong>of</strong> Copenhagen, Copenhagen (Denmark), jeppe.trudslev@sund.ku.dk<br />

2 Dept. <strong>of</strong> Biology, <strong>University</strong> <strong>of</strong> Copenhagen, Copenhagen (Denmark)<br />

3 Dept. <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Copenhagen, Copenhagen (Denmark)<br />

Many neurodegenerative disorders (ND) including Alzheimer’s (AD) <strong>and</strong><br />

Parkinson’s disease (PD) are associated with <strong>the</strong> accumulation <strong>of</strong> amyloid fibrils.<br />

Metal ion binding to <strong>the</strong>se amyloid proteins toge<strong>the</strong>r with metal dyshomeostasis in<br />

<strong>the</strong> body are implicated in both AD <strong>and</strong> PD. [1] Moreover, recent data demonstrate<br />

that metal ions such as Cu(II) <strong>and</strong> Zn(II) can induce misfolding <strong>and</strong> oligomerization<br />

<strong>of</strong> amyloid-β on <strong>the</strong> biologically relevant millisecond–second time-scale [2,3].<br />

Hence, rapid metal–Aβ interactions may play a role in <strong>the</strong> pathology <strong>of</strong> AD (Fig. 1).<br />

It is well-established that a range <strong>of</strong> soluble Aβ–Cu species co-exist in a dynamic<br />

equilibrium depending on <strong>the</strong> pH.[4] It is reasonable to think that distinct Aβ–Cu(II)<br />

species have distinct oligomerization propensities. Here, we study <strong>the</strong> mechanism<br />

<strong>of</strong> Cu(II) binding to Aβ <strong>and</strong> <strong>the</strong> subsequent metal induced oligomerization at<br />

different pH using stopped-flow fluorescence <strong>and</strong> light scattering in combination<br />

with NMR relaxation. This approach allows us to study <strong>the</strong> properties <strong>of</strong> <strong>the</strong> Aβ–Cu<br />

species formed milliseconds upon metal ion binding.<br />

72 73<br />

Fig. 1 Potential mechanism <strong>of</strong> metal induced amyloid formation<br />

ACKNOWLEDGEMENTS<br />

Financial support <strong>by</strong> <strong>the</strong> Villum Foundation is acknowledged.<br />

FIBRIL FORMATION OF A 3D DOMAIN SWAPPING<br />

RIBONUCLEASE: A MODEL BASED ON THE CRYSTAL<br />

STRUCTURE OF THE PROTEIN<br />

A. Pica 1,2 , A. Merlino 1,2 , A.K. Buell 3 , T.J. Knowles 3 , E. Pizzo 4 , G.<br />

D’Alessio 4 , F. Sica 1,2 , L. Mazzarella 1,2<br />

1 Dept. <strong>of</strong> Chemical Sciences, <strong>University</strong> <strong>of</strong> Naples Federico II, Naples (Italy), <strong>and</strong>rea.pica@unina.it.<br />

2 Institute <strong>of</strong> Biostructures <strong>and</strong> Bioimaging, CNR, Naples, Italy<br />

3 Nanoscience Centre, <strong>University</strong> <strong>of</strong> Cambridge, Cambridge CB3 0FF, UK<br />

4 Dept. <strong>of</strong> Biology, <strong>University</strong> <strong>of</strong> Naples Federico II, Naples, Italy<br />

The deletion <strong>of</strong> five residues in <strong>the</strong> loop connecting <strong>the</strong><br />

N-terminal helix to <strong>the</strong> core <strong>of</strong> monomeric human<br />

pancreatic ribonuclease leads to <strong>the</strong> formation <strong>of</strong> an<br />

enzymatically active domain-swapped dimer<br />

(desHP).[1] The crystal structure <strong>of</strong> desHP reveals <strong>the</strong><br />

generation <strong>of</strong> an intriguing fibril-like aggregate <strong>of</strong><br />

desHP molecules that extends along <strong>the</strong> c<br />

crystallographic axis. Dimers are formed <strong>by</strong> threedimensional<br />

domain swapping.[2] Tetramers are<br />

formed <strong>by</strong> <strong>the</strong> aggregation <strong>of</strong> swapped dimers with<br />

slightly different quaternary structures. The tetramers<br />

interact in such a way as to form an infinite rod-like<br />

structure that propagates throughout <strong>the</strong> crystal. The<br />

observed supramolecular assembly captured in <strong>the</strong><br />

crystal predicts that desHP fibrils could form in solution;<br />

this has been confirmed <strong>by</strong> atomic force microscopy.<br />

These results provide new evidence that threedimensional<br />

domain swapping can be a mechanism for<br />

<strong>the</strong> formation <strong>of</strong> elaborate large assemblies in which <strong>the</strong><br />

protein, apart from <strong>the</strong> swapping, retains its original<br />

fold.[3-5]<br />

P-24<br />

REFERENCES<br />

“<strong>Biophysics</strong><br />

[1] Viles, J. H. Coord.<br />

<strong>of</strong><br />

Chem.<br />

<strong>Amyloids</strong><br />

Rev. 2012 256,<br />

<strong>and</strong><br />

2271-2284<br />

<strong>Prions</strong>”<br />

[2] Pedersen, J. T., Teilum, K., Heegaard, N. H. H., Østergaard, J., Adolph, H. W., <strong>and</strong> Hemmingsen, L.<br />

Angew. Chem. Int. Ed. 2011 50, 2532-2535<br />

[3] Noy, D., Solomonov, I., Sinkevich, O., Arad, T., Kjaer, K., <strong>and</strong> May Sagi, 25-26, I. J. Am. <strong>2014</strong> Chem. - Naples, Soc. 2008 Italy 130,<br />

1376-1383<br />

[4] Drew S.C., Noble C.J., Masters C.L., Hanson G.R., Barnham K.J. J. Am. Chem. Soc. 2009<br />

131,1195-1207<br />

REFERENCES<br />

[1] N. Russo, A. Antignani, <strong>and</strong> G. D'Alessio. Biochemistry, 2000, 39, 3585-3591.<br />

[2] M.J. Bennett, M.P. Schlunegger, <strong>and</strong> D. Eisenberg. Protein Sci, 1995, 4, 2455-2468.<br />

[3] Y. Liu, <strong>and</strong> D. Eisenberg. Protein Sci, 2002, 11, 1285-1299.<br />

[4] S. Sambashivan, Y. Liu, M.R. Sawaya, M. Gingery, <strong>and</strong> D. Eisenberg. Nature, 2005, 437, 266-269.<br />

[5] A. Pica, A. Merlino, A.K. Buell, T.P.J. Knowles, E. Pizzo, G. D’Alessio, F. Sica, <strong>and</strong> L. Mazzarella.<br />

Acta Cryst D, 2013, 69, 2116-2123.


