26.05.2014 Views

Pathogen phytosensing: plants to report plant pathogens

Pathogen phytosensing: plants to report plant pathogens

Pathogen phytosensing: plants to report plant pathogens

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Pathogen</strong> <strong>phy<strong>to</strong>sensing</strong>: <strong><strong>plant</strong>s</strong> <strong>to</strong> <strong>report</strong> <strong>plant</strong> <strong>pathogens</strong><br />

C. Neal Stewart, Jr<br />

Department of Plant Sciences<br />

University of Tennessee<br />

Knoxville, TN, USA<br />

PSC Symposium 2008, Zurich, Switzerland


Phy<strong>to</strong>sensor components<br />

• Basic biology of what needs sensing; e.g.,<br />

<strong>plant</strong>-pathogen pathogen interactions<br />

• Engineered signal transduction pathway<br />

• Transgenic <strong>plant</strong> system<br />

• Output signal<br />

• Detection of output signal


Why Phy<strong>to</strong>sensors?<br />

• Wide area detection– standoff<br />

• Detection of events<br />

• Sensing abiotic or biotic fac<strong>to</strong>rs<br />

• Chemicals<br />

• Explosives<br />

• Plant <strong>pathogens</strong><br />

• Pollutants<br />

• Bio agents?


GFP as an induced output signal


Induced GFP phy<strong>to</strong>sensors<br />

induction<br />

No pathogen<br />

+pathogen<br />

Using inducible<br />

promoter/GFP<br />

fusions


Causes of Plant Diseases<br />

(biotic fac<strong>to</strong>rs)<br />

Fungi Bacteria Viruses Nema<strong>to</strong>des<br />

Soybean<br />

Asian rust<br />

Soybean<br />

bacterial blight<br />

Soybean<br />

mosaic virus<br />

Soybean<br />

cyst nema<strong>to</strong>de


Regulation of defense gene expression by <strong>plant</strong> signal molecules<br />

Aggressors<br />

fungi, bacteria, viruses, nema<strong>to</strong>des<br />

Depending on the nature of a particular<br />

aggressor the <strong>plant</strong> is able <strong>to</strong> fine-tune the<br />

induction of defense genes by employing<br />

signal molecules jasmonic acid (JA), salicylic<br />

acid (SA), and ethylene (C 2 H 4 ).


Plant defense responses and phy<strong>to</strong>sensors<br />

• Inducible <strong>plant</strong> defense is controlled by:<br />

- Signal transduction pathways<br />

- Inducible promoters<br />

- Cis-regula<strong>to</strong>ry elements corresponding <strong>to</strong> key genes involved in defense<br />

- <strong>Pathogen</strong>-specific responses<br />

• Identified inducible promoters and cis-acting elements could<br />

be utilized in <strong>plant</strong> sentinels, or “phy<strong>to</strong>sensors”, by fusing these<br />

<strong>to</strong> <strong>report</strong>er genes <strong>to</strong> produce <strong><strong>plant</strong>s</strong> with altered phenotypes in<br />

response <strong>to</strong> the presence of <strong>pathogens</strong>.


Early detection of <strong>plant</strong> diseases<br />

Functional analysis of GN-1 promoter<br />

(Alonso et al., 1995 Plant J 7(2) 309-320)<br />

-139 : GGCGGC<br />

consensus sequence in<br />

promoters from PR<br />

protein families<br />

-2000 -736 -278 -130 -1<br />

region with<br />

positive<br />

regula<strong>to</strong>ry<br />

sequence AND<br />

high inducibility<br />

(up <strong>to</strong> 18 fold<br />

induction)<br />

negative<br />

regula<strong>to</strong>ry<br />

sequences<br />

minimal<br />

inducible<br />

promoter (1.7<br />

fold induction)


Inducible expression<br />

Kooshki et al. 2003 Plant Sci 165:213-219


Disadvantages of using a full length promoters of pathogen inducible genes<br />

Arabidopsis PR-1 promoter<br />

gtttataccgattaaaaaaataataatgcttagttataaattactatttattcatgctaaactatttctcgtaactattaaCCAATag<br />

taattcatcaaattttaaaattctcaattaattgattcttgaaattcataaccttttaatattgattgataaaaatatacataaactcaatc<br />

tttttaatacaaaaaaactttaaaaaatcaatttttctGattcggagggagtatatgttattgcttagaatcacagattcatatcaggat<br />

tggaaaattttaaagccagtgcatatcagtagtcaaaattggtaaatgatatacgaaggcggtacaaaattaggtatactgaaga<br />

