26.05.2014 Views

Biodiversity and Plant Productivity in a Model Assemblage of Plant ...

Biodiversity and Plant Productivity in a Model Assemblage of Plant ...

Biodiversity and Plant Productivity in a Model Assemblage of Plant ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biodiversity</strong> <strong>and</strong> <strong>Plant</strong> <strong>Productivity</strong> <strong>in</strong> a <strong>Model</strong> <strong>Assemblage</strong> <strong>of</strong> <strong>Plant</strong> Species<br />

Shahid Naeem; Katar<strong>in</strong>a Håkansson; John H. Lawton; M. J. Crawley; L<strong>in</strong>dsey J. Thompson<br />

Oikos, Vol. 76, No. 2. (Jun., 1996), pp. 259-264.<br />

Stable URL:<br />

http://l<strong>in</strong>ks.jstor.org/sici?sici=0030-1299%28199606%2976%3A2%3C259%3ABAPPIA%3E2.0.CO%3B2-1<br />

Oikos is currently published by Nordic Society Oikos.<br />

Your use <strong>of</strong> the JSTOR archive <strong>in</strong>dicates your acceptance <strong>of</strong> JSTOR's Terms <strong>and</strong> Conditions <strong>of</strong> Use, available at<br />

http://www.jstor.org/about/terms.html. JSTOR's Terms <strong>and</strong> Conditions <strong>of</strong> Use provides, <strong>in</strong> part, that unless you have obta<strong>in</strong>ed<br />

prior permission, you may not download an entire issue <strong>of</strong> a journal or multiple copies <strong>of</strong> articles, <strong>and</strong> you may use content <strong>in</strong><br />

the JSTOR archive only for your personal, non-commercial use.<br />

Please contact the publisher regard<strong>in</strong>g any further use <strong>of</strong> this work. Publisher contact <strong>in</strong>formation may be obta<strong>in</strong>ed at<br />

http://www.jstor.org/journals/oikos.html.<br />

Each copy <strong>of</strong> any part <strong>of</strong> a JSTOR transmission must conta<strong>in</strong> the same copyright notice that appears on the screen or pr<strong>in</strong>ted<br />

page <strong>of</strong> such transmission.<br />

The JSTOR Archive is a trusted digital repository provid<strong>in</strong>g for long-term preservation <strong>and</strong> access to lead<strong>in</strong>g academic<br />

journals <strong>and</strong> scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,<br />

<strong>and</strong> foundations. It is an <strong>in</strong>itiative <strong>of</strong> JSTOR, a not-for-pr<strong>of</strong>it organization with a mission to help the scholarly community take<br />

advantage <strong>of</strong> advances <strong>in</strong> technology. For more <strong>in</strong>formation regard<strong>in</strong>g JSTOR, please contact support@jstor.org.<br />

http://www.jstor.org<br />

Tue Oct 16 13:40:21 2007


OIKOS 76: 259-264. Copenhagen 1996<br />

<strong>Biodiversity</strong> <strong>and</strong> plant productivity <strong>in</strong> a model assemblage <strong>of</strong><br />

plant species<br />

Shahid Naeem, Katar<strong>in</strong>a Hlkansson, John H. Lawton, M. J. Crawley <strong>and</strong> L<strong>in</strong>dsey J. Thompson<br />

Naeem, S., Hikansson, K., Lawton. J. H., Crawley, M. J. <strong>and</strong> Thompson, L. J. 1996.<br />

<strong>Biodiversity</strong> <strong>and</strong> plant productivity <strong>in</strong> a model assemblage <strong>of</strong> plant species - Oikos<br />

76: 259-264.<br />

We exam<strong>in</strong>ed productivity as a function <strong>of</strong> biotic diversity. We manipulated plant<br />

species richness as an experimental factor to determ<strong>in</strong>e if productivity (net above<br />

ground primary productivity or NPP) is affected by changes <strong>in</strong> plant diversity (species<br />

richness). We constructed 164 assemblages that varied <strong>in</strong> species richness <strong>and</strong><br />

measured their biomass at the end <strong>of</strong> one grow<strong>in</strong>g season. The plants were drawn<br />

from a pool <strong>of</strong> 16 species <strong>of</strong> self-poll<strong>in</strong>at<strong>in</strong>g annual herbs common to English weedy<br />

fields. On average, species-poor assemblages were less productive. Results also<br />

showed, however, that species-poor assemblages had wider ranges <strong>of</strong> possible productivities<br />

than more diverse assemblages.<br />

S. Naeem, K. Hikansson, J. H. Lawton <strong>and</strong> L. J. Thompson, Centre for Population<br />

Biology, Imperial College at Silbvood Park, Ascot, Berks., UK SL5 7PY @resent<br />

address <strong>of</strong> SN: Dept <strong>of</strong> Ecology, Evolution, <strong>and</strong> Behacior, Univ. <strong>of</strong> M<strong>in</strong>nesota, 100<br />