P-25<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Evidence for a role <strong>of</strong> hydroxytyrosol in decreasing<br />

oligomerization in a model system <strong>of</strong> AD<br />

R. Crea, C. Bitler, P. Pontoniere<br />

CreAgri, Inc., 25565, Whitesell Street, Hayward, CA 94545 (USA), rcrea@creagri.com,<br />

cmbitler@aol.com, ppontoniere@creagri.com<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

<strong>of</strong> HT on demyelination <strong>and</strong> re-myelination, we evaluated its effect on cuprizoneinduced<br />

demyelination in zebra fish, a model system <strong>of</strong> multiple sclerosis.<br />

Treatment <strong>of</strong> zebra fish with HT olive extract significantly reduced cuprizoneinduced<br />

demyelination thus significantly protecting neurons from eventual cell<br />

death (McGrath et al., unpublished study).<br />

P-25<br />

Toxic changes occur in <strong>the</strong> brain during <strong>the</strong> early stage <strong>of</strong> Alzheimer’s disease,<br />

including abnormal deposits <strong>of</strong> proteins that form amyloid plaques <strong>and</strong> tau tangles,<br />

mitochondrial dysfunction, <strong>and</strong> once-healthy neurons begin to work less efficiently.<br />

In time, neurons lose <strong>the</strong>ir ability to perform <strong>and</strong> eventually die.<br />

Lack <strong>of</strong> physical activity, cognitive stimulation, unhealthy diet <strong>and</strong> nutrition are all<br />

thought to contribute to <strong>the</strong> outcome <strong>of</strong> <strong>the</strong> AD phenotype. On <strong>the</strong> contrary, high<br />

adherence to <strong>the</strong> Mediterranean Diet has been shown to be associated with a<br />

reduced risk <strong>of</strong> developing both cognitive impairment <strong>and</strong> Alzheimer’s disease [1].<br />

Although <strong>the</strong> Mediterranean diet combines several foods, micronutrients, <strong>and</strong><br />

macronutrients, one molecule in particular st<strong>and</strong>s out for its medicinal properties,<br />

3,4 dihydroxyphenylethanol or hydroxytyrosol (HT), a bio-phenolic molecule found<br />

almost exclusively in <strong>the</strong> olive plant [2]. Recently interest on HT has been focused<br />

on its anti-inflammatory [3,4], <strong>and</strong> brain protecting [5] activities.<br />

74 75<br />

In one study <strong>of</strong> hypoxia/re-oxygenation, HT was shown to decrease cell death,<br />

reduce stress parameters, <strong>and</strong> increase enzyme activities associated with<br />

glutathione production [6]. In ano<strong>the</strong>r study, HT attenuated <strong>the</strong> cytotoxic effects <strong>of</strong><br />

Fe 2+ <strong>and</strong> nitric oxide-induced toxicity in murine brain cells. The cytotoxic effects<br />

included a severe loss <strong>of</strong> cellular ATP, lipid peroxidation, <strong>and</strong> a markedly<br />

depolarized mitochondrial membrane potential. Additionally, oral administration <strong>of</strong><br />

HT resulted in a significant decrease in oxidative stress, mitochondrial membrane<br />

potential reset, <strong>and</strong> neuroprotection [7]. Finally, in ano<strong>the</strong>r study HT was shown to<br />

prevent Tau fibril aggregation in vitro. Tau aggregation into fibrillary tangles<br />

contributes to intra-neuronal <strong>and</strong> glial lesions in Alzheimer’s disease [8]. In this<br />

study, <strong>the</strong> effectiveness <strong>of</strong> HT was significantly greater than <strong>the</strong> reference inhibitor.<br />

Prolonged neuroinflammation is associated with many diseases including<br />

Parkinson’s, Alzheimer’s <strong>and</strong> multiple sclerosis. Our lab has recently shown that<br />

HT in its natural milieu <strong>of</strong> <strong>the</strong> olive fruit significantly inhibited production <strong>and</strong><br />

secretion <strong>of</strong> TNF-a, IL-6 <strong>and</strong> IL-1b in both microglia <strong>and</strong> astrocyte cells [9].<br />

Increasing evidence suggests that cognitive deterioration in AD is directly linked to<br />

<strong>the</strong> accumulation <strong>of</strong> extracellular soluble oligomers <strong>of</strong> β-amyloid protein ra<strong>the</strong>r than<br />

amyloid plaque deposition in <strong>the</strong> brain. In one study, we have shown that HT<br />

interferes with <strong>the</strong> formation <strong>of</strong> β-amyloid oligomer formation as well as Tau protein<br />

oligomer formation (Pasinetti et al., unpublished study). Finally, to study <strong>the</strong> effects<br />

REFERENCES<br />

1. Lourida et al., Epidemiology, 2013, 4, 479-89.<br />

2. Mulinacci et al.., JAFC, 2001, 49 (8), 3509-14.<br />

3. Bitler et al., J Nutrition, 2005, 135, 1475–1479.<br />

4. Richard et al., Planta Med., 2011, 77, 1890–1897.<br />

5. DeNicolo et al., Nutrition, 2013 Apr., 29 (4), 681-7<br />

6. Cabrerizo et al., J Nutr Biochem, 2013 Dec., 24 (12), 2152-7.<br />

7. Schaffer et al., JAFC, 2010, 55, 5043-5049.<br />

8. Daccache et al., Neurochem Int., 2011 May, 58 (6):700-7.<br />

9. Crea et al., AG Food Technology, 2010 March/April, 23 (2), 26-9.


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-26<br />

Secondary nucleation in stirring induced alpha-lactalbumin<br />

amyloid fibril formation.<br />

E. Rao 1 , V.Vetri 1 , V. Foderà 2,3 , V. Militello 1 <strong>and</strong> M. Leone 1<br />

1 Dip. di Fisica e Chimica, Università di Palermo, Palermo, Italy<br />

2 Dept. <strong>of</strong> Drug Design <strong>and</strong> Pharmacology, <strong>University</strong> <strong>of</strong> Copenhagen, Copenhagen, Denmark<br />

3 Dept. <strong>of</strong> Physics, Cavendish Laboratory, <strong>University</strong> <strong>of</strong> Cambridge, Cambridge, United Kingdom<br />

email: estella.rao@gmail.com<br />

Protein aggregation is one <strong>of</strong> <strong>the</strong> most challenging topics in recent biomedical <strong>and</strong><br />

biotechnological research. Several neurodegenerative pathologies like Parkinson's<br />

<strong>and</strong> Alzheimer's disease or type-II diabetes are associated with <strong>the</strong> formation <strong>and</strong><br />

deposition, in organs <strong>and</strong> tissues, <strong>of</strong> large amounts <strong>of</strong> insoluble <strong>and</strong> highly ordered<br />

aggregates, known as amyloid fibrils. The interest in amyloid fibrils is also related<br />

to <strong>the</strong>ir potential application as biomaterials due <strong>the</strong>ir peculiar <strong>and</strong> tunable physicochemical<br />

properties. Recently, since proteins are <strong>of</strong>ten subjected to mechanical<br />

stress both in vivo <strong>and</strong> during procedures in pharmaceutical processing, specific<br />

interest has been focused on shear-induced aggregation. Stirring, shaking, or<br />

mechanical agitation are known to accelerate supramolecular assembly rate <strong>and</strong> to<br />

modify fibril morphology.<br />

We here report an experimental study on stirring-induced amyloid formation <strong>of</strong><br />

alpha-lactalbumin (α-La). Multitechnique approach consisting in spectroscopy <strong>and</strong><br />

microscopy techniques is used to analyse mechanisms underlying aggregation.<br />

α-La amyloid formation was observed as a function <strong>of</strong> time <strong>by</strong> means <strong>of</strong> light<br />

scattering <strong>and</strong> in situ Thi<strong>of</strong>lavin T (ThT) fluorescence measurements in different<br />

environmental conditions. With <strong>the</strong> aim <strong>of</strong> probing <strong>the</strong> secondary structure <strong>and</strong><br />

morphology, final aggregates were characterized <strong>by</strong> FTIR absorption spectroscopy<br />