TAGAAgaacacaaaagtagatCGGTcacctagagtttttcaatttaaactgcgtattagtgtttggaaaaaaaaaacaaagtg<br />

tatacaatgtcaatcggtgatctttttttttttttttttttttttttttctttttggataaatctcaatgggtgatctattgactgtttctctACGTcac<br />

tattttacttACGTCAtagatgtGGCGGCatatattcttcaGGACTTTTCagccataggcaagagtgatagagatactc<br />

atatgcatgaaacactaagaaacaaataattcttgactttttttcttttatttgaaaattgactgtagatataaacttttattttttctgac<br />

tgtaaatataatcttaattgccaaactgtccgatacgAtttttctgtattatttacaggaagatatcttcaaaacattttgaatgaagtaatat<br />

atgaaattcaaatttgaaatagaagacttaaattagaatcatgaagaaaaaaaAaacacaaaaCAACtgaatgacatgaaaca<br />

actatatacaatgtttcttaataaacttcatttagggtatacttacatatatactaaaaaaatatatcaacaatggcaaagctaccgatac<br />

gaaacaatattaggaaaaatgtgtgtaaggacaagattgacaaaaaaatagttacgaaaacaacttctattcatttggacaattgca<br />

atgaatattactaaaatactcaCACATGgaccatgtatttacaaaaACGTgagatctatagttaacaaaaaaaaaaagaaaaaa<br />

atagttttcaaatctctatataagcgatgtttacgaaccccaaaatcataacacaacaataaccattatcaacttagaaaaATG<br />

CCAAT – HSE- heat shock element<br />

TAGAAgaaca – TSE-SA-responsive element<br />

CGGTca & CAACtg – MYB-binding drought inducible elements<br />

CACATG – water stress inducible element<br />

tctACGTcac & aACGTg – ABRE-ABA responsive elements<br />

ACGTCA – bZIP (W-like-box)<br />

GGCGGC – ethylene responsive element<br />

GGACTTTTC – NF-kB-like element


Cis-acting elements responsive <strong>to</strong> defense signal molecules and/or<br />

<strong>pathogens</strong><br />

Cis-acting element Core sequence Gene promoter<br />

GCC-like elements:<br />

GCC-box-ethylene responsive AGCCGCC Tobacco PR-genes: basic chitinase,<br />

element (ERE) - binding site<br />

b-1,3-glucanase<br />

for EREBPs<br />

EREBPs<br />

S-element GCC-like box AGCCACC Parsley ELI7 - elici<strong>to</strong>r-inducible<br />

(binding fac<strong>to</strong>r unknown)<br />

JA-responsive elements<br />

JAR CAAT-like box: GCCAAAT Arabidodpsis VSP1 - Vegetative<br />

G-like boxes: CACGCC<br />

s<strong>to</strong>rage protein<br />

AACGTG<br />

JERE - JA and elici<strong>to</strong>r responsive GCC-like box AGACCGCC Periwinkle Str - Stric<strong>to</strong>sidine<br />

element - binding site for ORCA-2<br />

synthase<br />

W-like boxes-binding site for<br />

WRKY transcription fac<strong>to</strong>rs<br />

W1-box TTGACC Pasley PR1<br />

NPR-1-motif 2W1-boxes TTGACTTGAC Arabidodpsis NPR1<br />

W2-box GTCAA<br />

JASE1-JA-responsive element CGTCAATGAA Arabidopsis OPR1 - 12-oxo-phy<strong>to</strong>-<br />

JASE2-JA-responsive element CATACGTCGTCAA dienoic acid-10,11-reductase<br />

SARE -SA-responsive element TTCGACCTCC Tobacco PR2-d<br />

(binding fac<strong>to</strong>r -unknown)<br />

Gst 1 box GCC-like box AGCCACC Pota<strong>to</strong> GST1 - glutatione<br />

W1-box TTGACC<br />

s-transferase<br />

PR-1-motif bZip(W2-box) ACGTCA Arabidopsis PR-1<br />

NF-kB-like box GGACTTTTC<br />

GCC- box GGCGGC<br />

as-1 - binding site for ASF-1 CTGACGTAAGGGATGACGCAC CaMV 35S promoter, PR genes


Synthetic promoter-GUS fusion constructs<br />

RE RE RE RE min 35S GUS NosT<br />

XbaI<br />

SpeI<br />

Each regula<strong>to</strong>ry element (RE) was synthesized with restriction sites for<br />