Ecology Build<strong>in</strong>g, 1987 Upper Buford Circle, St. Paul, MN 55108, USA<br />

(naeemOOl@maroon.tc.umn.edu)). - M. J. Crawley, Dept <strong>of</strong> Biolog., Imperial College<br />

at Sihvood Park, Ascot, Berks.. UK SL5 7PY.<br />

<strong>Productivity</strong> is a complex measure <strong>of</strong> the net effects <strong>of</strong> specles richness or community structure, have been<br />

both abiotic <strong>and</strong> biotic processes with<strong>in</strong> an ecosystem treated as dependent variables <strong>of</strong> such abiotic factors as<br />

<strong>and</strong> serves as a convenient, s<strong>in</strong>gle <strong>in</strong>dex for compar<strong>in</strong>g energy, temperature, ra<strong>in</strong>fall, <strong>and</strong> nutrient or water<br />

the behaviors <strong>of</strong> different ecosystems. Intrigu<strong>in</strong>g pat- <strong>in</strong>put, (e.g., Mell<strong>in</strong>ger <strong>and</strong> McNaughton 1975. Whitterns<br />

<strong>of</strong> association between productivity <strong>and</strong> biotic taker <strong>and</strong> Nier<strong>in</strong>g 1975, Kirchner 1977, Silvertown<br />

<strong>and</strong> abiotic ecosystem characteristics have long been 1980, Tllman 1982, 1987, 1993, Goldberg <strong>and</strong> Miller<br />

known (e.g., Whittaker <strong>and</strong> Likens 1971, Whittaker 1990, Rosenzweig <strong>and</strong> Abramsky 1994, Tilman <strong>and</strong><br />

<strong>and</strong> Nier<strong>in</strong>g 1975, Brown <strong>and</strong> Davidson 1977, Huston Down<strong>in</strong>g 1994, Tilman <strong>and</strong> Pacala 1994, Wright et al.<br />

1979, Tilman 1982, Brown <strong>and</strong> Gibson 1983, Boston et 1994). Though the limits <strong>of</strong> ecosystem productivity are<br />

al. 1989, Owen 1990, Rosenzweig <strong>and</strong> Abramsky 1994, clearly determ<strong>in</strong>ed by abiotic factors, such as climate<br />

Cebrian <strong>and</strong> Duarte 1995), but the causes for these <strong>and</strong> geochemistry, the biotic characteristics <strong>of</strong> an<br />

patterns rema<strong>in</strong> unclear (reviewed <strong>in</strong> Rosenzweig <strong>and</strong> ecosystem can also strongly <strong>in</strong>fluence local productivity<br />

Abramsky 1994 <strong>and</strong> Wright et al. 1994). (McNaughton 1993, Vitousek <strong>and</strong> Hooper 1993).<br />

Although productivity is clearly a function <strong>of</strong> both Our study, <strong>in</strong> contrast to the majority <strong>of</strong> others,<br />

abiotic <strong>and</strong> biotic processes (reviewed <strong>in</strong> Schles<strong>in</strong>ger explores how ecosystem productivity varies as a depen-<br />

1991: 114-125), most studies have treated the biotic dent function <strong>of</strong> biotic diversity. We focus on net<br />

characteristics <strong>of</strong> an ecosystem as dependent functions above-ground primary productivity (NPP) as a measure<br />

<strong>of</strong> abiotic factors. That is, biotic characteristics such as <strong>of</strong> productivity <strong>and</strong> we focus on plant species richness<br />

Accepted 21 December 1995<br />

Copyright O OIKOS 1996<br />

ISSN 0030-1299<br />

Pr<strong>in</strong>ted <strong>in</strong> Irel<strong>and</strong> - all rights reserved


as a measure <strong>of</strong> diversity. Other studies that have<br />

exam<strong>in</strong>ed the effects <strong>of</strong> chang<strong>in</strong>g plant diversity on<br />

NPP differ from ours by hav<strong>in</strong>g either <strong>in</strong>directly manipulated<br />

plant diversity or hav<strong>in</strong>g manipulated only a few<br />

( < 5) species. For example, Ewel et al. (1991), Tilman<br />

<strong>and</strong> Down<strong>in</strong>g (1994), <strong>and</strong> Naeem et al. (1994, 1995)<br />

manipulated plant species richness, but Ewel et al. did<br />

not report plant productivity, Tilman <strong>and</strong> Down<strong>in</strong>g<br />

manipulated plant diversity <strong>in</strong>directly by fertilizer addition,<br />