<strong>and</strong> <strong>by</strong> microscopy. The obtained results allow us to describe <strong>the</strong> effect <strong>of</strong> stirring<br />

on α-La amyloid formation process. Under <strong>the</strong> presented experimental conditions,<br />

amyloid formation is induced or critically accelerated <strong>by</strong> stirring. At defined<br />

temperature, different stirring velocities appear to not critically change <strong>the</strong><br />

assembly mechanisms,, final aggregates structure <strong>and</strong> morphology, while <strong>the</strong><br />

number <strong>of</strong> formed amyloid structures is enhanced at increasing stirring velocities.<br />

The analysis <strong>of</strong> obtained results suggests that α-lactalbumin aggregation, in <strong>the</strong><br />

used conditions, underlines a complex interconnection <strong>of</strong> assembly mechanisms<br />

regulated <strong>by</strong> secondary nucleation which causes inherent irreproducibility <strong>of</strong><br />

observed aggregation kinetics. These mechanisms are enhanced <strong>by</strong> stirring which<br />

favours <strong>the</strong> exposure <strong>of</strong> new accessible surfaces through fibrils fragmentation or <strong>by</strong><br />

bringing back into solution aggregates formed at liquid-air interfaces.<br />

TETRACYCLINE AND EPIGALLOCATECHIN-3-GALLATE<br />

DIFFERENTLY AFFECT THE ATAXIN-3 FIBRILLOGENESIS AND<br />

TOXICITY<br />

M. Bonanomi 1 , C. Visentin 1 , A. Natalello 1 , A. Penco 2 , G. Colombo 1 , A.<br />

Relini 2 , S.M. Doglia 3 , M.E. Regonesi 4<br />

1 Dept. <strong>of</strong> Biotechnologies <strong>and</strong> Biosciences, <strong>University</strong> <strong>of</strong> Milano-Bicocca, Milan (Italy)<br />

2 Dept. <strong>of</strong> Physics, <strong>University</strong> <strong>of</strong> Genoa, Genoa (Italy)<br />

3 Dept. <strong>of</strong> Physics “Giuseppe Occhialini”, <strong>University</strong> <strong>of</strong> Milano-Bicocca, Milan (Italy)<br />

4 Dept. <strong>of</strong> Statistics <strong>and</strong> Quantitative Methods, <strong>University</strong> <strong>of</strong> Milano-Bicocca, Milan (Italy),<br />

mariaelena.regonesi@unimib.it<br />

Ataxin-3 (AT3) is a deubiquitinating enzyme that triggers <strong>the</strong> inherited<br />

neurodegenerative disorder spinocerebellar ataxia type 3 (SCA3) when its<br />

polyglutamine (polyQ) stretch close to <strong>the</strong> C-terminus exceeds a critical length. The<br />

expansion results in misfolding <strong>and</strong> o<strong>the</strong>r structural rearrangements in <strong>the</strong> protein<br />

product, which lead to aberrant interactions <strong>of</strong> <strong>the</strong> exp<strong>and</strong>ed protein <strong>and</strong> to <strong>the</strong><br />

consequent formation <strong>of</strong> fibrillar amyloid-like aggregates [1,2]. AT3 consists <strong>of</strong> <strong>the</strong><br />

N-terminal globular Josephin domain (JD) <strong>and</strong> <strong>the</strong> C-terminal disordered one [3,4].<br />

Regarding its physiological role, it has ubiquitin hydrolase activity implicated in <strong>the</strong><br />

function <strong>of</strong> <strong>the</strong> ubiquitin-proteasome system, but also plays a role in <strong>the</strong> pathway<br />

that sorts aggregated protein to aggresomes via microtubules [5,6]. In recent years,<br />

<strong>the</strong>rapeutic strategies aimed to prevent or control amyloid-related diseases were<br />

developed, based on molecules that inhibit protein deposition or reverse fibril<br />

formation. To date, no effective treatment has been developed for SCA3 disease<br />

<strong>and</strong> no compounds were tested for <strong>the</strong>ir effect on AT3 aggregation process. For<br />

this reason, we sought to evaluate <strong>the</strong> effects <strong>of</strong> tetracycline <strong>and</strong> epigallocatechin-<br />

3-gallate (EGCG), two well-known inhibitors <strong>of</strong> amyloid aggregation, on AT3<br />

fibrillogenesis <strong>and</strong> cytotoxicity. We observed that tetracycline does not apparently<br />

change <strong>the</strong> aggregation mode, as supported <strong>by</strong> Fourier Transform Infrared<br />

spectroscopy <strong>and</strong> Atomic Force Microscopy data, but increase <strong>the</strong> solubility <strong>of</strong> <strong>the</strong><br />

different aggregated species. O<strong>the</strong>rwise EGCG interferes in <strong>the</strong> early steps <strong>of</strong><br />

aggregation, accelerating <strong>the</strong> misfolding <strong>of</strong> <strong>the</strong> Josephin Domain, <strong>and</strong> leads to <strong>the</strong><br />

formation <strong>of</strong> <strong>of</strong>f-pathway, non-amyloid, final aggregates. In both cases, coincubation<br />

<strong>of</strong> AT3 with <strong>the</strong>se compounds reduces <strong>the</strong> toxicity <strong>of</strong> protein aggregates.<br />

76 77<br />

REFERENCES<br />

[1] H. Y. Zoghbi, H. T. Orr Annu. Rev. Neurosci., 2000, 23, 217–247.<br />

[2] J. R. Gatchel, H. Y. Zoghbi Nat. Rev. Genet., 2005, 6, 743–755.<br />

[3] B. Burnett, F. Li, R. N. Pittman Hum. Mol. Genet., 2003, 12, 195–205.<br />

[4] L. Masino, V. Musi, R. P. Menon, P. Fusi, G. Kelly, A. Frenkiel, Y. Trottier, A. Pastore FEBS Lett.,<br />

2003, 549, 21–25.<br />

[5] E. W. Doss-Pepe, E. S. Stenroos, W. G. Johnson, K. Madura Mol. Cell. Biol., 2003, 23, 6469–6483.<br />

[6] H. Ouyang, Y. O. Ali, M. Ravich<strong>and</strong>ran, A. Dong, W. Qiu, F. Mackenzie F J. Biol. Chem., 2012, 287,<br />

2317-2327.<br />

P-27


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

P-28<br />

INTERACTIONS OF THE GLIAL FIBRILLARY ACIDIC PROTEIN<br />

WITH CEFTRIAXONE REVEALED THROUGH SRCD.<br />

P. Ruzza 1 , G. Siligardi 2 , R. Hussain 2 , B. Biondi 1 , A. Calderan 1 , G. P. Sechi 3<br />

1 Institute <strong>of</strong> Biomolecular Chemistry <strong>of</strong> CNR, Padua Unit, Padua, Italy.<br />

2 Diamond Light Source Ltd, Harwell Science <strong>and</strong> Innovation Campus, Didcot, Oxfordshire, OX11 0DE,<br />

United Kingdom.<br />

3 Department <strong>of</strong> Clinical <strong>and</strong> Experimental Medicine, Medical School, <strong>University</strong> <strong>of</strong> Sassari, Sassari,<br />

