23.05.2014 Views

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nuclear</strong> <strong>Magnetic</strong> <strong>Resonance</strong> <strong>Spectroscopy</strong>


History<br />

1940‘s first evidence for NMR signals (1945)<br />

1950‘s explanation of the influence on the chemical<br />

environment on the shift of NMR signals<br />

1952 Noble prize for Bloch/Purcell for developing<br />

NMR spectroscopy<br />

1960‘s improvement of sensitivity by multiple<br />

measurements and Fuorier-Transformation<br />

evaluation<br />

1970‘s improvement of resolution by application of<br />

supraconducting magnets yielding in higher field<br />

strengths<br />

1980‘s development of multidimensional methods<br />

1990‘s development of pulsed field gradient methods<br />

2000‘s Coupling of NMR with chromatographic methods<br />

development of even higher fields of the magnets


N<br />

-<br />

+<br />

p<br />

p<br />

n<br />

+<br />

-<br />

S<br />

Particle<br />

Charge<br />

Spin<br />

<strong>Magnetic</strong> Moment<br />

(relative)<br />

Gyromagnetic<br />

constant γ<br />

10 -7 rad T -1 s -1<br />

Proton<br />

+1<br />

½<br />

+1.6<br />

26.8<br />

Neutron<br />

0<br />

½<br />

-1<br />

-18.3<br />

Electron<br />

-1<br />

½<br />

-1060<br />

-17608


102<br />

No<br />

-<br />

101<br />

Md<br />

-<br />

100<br />

Fm<br />

-<br />

99<br />

Es<br />

-<br />

98<br />

Cf<br />

-<br />

97<br />

Bk<br />

-<br />

96<br />

Cm<br />

-<br />

95<br />

Am<br />

-<br />

94<br />

Pu<br />

-<br />

93<br />

Np<br />

-<br />

92<br />

U<br />

-<br />

91<br />

Pa<br />

-<br />

90<br />

Th<br />

-<br />

89<br />

Ac<br />

-<br />

*<br />

*<br />

**Actinoids<br />

70<br />

173 Yb<br />

14.3<br />

69<br />

169 T<br />

m<br />

100<br />

68<br />

Er<br />

-<br />

67<br />

Ho<br />

-<br />

66<br />

Dy<br />

-<br />

65<br />

Tb<br />

-<br />

64<br />

Gd<br />

-<br />

63<br />

Eu<br />

-<br />

62<br />

Sm<br />

-<br />

61<br />

Pm<br />

-<br />

60<br />

Nd<br />

-<br />

59<br />

Pr<br />

-<br />

58<br />

Ce<br />

-<br />

57<br />

La<br />

-<br />

*<br />

*Lanthanoids<br />

118<br />

Uuo<br />

-<br />

117<br />

Uus<br />

-<br />

116<br />

Uuh<br />

-<br />

115<br />

Uup<br />

-<br />

114<br />

Uuq<br />

-<br />

113<br />

Uut<br />

-<br />

112<br />

Uub<br />

-<br />

111<br />

Rg<br />

-<br />

110<br />

Ds<br />

-<br />

109<br />

Mt<br />

-<br />

108<br />

Hs<br />

-<br />

107<br />

Bh<br />

-<br />

106<br />

Sg<br />

-<br />

105<br />

Db<br />

-<br />

104<br />

Rf<br />

-<br />

103<br />

Lr<br />

-<br />

*<br />

*<br />

88<br />

Ra<br />

-<br />

87<br />

Fr<br />

-<br />

7<br />

86<br />

Rn<br />

-<br />

85<br />

At<br />

-<br />

84<br />

Po<br />

-<br />

83<br />

Bi<br />

-<br />

82<br />

207 Pb<br />

22.6<br />

81<br />

205 Tl<br />

70.5<br />

80<br />

Hg<br />

-<br />

79<br />

Au<br />

-<br />

78<br />

195 Pt<br />

33.8<br />

77<br />

Ir<br />

-<br />

76<br />

187 Os<br />

1.6<br />

75<br />

Re<br />

-<br />

74<br />

183 W<br />

14.4<br />

73<br />

Ta<br />

-<br />

72<br />

Hf<br />

-<br />

71<br />

Lu<br />

-<br />

*<br />

56<br />

Ba<br />

-<br />

55<br />

Cs<br />

-<br />

6<br />

54<br />

129 Xe<br />

26.4<br />

53<br />

I<br />

-<br />

52<br />

125 Te<br />

7.0<br />

51<br />

Sb<br />

-<br />

50<br />

119 Sn<br />

8.6<br />

49<br />

In<br />

-<br />

48<br />

111 Cd<br />

12.8<br />

47<br />

107 Ag<br />

51.8<br />

46<br />

Pd<br />

-<br />

45<br />

103 Rh<br />

100<br />

44<br />

Ru<br />

-<br />

43<br />

Tc<br />

-<br />