<strong>and</strong> Naeem et al. (1994, 1995) manipulated species<br />

richness among several trophic levels, thereby confound<strong>in</strong>g<br />

the contribut<strong>in</strong>g factors to the change <strong>in</strong> plant<br />

productivity they observed (thus, this paper is dist<strong>in</strong>ct<br />

from Naeem et al. 1995). Intercropp<strong>in</strong>g studies have<br />

directly manipulated plant (crop) diversity <strong>and</strong> measured<br />

plant productivity (yield) as a response variable<br />

(e.g. V<strong>and</strong>ermeer 1989, Swift <strong>and</strong> Anderson 1993), but<br />

these studies are limited by the small number <strong>of</strong> species<br />

(2 or 3) they manipulate (Swift <strong>and</strong> Anderson 1993).<br />

Intercropp<strong>in</strong>g experiments are also designed with the<br />

<strong>in</strong>tent <strong>of</strong> uncover<strong>in</strong>g means for achiev<strong>in</strong>g overyield<strong>in</strong>g<br />

<strong>in</strong> plant assemblages, usually made up <strong>of</strong> high-yield<strong>in</strong>g,<br />

domesticated plants that are either not found or do not<br />

co-occur <strong>in</strong> nature. These studies therefore represent a<br />

biased set <strong>of</strong> experiments <strong>and</strong> their general conclusion<br />

that overyield<strong>in</strong>g, on average. results from <strong>in</strong>tercropp<strong>in</strong>g<br />

may not apply broadly to non-agricultural plant<br />

assemblages. Our study is, nevertheless, an extended<br />

<strong>and</strong> more elaborate version <strong>of</strong> a traditional <strong>in</strong>tercropp<strong>in</strong>g<br />

experiment, but unlike these experiments, our<br />

plants co-occur <strong>in</strong> nature, maximum diversity <strong>in</strong> our<br />

experiment is substantially higher than most <strong>in</strong>tercropp<strong>in</strong>g<br />

studies. Although our specific <strong>in</strong>tent was to explore<br />

how chang<strong>in</strong>g plant biotic diversity affects<br />

productivity under a given set <strong>of</strong> abiotic conditions, our<br />

broader motivation was to exam<strong>in</strong>e the ecological consequences<br />

<strong>of</strong> chang<strong>in</strong>g plant diversity on ecosystem<br />

processes.<br />

Theoretical considerations<br />

Three different hypothetical relationships between NPP<br />

<strong>and</strong> plant species diversity can be derived from current<br />

theory. These hypothetical relationships provide estimates<br />

for polyculture yield for a unit area over a unit<br />

period <strong>of</strong> time, or NPP, based on monoculture yields <strong>of</strong><br />

the species found <strong>in</strong> the polyculture. They differ <strong>in</strong> the<br />

extent to which they <strong>in</strong>corporate the effects <strong>of</strong> <strong>in</strong>tra<strong>and</strong><br />

<strong>in</strong>terspecific <strong>in</strong>teractions <strong>in</strong> estimat<strong>in</strong>g yields.<br />

The first, the 'proportional hypothesis', estimates the<br />

expected productivity <strong>of</strong> an assemblage by assum<strong>in</strong>g<br />

that productivity is solely a function <strong>of</strong> the proportional<br />

contributions <strong>of</strong> <strong>in</strong>dividuals based on their <strong>in</strong>dividual<br />

performances when grown <strong>in</strong> monoculture. The<br />

expected yield (El) can be calculated by the formula,<br />

260<br />

where s is the number <strong>of</strong> species <strong>in</strong> the assemblage, n is<br />

the number <strong>of</strong> <strong>in</strong>dividual plants <strong>of</strong> the ith species, <strong>and</strong><br />

P, is the average biomass <strong>of</strong> an <strong>in</strong>dividual <strong>of</strong> the ith<br />

species <strong>in</strong> monoculture, summed for all <strong>in</strong>dividuals <strong>in</strong><br />

the pot. NPP is therefore a function <strong>of</strong> <strong>in</strong>tra-specific<br />

population growth rates <strong>and</strong> not affected by <strong>in</strong>terspecific<br />

<strong>in</strong>teractions.<br />

A second expected yield (E,) is based on the law <strong>of</strong><br />

constant yield (discussed <strong>in</strong> Crawley 1986) that predicts<br />

that a polyculture is always less productive than a<br />

monoculture <strong>of</strong> its most productive species. Thus, E2 =<br />

the monoculture productivity <strong>of</strong> the most productive<br />

species <strong>in</strong> a polyculture. This hypothesis therefore assumes<br />

that biomass is neither a function <strong>of</strong> <strong>in</strong>tra- or<br />