Italy.<br />

Early determinants <strong>of</strong> human prion protein conversion investigated <strong>by</strong> solutionstate<br />

NMR, XAFS <strong>and</strong> nanobody-assisted crystallography<br />

Gabriele Giachin 1 , Giulia Salzano 1* , Gregor Ilc 2 , Ivana Biljan 2,3 , Romany N. N. Abskharon 4 ,<br />

Alex<strong>and</strong>re Wohlkonig 4 , Sameh H. Soror 4 , Els Pardon 4 , Jan Steyaert 4 , Federico Benetti 1 , Paola<br />

D’angelo 5 , Janez Plavec 2 <strong>and</strong> Giuseppe Legname 1,6<br />

1 Department <strong>of</strong> Neuroscience, Laboratory <strong>of</strong> Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.<br />

2 Slovenian NMR Centre, National Institute <strong>of</strong> Chemistry, Ljubljana, Slovenia.<br />

3 Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Zagreb, Zagreb, Croatia.<br />

4 Vrije Universiteit Brussel, Structural Biology Brussels, Brussels, Belgium.<br />

5 Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Rome “La Sapienza”, Rome, Italy.<br />

6 ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy.<br />

*Presenting author: gsalzano@sissa.it<br />

P-29<br />

Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) type III protein<br />

that, along with microtubules <strong>and</strong> micr<strong>of</strong>ilaments, makes up <strong>the</strong> cytoskeleton <strong>of</strong><br />

most eukaryotic cells. [1] GFAP has been extensively investigated because it is<br />

involved in <strong>the</strong> reactive changes in astrocytes (gliosis) associated with ageing [2],<br />

following brain injury, in neurodegenerative disorders such as Alzheimer’s <strong>and</strong><br />

The conversion <strong>of</strong> <strong>the</strong> cellular prion protein (PrP C ) into its misfolded <strong>and</strong> amyloidogenic is<strong>of</strong>orm, denoted<br />

as prion or PrP Sc , is <strong>the</strong> central event in prion diseases. In prion biology unraveling <strong>the</strong> molecular<br />

mechanism leading <strong>the</strong> conversion process where<strong>by</strong> α-helical motifs are replaced <strong>by</strong> β-sheet secondary<br />

structures is <strong>of</strong> utmost importance. The structure <strong>of</strong> human PrP C consists <strong>of</strong> a disordered N-terminal part<br />

(residue 23-127) <strong>and</strong> a structured C-terminal domain (residue 128-228). Genetic disease-linked mutations<br />

in <strong>the</strong> human prion protein (HuPrP) cause spontaneous conversion <strong>of</strong> PrP C to PrP Sc . We investigated <strong>the</strong><br />

78<br />

structural consequences <strong>of</strong> mutations (V210I, Q212P <strong>and</strong> <strong>the</strong> polymorphism E219K) clustered on <strong>the</strong><br />

79<br />

Alex<strong>and</strong>er’s [3] diseases, <strong>and</strong> multiple sclerosis.<br />

Recently, reports from our group showed that ceftriaxone, a safe <strong>and</strong> multi-potent<br />

β-lactam antibiotic able to pass freely <strong>the</strong> blood-brain barrier, successfully<br />

eliminated <strong>the</strong> cellular toxic effects <strong>of</strong> misfolded GFAP in a cellular model <strong>of</strong><br />

Alex<strong>and</strong>er’s disease [4]. Here we used synchrotron radiation circular dichroism<br />

(SRCD) spectroscopy to obtain structural information about GFAP-ceftriaxone<br />

molecular interactions. The stability <strong>of</strong> GFAP with <strong>and</strong> without ceftriaxone was<br />

studied <strong>by</strong> UV-denaturation using <strong>the</strong> high-photon flux <strong>of</strong> Diamond B23 beamline.<br />

The B23 UV-induced denaturation, unattainable with bench-top CD instruments,<br />

provided a novel type <strong>of</strong> assay for biopolymer stability <strong>and</strong> binding interaction<br />

assessments, permitting to identify GFAP lig<strong>and</strong>s <strong>and</strong> evaluate <strong>the</strong>ir ability to<br />

increase <strong>the</strong> protein stability in a short period <strong>of</strong> time, <strong>and</strong> with very small amount<br />

<strong>of</strong> sample material.<br />

ACKNOWLEDGEMENTS<br />

We thank Diamond Light Source for access to beamline B23 (SM8034-1) that contributed to <strong>the</strong> results<br />

presented here. The research leading to <strong>the</strong>se results has received funding from <strong>the</strong> European<br />

Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 226716.<br />

REFERENCES<br />

[1] D. Dahl, D.C. Rueger, A. Bignami, K. Weber, M. Osborn Eur. J. Cell Biol. 1981, 24, 191-196.<br />

[2] J. Middeldorp, E.M. Hol Prog. Neurobiol. 2011, 93 421-443.<br />

[3] T. Yoshida, M. Nakagawa Neuropathology 2012, 32, 440-446.<br />

[4] G. Sechi, I. Ceccherini, T. Bachetti, G.A. Deiana, E. Sechi, P. Balbi JIMD Rep. 2013, 9, 67-71.<br />

HuPrP structured C-terminal domain <strong>by</strong> NMR. [1,2,3,4] We found that amino acidic substitutions affect <strong>the</strong><br />

hydrophobic interactions between residues clustered at <strong>the</strong> interface <strong>of</strong> <strong>the</strong> β2-α2 loop <strong>and</strong> <strong>the</strong> α3 helix.<br />

These studies led us to conclude that <strong>the</strong> structural disorders <strong>of</strong> <strong>the</strong> β2-α2 loop, toge<strong>the</strong>r with <strong>the</strong><br />

increased spacing between this loop <strong>and</strong> <strong>the</strong> C-terminal part <strong>of</strong> α3 helix are key pathological features.<br />

The disruption <strong>of</strong> <strong>the</strong>se interactions <strong>and</strong> <strong>the</strong> consequent exposure to <strong>the</strong> solvent <strong>of</strong> <strong>the</strong> hydrophobic core<br />

led to <strong>the</strong> suggestion that <strong>the</strong> early stage <strong>of</strong> prion conversion possibly involves <strong>the</strong> critical epitope formed<br />

<strong>by</strong> <strong>the</strong> β2-α2 loop <strong>and</strong> <strong>the</strong> α3 helix. We <strong>the</strong>n evaluated <strong>the</strong> effect <strong>of</strong> <strong>the</strong> Q212P mutation on <strong>the</strong> copper<br />

coordination in one <strong>of</strong> <strong>the</strong> copper binding sites located in <strong>the</strong> unstructured N-terminal domain using X-ray<br />

absorption fine structure techniques <strong>and</strong> we compared <strong>the</strong>se findings with <strong>the</strong> wild-type HuPrP. We found<br />

that this mutant causes a dramatic modification on <strong>the</strong> copper coordination in this binding site. [5] Finally,<br />

we investigated if <strong>the</strong> N-terminal domain may acquire a structured fold upon binding to an antibody<br />

targeting a critical epitope involved in <strong>the</strong> conversion process (<strong>the</strong> palindromic motif AGAAAAGA,<br />

residues 113-120). We crystallized <strong>the</strong> full-length HuPrP in complex with a nanobody (Nb484) that inhibits<br />

prion propagation. While <strong>the</strong> segment from residue 128 to 225 shares a fold that is very similar to <strong>the</strong><br />

corresponding NMR HuPrP structures, <strong>the</strong> binding <strong>of</strong> Nb484 to a region adjacent to <strong>the</strong> first β-sheet (β1)<br />

unveils key structural features <strong>of</strong> <strong>the</strong> hydrophobic segment from residue 117 to 128, which had remained<br />

unresolved in all <strong>the</strong> PrP structures published so far. In our X-ray structures, <strong>the</strong> palindromic motif<br />

arranges in a novel β-str<strong>and</strong>, denoted as β0 (residues 118–122), which folds into a three-str<strong>and</strong>ed<br />

antiparallel β-sheet with β1 <strong>and</strong> β2. The implications <strong>of</strong> <strong>the</strong>se findings are remarkable, as we provide a<br />

first atomic structural view <strong>of</strong> <strong>the</strong> palindromic region adopting a well-defined β-sheet conformation. [6]<br />