XbaI at the 5' end and SpeI at the 3' end. Synthetic promoters as<br />

tetramers of certain RE were placed upstream of 35S minimal promoter<br />

(min 35S containing the TATA box).<br />

This vec<strong>to</strong>r was constructed for<br />

GUS <strong>report</strong>er expression with the<br />

ability <strong>to</strong> swap GUS for fluorescent<br />

protein (FP) <strong>report</strong>ers for use in a<br />

fluorescent <strong>phy<strong>to</strong>sensing</strong> system.<br />

RFP<br />

GFP


Testing synthetic promoters in Arabidopsis pro<strong>to</strong>plasts<br />

(response <strong>to</strong> <strong>plant</strong> defense elici<strong>to</strong>r chitin)<br />

GUS activity (pmol MU/min*mg<br />

protein)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

-46 35S<br />

control<br />

300ug/mlChitin<br />

1.3 3.3 5.6 2.5 2 1.3<br />

4xPR1<br />

4xJAR<br />

4xGst1<br />

4xSARE<br />

4xERE<br />

4xS<br />

(fold)<br />

5.5<br />

0.64 2.1 2.2 6.7<br />

2xas-1<br />

2xNPR1<br />

2xJERE<br />

2xJASE1


Testing synthetic promoters in Arabidopsis pro<strong>to</strong>plasts (response <strong>to</strong> defense<br />

signal molecules)<br />

G US activity (p m o lM U /m in * m g p ro tein )<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

(fold)<br />

1.2<br />

control<br />

0,5mM SA<br />

1.36 21 14.5 14.2 9 1.3 2.7<br />

35S -46 35S 4xPR1 4xGst1 4xSARE 4xS 2xas-1 2xNPR1<br />

GUS activity (p m o lM U /m in *m g p ro tein )<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

control<br />

10uM MeJA or 1mM<br />

ethephon<br />

0.87 2.2 1.1 1.76<br />

(fold)<br />

5.6<br />

-46 35S 4xJAR 2xJERE 2xJASE1 4xERE


Multiplication of core sequence and combination of motifs with different<br />

specificity <strong>to</strong> treatments<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

control<br />

30ug/mlChitin<br />

0,5mM SA<br />

2xPR1<br />

4xPR1<br />

2xW2/2xPR1<br />

2xW2<br />

2xJASE2/2xW2<br />

2xJASE2<br />

4xW2/2xS<br />

GUS activity (pmolMU/min*mg protein)


Enhanced synthetic promoters<br />

To increase basal level of the GUS expression, synthetic promoters<br />

rs<br />

were supplemented with the addition of enhancer elements from the<br />

CaMV 35S promoter.<br />

Domains of the CaMV 35S promoter<br />

B<br />

B1<br />

B2<br />

B3 B4 B5 A1 min35S<br />

A<br />

-343 -301 -208 -155 -108 -90 -46 +8<br />

Enhanced synthetic promoters<br />

Version 1<br />

B3-A1 (-208-46)<br />

4 x RE<br />

min35S<br />

Marker Gene<br />

Version 2<br />

B (-343-90)<br />

4 x RE<br />

A1<br />

min35S<br />

Marker Gene


Examining synthetic promoters in transgenic <strong>to</strong>bacco <strong><strong>plant</strong>s</strong><br />

His<strong>to</strong>chemical analysis of<br />

GUS expression<br />

Fluorometric analysis of<br />

GUS expression


Examining synthetic promoters in transgenic Arabidopsis<br />

<strong><strong>plant</strong>s</strong><br />

His<strong>to</strong>chemical analysis of<br />

GUS expression<br />

Fluorometric analysis of<br />

GUS expression


Examining synthetic promoters in response <strong>to</strong> virus infection<br />

Fluorometric analysis of GUS expression in transgenic <strong>to</strong>bacco <strong><strong>plant</strong>s</strong><br />

infected with Alfalfa mosaic virus (AMV). Each value represents the<br />

mean of three inoculated <strong><strong>plant</strong>s</strong> ± standard error.