<strong>in</strong>terspecific <strong>in</strong>teractions; maximum net productivity is<br />

determ<strong>in</strong>ed by light, space, nutrient conditions, <strong>and</strong> the<br />

species-specific growth rates under these conditions.<br />

Polyculture yields higher than a monoculture <strong>of</strong> the<br />

most productive species due to facilatory <strong>in</strong>teractions,<br />

for example, are considered unlikely.<br />

A third expected yield (E,) is based on the assumption<br />

that productivity is a function <strong>of</strong> species-specific<br />

responses to their biotic environment. That is, the<br />

species-specific responses to species-richness gradients.<br />

For simplicity, we use a least square estimate for this<br />

response. The expected yield based on species-specific<br />

responses is formulated by.<br />

8, = S,(ln S) + I,.<br />

, = I<br />

where S, <strong>and</strong> I, are the regression slope <strong>and</strong> <strong>in</strong>tercept,<br />

respectively, <strong>of</strong> the ith species' productivity response to<br />

<strong>in</strong>creas<strong>in</strong>g species richness. Note that we chose a logl<strong>in</strong>ear<br />

relationship between species richness <strong>and</strong> NPP<br />

because log-l<strong>in</strong>ear associations are typical <strong>of</strong> many biological<br />

phenomena (reviewed <strong>in</strong> May 1975, Sugihara<br />

1980), although the mechanistic bases for these relationships<br />

are still debated (Naeem <strong>and</strong> Hawk<strong>in</strong>s 1994).<br />

A variety <strong>of</strong> other relationships (e.g., l<strong>in</strong>ear, log-log, or<br />

polynomial) are possible <strong>and</strong> may yield better estimates<br />

(D. Currie pers. comm.). For simplicity, however, we<br />

explore only the more common log-l<strong>in</strong>ear relationship<br />

<strong>in</strong> this study.<br />

Materials <strong>and</strong> methods<br />

For a small assemblage <strong>of</strong> species the number <strong>of</strong> different<br />

comb<strong>in</strong>ations possible is formidable. If we manipulate<br />

both the evenness (proportional representation <strong>of</strong><br />

species) <strong>and</strong> richness (number <strong>of</strong> species) <strong>of</strong> an assemblage,<br />

the total number <strong>of</strong> possible comb<strong>in</strong>ations (C) is,<br />

OIKOS 762 (1996)


C = n!i[r!(n- r)!],<br />

where r = the number <strong>of</strong> species drawn at r<strong>and</strong>om from<br />

a pool <strong>of</strong> n. Thus, for a 16-species assemblage, with<br />

each assemblage limited to 16 <strong>in</strong>dividual plants, <strong>and</strong><br />

with numbers <strong>of</strong> species selected along a log, richness<br />

gradient <strong>of</strong> 1, 2, 4, 8 <strong>and</strong> 16 species, an unreplicated full<br />

experimental design would require produc<strong>in</strong>g 13 827<br />

assemblages conta<strong>in</strong><strong>in</strong>g 221 232 plants.<br />

Our resources did not permit an experiment <strong>of</strong> this<br />

magnitude, so we simplified our experimental design.<br />

We selected an assemblage <strong>of</strong> plant 16 species, all<br />

self-poll<strong>in</strong>at<strong>in</strong>g herbs known to co-occur <strong>in</strong> British<br />

weedy fields (Lawton et al. 1993). We constructed a<br />

representative subset <strong>of</strong> the total comb<strong>in</strong>ations possible<br />

from this species pool, us<strong>in</strong>g 164 comb<strong>in</strong>ations that<br />

sampled across a log, scaled gradient <strong>of</strong> diversity from<br />

monocultures to full richness polycultures. Our subsets<br />

<strong>in</strong>cluded one set which conta<strong>in</strong>ed 4 replicates each <strong>of</strong><br />

the 16 possible monocultures; a second set which conta<strong>in</strong>ed<br />

20, 30, <strong>and</strong> 40 replicates each <strong>of</strong> <strong>in</strong>termediate<br />

richness polycultures <strong>of</strong> 2, 4, <strong>and</strong> a third set which<br />

conta<strong>in</strong>ed 8 species. respectively; <strong>and</strong> 10 replicates <strong>of</strong><br />

full richness polycultures. Intermediate richness polycultures<br />

were constructed by us<strong>in</strong>g a r<strong>and</strong>om number<br />

generator to select species from the species pool, but<br />

duplicate comb<strong>in</strong>ations were not used, thus all 90 polycultures<br />

were unique. This procedure maximized our<br />

coverage <strong>of</strong> the large number <strong>of</strong> comb<strong>in</strong>ations possible<br />

per level <strong>of</strong> species richness. We further simplified the<br />

design by keep<strong>in</strong>g evenness the same <strong>in</strong> all polycultures.<br />