REFERENCES<br />

[1] I. Biljan, G. Ilc, G. Giachin, J. Plavec, G. Legname Biochemistry, 2012, 51, 7465-7474<br />

[2] I. Biljan, G. Ilc, G. Giachin, A. Raspadori, I. Zhukov, J. Plavec, G. Legname J Mol Biol, 2011, 412(4), 660-673<br />

[3] G. Ilc, G. Giachin, M. Jaremko, L. Jaremko,F. Benetti, J. Plavec, I. Zhukov, G. Legname PLoSOne, 2010, 5, e11715<br />

[4] I. Biljan, G. Giachin, G.Ilc, I. Zhukov, J. Plavec, G. Legname Biochem J, 2012, 446, 243-251<br />

[5] P. D'Angelo, S. Della Longa, A. Arcovito, G. Mancini, A. Zitolo, G. Chillemi, G. Gachin, G. Legname Biochemistry, 2012, 6068-<br />

6079<br />

[6] RN. Abskharon, G. Giachin, A. Wohlkonig, SH. Soror, E. Pardon, G. Legname, J. Steyaert J Am Chem Soc, <strong>2014</strong>, 136(3), 937-<br />

944


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-30<br />

ELONGATION OF MOUSE PRION PROTEIN AMYLOID-LIKE<br />

FIBRILS: EFFECT OF TEMPERATURE AND DENATURANT<br />

CONCENTRATION<br />

Katazyna Milto, Ksenija Michailova, Vytautas Smirnovas<br />

α-synuclein aggregation: effect <strong>of</strong> protein charge on fibril<br />

elongation <strong>and</strong> membrane interaction<br />

Alex I.M. van der Wateren 1 , Alex<strong>and</strong>er K. Büll 1 , Céline Galvagion 1 ,<br />

Christopher M. Dobson 1<br />

P-31<br />

Department <strong>of</strong> Bio<strong>the</strong>rmodynamics <strong>and</strong> Drug Design, Vilnius <strong>University</strong> Institute <strong>of</strong><br />

Biotechnology, Vilnius, Lithuania, vytautas@smirnovas.info<br />

Prion protein is known to have <strong>the</strong> ability to adopt a pathogenic conformation,<br />

which seems to be <strong>the</strong> basis for protein-only infectivity. The infectivity is based on<br />

self-replication <strong>of</strong> this pathogenic prion structure. One <strong>of</strong> possible mechanisms for<br />

such replication is <strong>the</strong> elongation <strong>of</strong> amyloid-like fibrils.<br />

We measured elongation kinetics <strong>and</strong> <strong>the</strong>rmodynamics <strong>of</strong> mouse prion amyloid-like<br />

fibrils at different guanidine hydrochloride (GuHCl) concentrations. Our data show<br />

that both increases in temperature <strong>and</strong> GuHCl concentration help unfold<br />

monomeric protein <strong>and</strong> thus accelerate elongation. Once <strong>the</strong> monomers are<br />

unfolded, fur<strong>the</strong>r increases in temperature raise <strong>the</strong> rate <strong>of</strong> elongation, whereas <strong>the</strong><br />

addition <strong>of</strong> GuHCl decreases it.<br />

We demonstrated a possible way to determine different activation energies <strong>of</strong><br />

amyloid-like fibril elongation <strong>by</strong> using folded <strong>and</strong> unfolded protein molecules. This<br />

approach separates <strong>the</strong>rmodynamic data for fibril-assisted monomer unfolding <strong>and</strong><br />

for refolding <strong>and</strong> formation <strong>of</strong> amyloid-like structure.<br />

1 Department <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Cambridge, Cambridge, UK, imv22@cam.ac.uk<br />

α-synuclein (AS) is a small protein implicated in synaptic function [1] <strong>and</strong> is<br />

strongly implicated in Parkinson’s Disease (PD) where it forms intracellular fibrillar<br />

aggregates [2]. These aggregates were long thought to result in neuronal cell<br />

death, but more recently it has been suggested that oligomeric (precursor)<br />

structures might damage membranes <strong>and</strong> cause cell death [3]. The majority <strong>of</strong> PD<br />

cases is sporadic but some people develop PD much earlier in life due to a<br />

pointmutation in AS [4]. The protein in vivo is also found to be post-translationally<br />

modified (such as phosphorylation <strong>and</strong> truncation) [5]. We are interested in how<br />

such modifications, in particular truncations <strong>of</strong> all or part <strong>of</strong> <strong>the</strong> negatively charged<br />

C-terminus, affect <strong>the</strong> kinetics <strong>of</strong> aggregation <strong>and</strong> <strong>the</strong> ability <strong>of</strong> <strong>the</strong> protein to<br />

interact with lipid membranes, in an effort to study protein aggregation in a more<br />

physiologically relevant setting. Our preliminary results show that C-terminally<br />

truncated AS (<strong>the</strong> first 103 residues: AS 1-103) is more prone to form higher order<br />

assemblies <strong>of</strong> aggregates than wild-type (WT) protein. We also show that WT<br />

aggregates are able to “seed” elongation <strong>of</strong> AS 1-103, more so than vice versa.<br />

The behavior <strong>of</strong> AS 1-103 renders <strong>the</strong> use <strong>of</strong> <strong>the</strong> classical fluorescent dyes, such<br />

as Thi<strong>of</strong>lavin T to monitor aggregation, challenging <strong>and</strong> we will discuss strategies<br />

to curcumvent <strong>the</strong>se difficulties. Both WT <strong>and</strong> AS 1-103 similarly interact with small<br />

unilamellar vesicles (SUVs) <strong>of</strong> DMPS, but we observe large differences between<br />

WT <strong>and</strong> AS 1-103 when studying aggregation in <strong>the</strong> presence <strong>of</strong> SUVs.<br />

80 81<br />

REFERENCES<br />

[1] Bellani et al. 2010, The regulation <strong>of</strong> synaptic function <strong>by</strong> a-synuclein, Communicative & Integrative<br />

Biology 3:2, 106-109<br />

[2] Baba et al. 1998, Aggregation <strong>of</strong> a-synuclein in Lewy Bodies <strong>of</strong> sporadic Parkinson’s disease <strong>and</strong><br />

dementia with Lewy Bodies, American Journal <strong>of</strong> Pathology 153:4, 879-884<br />