In <strong>plant</strong>a fluorescence<br />

Relative fluorescence<br />

λ ex = 395 nm<br />

Wavelength (nm)


Spectrofluorometer vs. GFProbe<br />

1800<br />

r 2 = 0.797<br />

1500<br />

1200<br />

900<br />

600<br />

Canola<br />

Growth<br />

Chamber<br />

300<br />

1800<br />

r 2 = 0.896<br />

GFProbe (fluorescence)<br />

1500<br />

1200<br />

900<br />

600<br />

Tobacco<br />

Greenhouse<br />

300<br />

1800<br />

r 2 = 0.872<br />

1500<br />

1200<br />

900<br />

Tobacco<br />

Field<br />

600<br />

300


LIFI


Canola LIFS<br />

200000<br />

180000<br />

160000<br />

140000<br />

Water Raman Peak<br />

A1<br />

A2<br />

A3<br />

Intensity<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

400 450 500 550 600 650 700 750 800<br />

Nanometers (nm)<br />

A4<br />

A5<br />

A6<br />

A7<br />

A8<br />

A9


With<br />

GFP<br />

CPS<br />

400000<br />

350000<br />

300000<br />

250000<br />

200000<br />

150000<br />

Brassica napus leaf fluorescence<br />

Why<br />

RFP is<br />

better<br />

100000<br />

50000<br />

0<br />

425<br />

438<br />

451<br />

464<br />

477<br />

490<br />

503<br />

516<br />

529<br />

542<br />

555<br />

568<br />

581<br />

594<br />

607<br />

620<br />

633<br />

Wavelength<br />

375 nm excitation 425 nm excitation 475 nm excitation<br />

525 nm excitation 550 nm excitation GFP 375 nm excitation<br />

646<br />

Nicotiana tabacum leaf fluorescence<br />

400000<br />

350000<br />

300000<br />

250000<br />

CPS<br />

200000<br />

150000<br />

100000<br />

50000<br />

0<br />

425<br />

438<br />

451<br />

464<br />

477<br />

490<br />

503<br />

516<br />

529<br />

542<br />

555<br />

568<br />

581<br />

594<br />

607<br />

620<br />

633<br />

646


Summary<br />

• Cis-acting elements from promoter regions are defined from<br />

phy<strong>to</strong>hormones for general pathogen sensing.<br />

• Synthetic promoters were constructed by combining various regula<strong>to</strong>ry<br />

elements supplemented with the enhancer elements from the CaMV 35S<br />

promoter <strong>to</strong> increase basal level of the GUS expression.<br />

• The inducibility of each synthetic promoter was first assessed in transient<br />

expression assays using Arabidopsis pro<strong>to</strong>plasts and then examined for<br />

efficacy in stably transgenic Arabidopsis and <strong>to</strong>bacco <strong><strong>plant</strong>s</strong>.<br />

•Transgenic <strong>to</strong>bacco <strong><strong>plant</strong>s</strong> infected with Alfalfa mosaic virus showed an<br />

increase in GUS expression when compared <strong>to</strong> mock-inoculated control<br />

<strong><strong>plant</strong>s</strong>.<br />

•May still need <strong>to</strong> amplify the output signal for detection.


Site-specific<br />

recombinase-mediated<br />

mediated transgene<br />

excision<br />

loxP<br />

Cre<br />

Transgene<br />

loxP<br />

loxP<br />

Cre Transgene loxP<br />

loxP


Model <strong>phy<strong>to</strong>sensing</strong> construct—heat<br />

shock promoter<br />

FRT<br />

GFP<br />

FLP<br />

OCS<br />

NOS<br />

LOX<br />

Stls1<br />

LB<br />

FLP<br />

tetA<br />

HSP<br />

T35S<br />

trfA<br />

NptII<br />

FRT<br />

35S<br />

LOX<br />

CaMV PolyA<br />

hygromycin resistance<br />

CaMV35Sp<br />

pBIN-HSP-FLP-GFP-Hyg<br />

15971 bp<br />

NPTIII<br />

IS1<br />

NPT III<br />

kilA<br />

RB<br />

ori V<br />

tetA<br />

traF<br />

ColE1


Transient agroinfiltration studies<br />

250<br />

GFP (counts per second)<br />

200<br />

150<br />

100<br />

50<br />

Uninduce<br />

d<br />

37C<br />

0<br />

GV-3850 pBI-HSP-GFP pBIN-HSP-FLP-GFP-Hyg<br />

Constructs


UNINDUCED 37C 42C<br />

GV-3850<br />

pBI-HSP-GFP<br />

pBIN-HSP-FLP-GFP<br />

pBIN-mgfp5ER


John DiBenedetti<br />

Kevin Kyle<br />

Hani Al-Ahmad<br />

Irina Teplova<br />

Matt Halfhll<br />

Tzfi Tzfira<br />

David Ow<br />

Mitra Kooshki<br />

Reza Haijimorad

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!