That is, all species <strong>in</strong> polycultures had equal numbers<br />

<strong>of</strong> <strong>in</strong>dividual plants with the total number <strong>of</strong> all <strong>in</strong>dividuals<br />

held constant at 16 per pot. Note that this<br />

design replicates only for species richness as an experimental<br />

factor, but does not replicate for species composition.<br />

except for monocultures <strong>and</strong> full species richness<br />

assemblages. Thus, our <strong>in</strong>ference is limited to statements<br />

about species richness <strong>and</strong> its association with<br />

NPP. A larger experimental design, <strong>in</strong> which comb<strong>in</strong>ations<br />

<strong>of</strong> species are replicated, would be necessary to<br />

exp<strong>and</strong> our <strong>in</strong>ference space to <strong>in</strong>clude species comb<strong>in</strong>ation<br />

as a factor associated with NPP.<br />

Each <strong>of</strong> these assemblages was grown <strong>in</strong> a 7.5-1 pot<br />

(20 cm diam.) conta<strong>in</strong><strong>in</strong>g a loamls<strong>and</strong> mixture developed<br />

for this plant system. Each <strong>in</strong>dividual <strong>of</strong> each<br />

species was r<strong>and</strong>omly assigned to a position <strong>in</strong> a 4 x 4<br />

grid on the surface <strong>of</strong> the pot. This procedure ensured<br />

that edge effects caused by the small size <strong>of</strong> our pots,<br />

were distributed <strong>in</strong> an identical <strong>and</strong> unbiased fashion,<br />

across all treatments, <strong>and</strong> experienced uniformly by all<br />

species.<br />

Seeds were planted <strong>in</strong> their assigned positions <strong>and</strong><br />

seedl<strong>in</strong>gs - were weeded to the f<strong>in</strong>al densities <strong>of</strong> one<br />

<strong>in</strong>dividual per grid square or 16 <strong>in</strong>dividuals per pot,<br />

Pots were r<strong>and</strong>omly assigned positions with<strong>in</strong> the<br />

greenhouse. The experiment was conducted between 10<br />

May 1993 <strong>and</strong> 16 July 1993 at which time all species<br />

had flowered except Aphanes arvensis <strong>and</strong> Conyza<br />

canadensis. Individual productivity was measured as the<br />

above-ground dry weight <strong>of</strong> an <strong>in</strong>dividual plant <strong>in</strong> a pot<br />

at the end <strong>of</strong> the experiment. <strong>Productivity</strong> <strong>of</strong> an assemblage<br />

was measured as the sum <strong>of</strong> the <strong>in</strong>dividual productivities<br />

<strong>of</strong> all plants <strong>in</strong> a pot. Note that our measures<br />

<strong>of</strong> "productivity" are actually NPP, but the unit area<br />

<strong>and</strong> unit time are the same for all pots so, for simplicity,<br />

we do not <strong>in</strong>clude them <strong>in</strong> reported measures <strong>of</strong><br />

productivity.<br />

Results<br />

Results from the monocultures showed that the species<br />

pool for our model assemblage uniformly covered a<br />

wide range <strong>of</strong> species-specific productivities (Fig. 1).<br />

Our most productive species (S<strong>in</strong>apis arcensis) was over<br />

25 times more productive than our least productive<br />

species (Aphrznes uruensis). This distribution <strong>of</strong> speciesspecific<br />

NPPs <strong>of</strong> monocultures, under the conditions <strong>of</strong><br />

our greenhouse, def<strong>in</strong>es the limits (assum<strong>in</strong>g no <strong>in</strong>terspecific<br />

facilitation among plant species) <strong>of</strong> the expected<br />

total productivities <strong>of</strong> our polycultures.<br />

Average polyculture NPP <strong>in</strong>creased as plant diversity<br />

<strong>in</strong>creased (Fig. 2A). Compar<strong>in</strong>g yields expected from<br />

the three hypotheses discussed above. the results best fit<br />

-.-<br />

VA AA SO AT LP CC CH CBP W PA CA SPA TI SM SV SIA<br />

species<br />

Fig. 1. Species-specific plant productivities. Biomass = mean<br />

dry weight <strong>of</strong> an <strong>in</strong>dividual plant <strong>in</strong> monoculture. Species<br />

abbreviations are listed <strong>in</strong> Table 1. Each bar revresents the<br />

mean <strong>of</strong> all plants from all 4 replicate monocultures (n = 64).<br />

Error bars are one SE <strong>of</strong> 64 plants. (Note. this figure appears<br />

<strong>in</strong> Naeem et al, 1995 as extr<strong>in</strong>sically determ<strong>in</strong>ed calibration<br />

data for Ecotron project.)