[3] Kalia et al. 2012, a-synuclein oligomers <strong>and</strong> clinical implications for Parkinson Disease, Annals <strong>of</strong><br />

Neurology 73:2, 155-169<br />

[4] Klein <strong>and</strong> Westenberger 2012, Genetics <strong>of</strong> Parkinson’s Disease, Cold Spring Harbor Perspectives in<br />

Medicine<br />

[5] Schmid et al. 2013, a-synuclein post-translational modifications as potential biomarkers for<br />

Parkinson’s Disease <strong>and</strong> o<strong>the</strong>r Synucleinopathies, Molecular & Cellular Proteomics 12:12, 3543-3558


“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

P-32<br />

Chaperon-like activity <strong>of</strong> intrinsically disordered caseins in A<br />

fibrillogenesis<br />

S Vilasi 1 , R Carrotta 1 , GC Rappa 1 , MG Ortore 2 , Canale C 3 , PL San Biagio 1 ,<br />

D Bulone 1<br />

1 Institute <strong>of</strong> <strong>Biophysics</strong>, National Research Council, Palermo, Italy. silvia.vilasi@pa.ibf.cnr.it<br />

2 Department <strong>of</strong> Life <strong>and</strong> Environmental Sciences <strong>and</strong> CNISM, Marche Polytechnic <strong>University</strong>, Ancona,<br />

Italy<br />

3 Nanophysics, Italian Institute <strong>of</strong> Technology (IIT), Genova, Italy.<br />

Alzheimer's disease (AD) is a chronic <strong>and</strong> progressive syndrome, which affects<br />

about 5% <strong>of</strong> <strong>the</strong> population over age 65 <strong>and</strong> is characterized <strong>by</strong> <strong>the</strong> accumulation<br />

<strong>of</strong> a 40-42 aminoacids peptide, <strong>the</strong> amyloid-beta peptide (Aß), in insoluble plaques,<br />

known as amyloid fibrils. Recent studies have attributed to small Hsp, <strong>and</strong> o<strong>the</strong>r<br />

little molecules able to exert an chaperon-like activity, an important role in amyloid<br />

neurodegenerative diseases <strong>and</strong> <strong>the</strong>ir stabilizying function is <strong>of</strong>ten correlated to<br />

<strong>the</strong>ir intrinsically disorder structure [1]. An example is provided <strong>by</strong> <strong>the</strong> intrinsically<br />

disordered proteins, β-, <strong>and</strong> κ-caseins that are able to inhibiting protein<br />

aggregation <strong>and</strong> amyloid fibrils formation <strong>and</strong> this chaperon-like activity could be<br />

largely due to <strong>the</strong>ir open <strong>and</strong> flexible conformations. [2,3]. In <strong>the</strong> present study we<br />

compare <strong>the</strong> effect <strong>of</strong> <strong>the</strong> three caseins on 1-40 β-amyloid peptide fibrillogenesis <strong>by</strong><br />

Thi<strong>of</strong>lavin T fluorescence <strong>and</strong> Circular dichroism. Results show that k-casein, that<br />

in its native state is in a multimeric oligomer composition [4], is able to significantly<br />

increase lag-time <strong>and</strong> reduce fibril amount in Aβ amyloid formation. Therefore, we<br />

explored <strong>the</strong> action mechanisms <strong>of</strong> k-casein on Aβ aggregation process <strong>by</strong> using<br />

protein intrinsic fluorescence, AFM measurements, light <strong>and</strong> Small Angle X Ray<br />

Scattering. Data demonstrate that <strong>the</strong> k-native casein in its oligomeric state<br />

incorporates Aβ on its surface, <strong>by</strong> means <strong>of</strong> a holding action mainly due to its<br />

intrinsic disorder [1], thus reducing <strong>the</strong> amount <strong>of</strong> peptide available for subsequent<br />

aggregation. Our results contribute to clear <strong>the</strong> role <strong>of</strong> intrinsically disordered<br />

proteins <strong>and</strong> <strong>the</strong>ir mechanism <strong>of</strong> action, <strong>and</strong> <strong>of</strong>fer insight in <strong>the</strong> field <strong>of</strong> prevention<br />

<strong>and</strong> <strong>the</strong>rapy in Alzheimer diseases, <strong>and</strong>, in general, <strong>of</strong> amyloid pathologies.<br />

Insights into structural features <strong>of</strong> intermediate states along <strong>the</strong><br />

fibrillogenesis pathway <strong>of</strong> amyloid-like systems<br />

L. Vitagliano 1 , A. De Simone 2 , L. Esposito 1<br />

1 Institute <strong>of</strong> Biostructures <strong>and</strong> Bioimaging . CNR, Napoli (Italy), luigi.vitagliano@unina.it.<br />

2 Division <strong>of</strong> Molecular Biosciences, Imperial College South Kensington Campus London SW7 2AZ, UK<br />

The definition <strong>of</strong> <strong>the</strong> molecular basis <strong>of</strong> human diseases is one <strong>of</strong> <strong>the</strong> most<br />

important goals <strong>of</strong> structural biology. Computational methodologies represent<br />

valuable tools for coping with <strong>the</strong>se challenging projects. In this scenario, we have<br />

undertaken molecular dynamics simulations on several amyloid-like systems to<br />

gain insights into <strong>the</strong> structural basis <strong>of</strong> <strong>the</strong> fibrillogenesis process, which is a key<br />

step in <strong>the</strong> insurgence <strong>of</strong> widespread neurodegenerative diseases. These studies<br />

have provided some interesting clues on <strong>the</strong> structural features <strong>of</strong> small soluble<br />

precursors <strong>of</strong> amyloid-like fibers [1-4], which are <strong>the</strong> actual toxic species. On this<br />

basis, we have related <strong>the</strong> toxicity <strong>of</strong> <strong>the</strong>se oligomers with some specific structural<br />

features such as <strong>the</strong> exposure <strong>of</strong> sticky β-str<strong>and</strong>s [1-2].<br />

In more recent years, <strong>the</strong>se computational approaches have been extended to <strong>the</strong><br />

analysis <strong>of</strong> <strong>the</strong> intrinsic stability <strong>of</strong> <strong>the</strong> β-sheet <strong>of</strong> <strong>the</strong> prion protein, a region that is<br />

believed to play a crucial role in <strong>the</strong> protein aggregation [5]. Extensive replica<br />

exchange molecular dynamics simulations clearly indicate that <strong>the</strong> native<br />

antiparallel β-structure <strong>of</strong> <strong>the</strong> prion is endowed with a remarkable stability.<br />

Therefore, upon unfolding, <strong>the</strong> persistence <strong>of</strong> a structured β-region may seed<br />

molecular association <strong>and</strong> influence <strong>the</strong> subsequent phases <strong>of</strong> <strong>the</strong> aggregation<br />

process. The analysis <strong>of</strong> <strong>the</strong> four-str<strong>and</strong>ed β-sheet detected in <strong>the</strong> dimeric<br />

assemblies <strong>of</strong> PrP shows a tendency <strong>of</strong> this region to form dynamical structured<br />

states. We also evaluated <strong>the</strong> impact on <strong>the</strong> β-sheet structure <strong>and</strong> dynamics <strong>of</strong><br />

disease associated point mutations.<br />

82 83<br />

P-33<br />

REFERENCES<br />

[1] V. Uversky, Protein chaperones <strong>and</strong> protection from neurodegenerative diseases, 2011, Wiley.<br />