2C) which suggests that <strong>in</strong>creas<strong>in</strong>gly diverse polycultures<br />

have <strong>in</strong>creas<strong>in</strong>gly lower productivities than can be<br />

achieved by monocultures <strong>of</strong> their most productive<br />

species. The respective positive <strong>and</strong> negative slopes for<br />

comparisons based on E, <strong>and</strong> E2 suggest that the data<br />

do not fit these hypotheses well, but the difference<br />

between observed <strong>and</strong> E,, on average, rema<strong>in</strong>s constant<br />

(Fig. 2D). Thus species-specific responses to diversity<br />

gradients. estimated by a log-l<strong>in</strong>ear relationship, may,<br />

<strong>of</strong> the three hypotheses exam<strong>in</strong>ed, best expla<strong>in</strong> our<br />

observed average <strong>in</strong>crease <strong>in</strong> NPP with <strong>in</strong>creas<strong>in</strong>g plant<br />

species richness.<br />

Slopes <strong>and</strong> <strong>in</strong>tercepts used for E, estimates are shown<br />

<strong>in</strong> Table 1. Fig. 3 shows four examples <strong>of</strong> the wide<br />

variety <strong>of</strong> typical species-specific responses to speciesrichness<br />

gradients we observed.<br />

In summary, the overyield<strong>in</strong>g, or greater average<br />

yields <strong>of</strong> species-rich plant assemblages over average<br />

yields <strong>of</strong> species poor assemblages, may be related to<br />

the fact that the average species-specific productivity<br />

response to <strong>in</strong>creas<strong>in</strong>g diversity was positive (x = 1.75,<br />

see Table 1) <strong>in</strong> our plant assemblages. This implies that,<br />

on average, <strong>in</strong>tra-specific competition was stronger than<br />

<strong>in</strong>ter-specific competition <strong>in</strong> this assemblage. Thus, a<br />

species-rich assemblage <strong>of</strong> similar density to a speciespoor<br />

assemblage was more productive because it experienced<br />

proportionally less <strong>in</strong>tra-specific competition.<br />

LOGJPLANT SPECIES)<br />

Fig. 2. Mean, total observed <strong>and</strong> expected above-ground productivities<br />

(plant biomass) for assemblages <strong>of</strong> different diversities.<br />

A) Observed biomass for all assemblages. B) differences<br />

between observed <strong>and</strong> expected biomass based on proportional<br />

contributions to f<strong>in</strong>al productivity (E,). C) Differences between<br />

observed <strong>and</strong> expected biomass based on constant yield<br />

hypothesis (E,). D) Differences between observed <strong>and</strong> expected<br />

biomass based on <strong>in</strong>terspecific responses to diversity<br />

gradients (E,). Diversity is plotted as the log, <strong>of</strong> number <strong>of</strong><br />

species (1, 2, 4, 8, <strong>and</strong> 16 species = 0, 1, 2, 3, 4 respectively).<br />

The l<strong>in</strong>e represents the l<strong>in</strong>ear regression <strong>of</strong> mean biomass (dry<br />

weight) on log, (number <strong>of</strong> plant species). Note that the po<strong>in</strong>ts<br />

are r<strong>and</strong>omly scattered near the fixed diversity levels for the<br />

purposes <strong>of</strong> clarity.<br />

the third hypothesis, E, (Fig. 2B-D). The difference<br />

between observed <strong>and</strong> E, <strong>in</strong>creases positively with species<br />

richness (Fig. 2B) which suggests that, on average,<br />

<strong>in</strong>creas<strong>in</strong>gly diverse polycultures led to higher productivities<br />

than would be expected based solely on <strong>in</strong>traspecific<br />

responses. The difference between observed<br />

<strong>and</strong> E, <strong>in</strong>creases negatively with species richness (Fig.<br />

Discussion<br />

<strong>Plant</strong> diversity <strong>and</strong> plant productivity<br />

Our general results suggest that whether a reduction (or<br />

augmentation) <strong>in</strong> species will result <strong>in</strong> a net <strong>in</strong>crease,<br />

decrease, or no change <strong>in</strong> plant productivity (NPP) <strong>of</strong><br />

an ecosystem depends on three characteristics <strong>of</strong> the<br />

system; (1) the distribution <strong>of</strong> species-specific productivities,<br />

(2) the distribution <strong>of</strong> species-specific responses to<br />

species-richness gradients, <strong>and</strong> (3) which species are<br />

be<strong>in</strong>g lost (or added).<br />

We apply several cautions to the <strong>in</strong>terpretation <strong>of</strong><br />

our results. First, for an experiment such as this, replicates<br />

<strong>of</strong> the highest species richness treatment are <strong>in</strong>variant<br />

<strong>in</strong> composition <strong>and</strong> therefore have a lower<br />

expected variance for NPP than those <strong>of</strong> other treatments.<br />

Further, the highest range <strong>and</strong> variance <strong>in</strong> NPP<br />

is expected for replicates <strong>of</strong> the monoculture treatment<br />

s<strong>in</strong>ce this treatment would always <strong>in</strong>clude the most<br />

productive <strong>and</strong> the least productive species. Thus, variance<br />

is likely to be heterogeneous among treatments<br />

which makes parametric hypothesis test<strong>in</strong>g <strong>in</strong>appropriate<br />

for the overall relationship between NPP <strong>and</strong> species<br />

richness. Second, we did not manipulate evenness<br />

(see comb<strong>in</strong>atorial considerations <strong>in</strong> Materials <strong>and</strong><br />

methods), <strong>and</strong> it is possible that changes solely <strong>in</strong> the<br />

evenness <strong>of</strong> a plant assemblage could generate equally<br />

OIKOS 76.2 (1996)


Table 1. Summary <strong>of</strong> plant species <strong>and</strong> their <strong>in</strong>dividual responses to changes <strong>in</strong> species richness <strong>in</strong> plant assemblages.<br />

Abbr. = abbreviation used <strong>in</strong> Fig. 1. Family = family that conta<strong>in</strong>s species. NS = regression not significant. P = significance<br />

probability, with critical value set at P < 0.05. SE = st<strong>and</strong>ard error <strong>of</strong> slope. Slope = slope <strong>of</strong> l<strong>in</strong>ear regression with dependent<br />

variable set as dry weight <strong>of</strong> plant at harvest <strong>and</strong> <strong>in</strong>dependent variable set as log, <strong>of</strong> the number <strong>of</strong> species <strong>in</strong> assemblage.<br />

Species<br />

Aphanes arvensis<br />

Arabidopsis thaliana<br />

Capsella bursa-pastoris<br />

Cardam<strong>in</strong>e hirsuta<br />

Chenopodium album<br />

Conyza canadensis<br />

Lamium purpureum<br />

Poa annua<br />

Senecio vulgaris<br />

S<strong>in</strong>apis avoensis<br />

Sonchus oleraceus<br />

Spergula arvensis<br />

Stellaria media<br />

Tripleurospermum <strong>in</strong>odorurn<br />

Veronica arvensis<br />

Veronica persica<br />

Family<br />

Rosaceae<br />

Cruciferae<br />

Cruciferae<br />

Cruciferae<br />

Chenopodiacae<br />

Compositae<br />

Labiatae<br />

Gram<strong>in</strong>ae<br />

Compositae<br />

Cruciferae<br />

Compositae<br />

Caryophyllaceae<br />

Caryophyllaceae<br />

Compositae<br />

Scrophulariaceae<br />

Scrophulariaceae<br />

Abbr. Slope SE P<br />

A A -0.009 0.002


tion is currently the focus <strong>of</strong> much discussion concern<strong>in</strong>g<br />

the effects <strong>of</strong> decl<strong>in</strong><strong>in</strong>g biotic diversity on ecosystem<br />

function (Ehrlich <strong>and</strong> Wilson 1991, Ehrlich <strong>and</strong> Ehrlich<br />

1992, papers <strong>in</strong> Schulze <strong>and</strong> Mooney 1993). Our results<br />

suggest that decl<strong>in</strong><strong>in</strong>g diversity with<strong>in</strong> an ecosystem<br />

may result <strong>in</strong> local changes <strong>in</strong> NPP <strong>and</strong>, by <strong>in</strong>ference,<br />

alterations <strong>of</strong> other ecosystem properties (rates <strong>of</strong> energy<br />

<strong>and</strong> nutrient fluxes). Global productivity is therefore<br />

likely to change as a function <strong>of</strong> the cumulative<br />

changes <strong>in</strong> local productivity. Our study demonstrates,<br />

however, that predict<strong>in</strong>g the magnitude <strong>and</strong> direction <strong>of</strong><br />

this change requires considerable <strong>in</strong>formation on the<br />

species-specific productivities <strong>and</strong> species-specific responses<br />

to local biotic environments. The fate <strong>of</strong> global<br />

productivity <strong>in</strong> the face <strong>of</strong> decl<strong>in</strong><strong>in</strong>g biotic diversity,<br />

therefore, cannot be readily determ<strong>in</strong>ed<br />

Ackno~ljledgements- We thank G. Cooper, R. Jones, J. Radley,<br />

G. Asefa, <strong>and</strong> S. Williamson for their assistance <strong>in</strong> all<br />

aspects <strong>of</strong> the project. D. Tilman, S. Tjossem <strong>and</strong> P. Heads<br />

critically read the manuscript. D. Currie provided <strong>in</strong>valuable<br />