[2] R. Carrotta, C. Canale, A. Diaspro, A. Trapani , PL Biagio, D Bulone Biochim Biophys Acta., 2012,<br />

1820(2),124.<br />

[3] D.C. Thorn, S. Meehan, M. Sunde, A. Rekas, S.L. Gras, C.E. MacPhee, C.M. Dobson, M.R. Wilson<br />

MR, JA. I. Carver, Biochemistry, 2005,44(51),17027-36.<br />

[4] L.K. Rasmussen. P. Højrup, T.E. Petersen, Eur. J. Biochem., 1992, 207, 215-222.<br />

ACKNOWLEDGEMENTS<br />

This work has been supported <strong>by</strong> FIRB RBFR12SIPT MIND: “Indagine multidisciplinare per lo sviluppo<br />

di farmaci neuro-protettori.”<br />

REFERENCES<br />

[1] L. Esposito, A. Paladino, C. Pedone, L. Vitagliano Biophysical J., 2008, 94, 4031-4040.<br />

[2] A. De Simone, L. Esposito, C. Pedone, L. Vitagliano Biophysical J., 2008 95, 1965-1973.<br />

[3] A. De Simone, C. Pedone, L. Vitagliano BBRC, 2008, 366, 800-806.<br />

[4] L. Vitagliano, L. Esposito, C. Pedone, A. De Simone BBRC, 2008, 377, 1036-1041.<br />

[5] A. De Simone, F. Stanzione, D. Marasco, L. Vitagliano, L. Esposito J Biomol Struct Dyn. 2013, 31,<br />

441-52.


P-34<br />

“<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong>”<br />

<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong> - Naples, Italy<br />

Assembly mechanism <strong>of</strong> hereditary amyloid-β variants<br />

promoted on <strong>the</strong>ir specific gangliosides<br />

M. Yagi-Utsumi 1,2 , K. Kato 2 , C. M. Dobson 1<br />

1 Dept. <strong>of</strong> Chemistry, <strong>University</strong> <strong>of</strong> Cambridge, Cambridge (United Kingdom), my322@cam.ac.uk<br />

2 Okazaki Institute for Integrative Bioscience, National Institutes <strong>of</strong> Natural Sciences, Okazaki (Japan)<br />

Lipid membranes provide active platform for dynamic interactions <strong>of</strong> a variety <strong>of</strong><br />

biomolecules on cell surfaces, where glycolipids are involved in physiological <strong>and</strong><br />

pathological molecular recognition events. Growing evidences have demonstrated<br />

that gangliosides on neuronal cell membranes can be targets for various<br />

amyloidogenic proteins that are associated with neurodegenerative disorders (e.g.<br />

Aβ in Alzheimer’s disease <strong>and</strong> α-synuclein in Parkinson’s disease). To provide a<br />

structural basis for this pathogenic interaction associated with AD, we conducted<br />

NMR analyses <strong>of</strong> <strong>the</strong> interactions <strong>of</strong> Aβ with ganglisoides. Our findings suggest<br />

that (1) <strong>the</strong> ganglioside clusters <strong>of</strong>fer a unique platform at <strong>the</strong>ir<br />

hydrophobic/hydrophilic interface for binding coupled with α-helix formation <strong>of</strong> Aβ<br />

molecules restricting <strong>the</strong>ir spatial rearrangements to promote specific<br />

intermolecular interactions, <strong>and</strong> (2) <strong>the</strong> Aβ density on <strong>the</strong> gangliosidic clusters can<br />

be a determining factor <strong>of</strong> an occurrence <strong>of</strong> <strong>the</strong> Aβ-Aβ interactions <strong>and</strong> <strong>the</strong>ir<br />

consequent amyloid formation [1,2,3].<br />

Interestingly, it has been reported that assembly <strong>of</strong> hereditary variant Arctic-type<br />

(E22G), Dutch-type (E22Q) <strong>and</strong> Flemish-type (A21G) Aβs is specifically<br />

accelerated <strong>by</strong> GM1, GM3 <strong>and</strong> GD3 ganglioside, respectively, which are<br />

predominantly expressed at <strong>the</strong> respective sites <strong>of</strong> preferential deposition <strong>of</strong> <strong>the</strong>se<br />

Aβ variants in <strong>the</strong> brain. To provide a more detailed underst<strong>and</strong>ing <strong>of</strong> <strong>the</strong> role <strong>of</strong><br />

gangliosides in <strong>the</strong> Aβ-species-dependent deposition, we are attempting to<br />

elucidate <strong>the</strong> biophysical basis for <strong>the</strong> assembly mechanisms <strong>of</strong> hereditary Aβ<br />

variants promoted on <strong>the</strong>ir specific gangliosides.<br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

84 85<br />

ACKNOWLEDGEMENTS<br />

Financial support from <strong>the</strong> Naito Foundation is acknowledged.<br />

REFERENCES<br />

[1] M. Utsumi, Y. Yamaguchi, H. Sasakawa, N. Yamamoto, K. Yanagisawa, K. Kato, Glycoconjugate J.<br />

2009, 26, 999-1006.<br />

[2] M. Yagi-Utsumi, T. Kameda, Y. Yamaguchi, K. Kato, FEBS Lett. 2010, 584, 831-836.<br />

[3] M. Yagi-Utsumi, K. Matsuo, K. Yanagisawa, K. Gekko, K. Kato, Int. J. Alzheimer’s Dis. 2011, 2010,<br />

e92507.<br />

AUTHOR INDEX<br />

Abedini A. PL-4<br />

Abskharon R. N. N. P-29<br />

Altieri F. P-1<br />

Ami D. P-20<br />

Andreasen M. OC-10<br />

Arcari P. P-1<br />

Arciello A. P-19<br />

Baldassarre M. P-2<br />

Barbet-Massin E. OC-1<br />

Barbiroli A. OC-1<br />

Barth A. OC-5, P-2<br />

Beekes M. P-7<br />

Belgacem O. ET<br />

Bellotti V.<br />

OC-1<br />

Benetti F. P-29<br />

Bernardini G. P-18<br />

Bieschke J. OC-14<br />

Biljan I. P-29<br />

Biondi B. P-28<br />

Bitler C. P-25<br />

Blinov N. OC-13, P-3<br />

Bobba F. P-8<br />

Bolognesi M. OC-1, P-20<br />

Bonanomi M. P-27<br />

Borg C.B. P-23<br />

Botyriute A. P-14<br />

Braconi D. P-18<br />

Brown J. P-4<br />

Buell A. P-4, P-24, P-31<br />

Bulone D. P-32<br />

Buxbaum J.N. P-5<br />

Calamai M. P-11<br />

Calderan A. P-28<br />

Canale C. P-32<br />

Cao P.<br />

PL-4<br />

Carrotta R. P-32<br />

Cascella R. P-5, P-11<br />

Cashman N. OC-13, P-3<br />

Castangia R. ET<br />

Cavaliere P. P-22<br />

Cebey Zas L. OC-2<br />

Cecchi C. P-5, P-11<br />

Chino M. P-6<br />

Chiti F. PL-2, P-5 , P-11<br />

Choo M. S. F. ET<br />

Col<strong>by</strong> D.<br />

OC-11<br />

Colombo G. P-27<br />

Crea R. SN, P-25<br />

Cucolo A. P-8<br />

D’Angelo P. P-29<br />

D’Errico G. P-9<br />

D’Ursi A. M. P-8, P-12<br />

Dargužis D. P-14<br />

Daus M.L. P-7<br />

de Chiara C. OC-12<br />

De Simone A. OC-3, OC-4,<br />

P-10, P-33<br />

DeGrado W. F. P-6, P-21


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

May 25-26, <strong>2014</strong><br />

Castel dell’Ovo - Naples, Italy<br />

Two Universities <strong>by</strong> <strong>the</strong> <strong>Bay</strong><br />

Del Giudice R. P-19<br />

Dell A.<br />

ET<br />

Di Marino S. P-12<br />

Di Natale C. P-15<br />

Di Pierro P. P-16<br />

Di Stadio C.S. P-1<br />

Dobson C. M.<br />

OC-3, P-4, P-5,<br />

P-31, P-34<br />

Doglia S.M. P-20, P-27<br />

Emendato A. P-9<br />

Esposito L. P-10, P-33<br />

Evangelisti E. P-5, P-11<br />

Falanga A. P-9<br />

86 87<br />

Fernández J.-J.<br />

OC-2<br />

Foderà V. P-26<br />

Fusco G.<br />

OC-3<br />

D’Alessio G. P-24<br />

Galdiero S. P-9<br />

Galvagnion C. P-4, P-31<br />

Gambassi S. P-18<br />

Garcia G.A. P-17<br />

Geminiani M. P-18<br />

Ghezzi L. P-18<br />

Giachin G. P-29<br />

Giancola C. P-22<br />

Giorgetti S.<br />

OC-1<br />

Giosafatto C. V. L. P-16<br />

Granata V. P-22<br />

Gr<strong>and</strong>ori R.<br />

Gräslund A.<br />

OC-1<br />

PL-3<br />

Grimaldi M. P-8, P-12<br />

Halabelian L. OC-1, P-20<br />

Hemmingsen L. P-23<br />

Horrocks M. P-13<br />

Hussain R. P-28<br />

Iannuzzi C.<br />

OC-7<br />

Ilc G. P-29<br />

Iljina M. P-13<br />

Irace G.<br />

OC-7<br />

Itri F. P-19<br />

Iuliano A. P-12<br />

Kanthasamy A.<br />

Karjalainen E.-L.<br />

Kaspersen J. D.<br />

OC-8<br />

OC-5<br />

OC-10<br />

Kato K. P-34<br />

Kelly G.<br />

OC-12<br />

Klenerman D. P-13<br />

Knowles T.P.J. PL-5, P-17, P-24<br />

Kovalenko A. OC-13, P-3<br />

Lasch P. P-7<br />

Laschi M. P-18<br />

Legname G. P-29<br />

Lemmin T. P-6<br />

Leone M. P-15, P-26<br />

Lombardi A. P-6<br />

Lorenzen N.<br />

OC-10<br />

Mališauskas R. P-14<br />

Mannini B. P-5<br />

Manno M.<br />

OC-6<br />

Marasco D. P-15<br />

March Z.<br />

OC-11<br />

Mariniello L. P-16<br />

Maritato R.<br />

Marrone A.<br />

Martorana V.<br />

OC-7<br />

OC-9<br />

OC-6<br />

Mazzarella L. P-24<br />

Menon R. P.<br />

Meredith S.<br />

OC-12<br />

PL-7<br />

Merlino A. P- 24<br />

Michaels T.C.T. P-17<br />

Michailova K. P-30<br />

Middleton C. T.<br />

PL-4<br />

Militello V. P-26<br />

Millucci L. P-18<br />

Milto K. P-30<br />

Miselli G. P-1<br />

Monti D. M. P-19<br />

Morelli G. P-15<br />

Morozova O.<br />

OC-11<br />

Natalello A. P-20, P-27<br />

Nick M. C. P-21<br />

Nielsen S. B.<br />

OC-10<br />

Nori S. L. P-8<br />

Novellino E. P-22<br />

Ortore M.G. P-32<br />

Otzen D. E.<br />

Paciotti R.<br />

OC-10<br />

OC-9<br />

Pagano B. P-22<br />

Pardon E. P-29<br />

Paslawski W.<br />

Pastore A.<br />

Pedersen J. S.<br />

OC-10<br />

OC-12<br />

OC-10<br />

Pedersen J. T. P-23<br />

Penco A. P-27<br />

Peters P. J.<br />

OC-2<br />

Pica A. P- 24<br />

Piccoli R. P-19<br />

Picone D. P-9<br />

Pintacuda G.<br />

OC-1<br />

Pizzo E. P-24<br />

Plavec J. P-29<br />

Polverino A. P-12<br />

Pontoniere P. P-25<br />

Porta R. P-16<br />

Prigent S. P-22<br />

Prusiner S.B.<br />

PL-1<br />

Punzo V. P-15<br />

Raccosta S.<br />

Raleigh D.P.<br />

OC-6<br />

PL-4<br />

Rao E. P-26<br />

Rappa G.C. P-32<br />

Regonesi M.E. P-27<br />

Relini A. P-5, P-27<br />

Requena J. R.<br />

OC-2<br />

Rezaei H. P-22<br />

Ricagno S. OC-1, P-20<br />

Riek R.<br />

PL-6<br />

Rippa E. P-1<br />

Ruzza P. P-28<br />

Salzano G. P-29<br />

San Biagio P.L. P-32<br />

Santambrogio C.<br />

OC-1<br />

Santucci A. P-18<br />

Schmidt A. M.<br />

PL-4


<strong>Biophysics</strong> <strong>of</strong> <strong>Amyloids</strong> <strong>and</strong> <strong>Prions</strong><br />

88<br />

Scognamiglio P. L. P-15<br />

Scrima M. P-8 P-12<br />

Sechi G. P. P-28<br />

Shorter J.<br />

PL-8<br />

Sica F. P-24<br />

Siligardi G. P-28<br />

Sirangelo I. OC-7, P-16<br />

Sivasankar S. OC-8<br />

Smirnovas V. P-14, P-30<br />

Soror S. H. P-29<br />

Sorrentino A. P-16<br />

Sorrentino G. P-12<br />

Spadaccini R. P-9<br />

Stefani M. P-11<br />

Steyaert J. P-29<br />

Stöhr J. P-21<br />

Storchi L.<br />

OC-9<br />

Sublimi Saponetti M. P-8<br />

Tata G.<br />

OC-3<br />

Teilum K. P-23<br />

Thomsen K. OC-10<br />

Tiribilli B. P-5<br />

Tu L.-H.<br />

PL-4<br />

van der Wateren A.I.M. P-31<br />

Vázquez-Fernández OC-2<br />

Veglia G.<br />

OC-3<br />

Vendruscolo M. OC-3<br />

Vetri V. P-26<br />

Vilasi S. P-32<br />

Visentin C. P-27<br />

Vitagliano L. P-10, P-15, P-33<br />

Vos M.<br />

OC-2<br />

Vostrikov V. OC-3<br />

Wang H.<br />

PL-4<br />

Wille H.<br />

OC-2<br />

Wilson M.R. P-5<br />

Wohlkonig A. P-29<br />

Yagi-Utsumi M. P-34<br />

Yen C.-F.<br />

OC-8<br />

Young H.<br />

OC-2<br />

Zagari A. P-22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!