<strong>in</strong>sights <strong>in</strong>to the statistical <strong>and</strong> <strong>in</strong>ferential limits <strong>of</strong> experimental<br />

manipulations <strong>of</strong> biotic diversity.<br />

References<br />

Boston, H. L., Adams, M. S. <strong>and</strong> Madsen, J. D. 1989.<br />

Photosynthetic strategies <strong>and</strong> productivity <strong>in</strong> aquatic systems.<br />

- Aquat. Bot. 34: 27-57.<br />

Brown, J. H. <strong>and</strong> Davidson, D. W. 1977. Competition between<br />

seed-eat<strong>in</strong>g rodents <strong>and</strong> ants <strong>in</strong> desert ecosystems. - Science<br />

196: 880-882.<br />

- <strong>and</strong> Gibson, A. C. 1983. Biogeography. - C.V. Mosby, St.<br />

Louis.<br />

Cebrian, J. <strong>and</strong> Duarte, C. M. 1995. <strong>Plant</strong> growth-rate dependence<br />

<strong>of</strong> detrital carbon storage <strong>in</strong> ecosystems. - Science<br />

268: 1601-1608.<br />

Crawley, M. J. 1986. <strong>Plant</strong> ecology. - Blackwell, Oxford.<br />

Ehrlich, P. R. <strong>and</strong> Wilson, E. 0. 1991. <strong>Biodiversity</strong> studies:<br />

Science <strong>and</strong> policy. - Science 253: 758-762.<br />

- <strong>and</strong> Ehrlich. A. H. 1992. The value <strong>of</strong> biodiversitv. - Ambio<br />

21: 219-226.<br />

Ewel, J. J., Mazzar<strong>in</strong>o, M. J. <strong>and</strong> Berish, C. W. 1991. Tropical<br />

soil fertility changes under monocultures <strong>and</strong> successional<br />

communities <strong>of</strong> different structure. - Ecol. ADD^. 3: 289-<br />

A <br />

302.<br />

Goldberg, D. J. <strong>and</strong> Miller, T. E. 1990. Effects <strong>of</strong> different<br />

resource additions on species diversity <strong>in</strong> an annual plant<br />

community. - Ecology 71: 213-25.<br />

Groombridge, B. 1992. Global biodiversity: status <strong>of</strong> the Earth's<br />

liv<strong>in</strong>g resources: A report compiled by the World Conservation<br />

Monitor<strong>in</strong>g Centre. - Chapman <strong>and</strong> Hall, London.<br />

Huston, M. 1979. A general hypothesis <strong>of</strong> species diversity. -<br />

Am. Nat. 15-113: 81-101.<br />

Kirchner, T. 1977. The effects <strong>of</strong> resource enrichment on the<br />

diversity <strong>of</strong> plants <strong>and</strong> arthropods <strong>in</strong> a shortgrass prairie. -<br />

Ecology 58: 1334- 1344.<br />

Lawton, J. H. <strong>and</strong> May, R. M. 1995. Estimat<strong>in</strong>g ext<strong>in</strong>ction<br />

rates.- Oxford Univ. Press, Oxford.<br />

- , Naeem, S., Woodf<strong>in</strong>, R. M., Brown, V. K., Gange, A.,<br />

Godfray, H. C. J., Heads, P. A,, Lawler, S. P., Magda, D.,<br />

Thomas C. D., Thompson, L. J. <strong>and</strong> Young, S. 1993. The<br />

Ecotron: a controlled environmental facility for the <strong>in</strong>vestigation<br />

<strong>of</strong> population <strong>and</strong> ecosystem processes. - Philos.<br />

Trans. R. Soc. Lond. B. 341: 181-194.<br />

May, R. M. 1975. Patterns <strong>of</strong> species abundance <strong>and</strong> diversity.<br />

- In: Cody, M. L <strong>and</strong> Diamond, J. M. (eds), Ecolorv <strong>and</strong><br />

evolution <strong>of</strong> communities. Harvard Univ. Press. CamKidge.<br />

MA, pp. 81-120.<br />

McNaurhton. S. J. 1993 Biodiversitv <strong>and</strong> function <strong>of</strong> erazlne<br />

syst

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!