42<br />

Mo<br />

-<br />

41<br />

Nb<br />

-<br />

40<br />

Zr<br />

-<br />

39<br />

89 Y<br />

100<br />

38<br />

Sr<br />

-<br />

37<br />

Rb<br />

-<br />

5<br />

36<br />

Kr<br />

-<br />

35<br />

Br<br />

-<br />

34<br />

Se<br />

-<br />

33<br />

As<br />

-<br />

32<br />

Ge<br />

31<br />

Ga<br />

-<br />

30<br />

Zn<br />

-<br />

29<br />

Cu<br />

-<br />

28<br />

Ni<br />

-<br />

27<br />

Co<br />

-<br />

26<br />

57 Fe<br />

2.2<br />

25<br />

Mn<br />

-<br />

24<br />

Cr<br />

-<br />

23<br />

V<br />

-<br />

22<br />

Ti<br />

-<br />

21<br />

Sc<br />

-<br />

20<br />

Ca<br />

-<br />

19<br />

K<br />

-<br />

4<br />

18<br />

Ar<br />

-<br />

17<br />

Cl<br />

-<br />

16<br />

S<br />

-<br />

15<br />

31 P<br />

100<br />

14<br />

29 Si<br />

4.7<br />

13<br />

Al<br />

-<br />

12<br />

Mg<br />

-<br />

11<br />

Na<br />

-<br />

3<br />

10<br />

Ne<br />

-<br />

9<br />

19 F<br />

100<br />

8<br />

O<br />

-<br />

7<br />

15 N<br />

0.3<br />

6<br />

13 C<br />

1.1<br />

5<br />

B<br />

-<br />

4<br />

Be<br />

-<br />

3<br />

Li<br />

-<br />

2<br />

2<br />

He<br />

-<br />

1<br />

1 H<br />

100<br />

1<br />

Period<br />

18<br />

17<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Group<br />

The number below the element symbol shows the natural abundance of the isotope with I=1/2 in %


Energy<br />

Magn. field strength


Energy<br />

Magn. field strength<br />

Magn. field strength<br />

Energyabsorption<br />

Energyabsorption<br />

Energyabsorption


Energy<br />

Frequency ν<br />

Energy<br />

Energy<br />

absorption<br />

Frequency ν<br />

Energy<br />

Energyabsorption<br />

Magn. field strength<br />

Energyabsorption


1 frequency at once<br />

5 frequencies at once<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 1 2 3 4 5 6 7<br />

-0.5<br />

-1<br />

-1.5<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0<br />

-2<br />

1 2 3 4 5 6 7<br />

-4<br />

-6<br />

-8<br />

-10<br />

100 frequencies at once<br />

250 frequencies at once<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

-10<br />

1 2 3 4 5 6 7<br />

-20<br />

-30<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 1 2 3 4 5 6 7<br />

-20<br />

-40


Energy differencies in NMR spectroscopy (intensity of signals)<br />

<strong>Magnetic</strong> Energy<br />

∆E = h ν = ħ γ B ≈ 4 10 -25 J<br />

Thermal Energy<br />

E = k T ≈ 4 10 -21 J<br />

∆E<br />

m=½<br />

∆E = h ν<br />

B<br />

n m=½<br />

-<br />

n m=-½<br />

=e<br />

∆E<br />

k T<br />

≈ 0.9999<br />

m=-½


Comparison of energies in spectroscopy<br />

Electromagnetic Wave length Frequency Properties to be examined Spectroscopic method<br />

irradiation<br />

γ rays 100 pm – 1 pm 3 10 18 – 3 10 20 Hz Change of nuclear states γ-<strong>Spectroscopy</strong>, Mößbauer-<br />

<strong>Spectroscopy</strong><br />

x-rays 10 nm – 100 pm 3 10 16 – 3 10 18 Hz Change of state of inner electron x-ray <strong>Spectroscopy</strong><br />

core state<br />

UV light, visible light 1 µm – 10 nm 3 10 14 – 3 10 16 Hz Change of state of avlence UV <strong>Spectroscopy</strong><br />

electrons<br />

Infrared rays 100 µm – 1 µm 3 10 12 – 3 10 14 Hz Change of vibrational<br />

IR/Raman <strong>Spectroscopy</strong><br />

states<br />

Microwaves 1 cm – 100 µm 30 GHz – 3 10 12 Hz Change of rotational<br />

Microwave <strong>Spectroscopy</strong><br />

states<br />

Microwaves 1m – 1 cm 300 MHz – 30 GHz Change of electron spin Electron spin resonance (ESR)<br />

states<br />

Radiowaves 100 m – 1 m 3 MHz – 300 MHz Change of nuclear spin<br />

states<br />

<strong>Nuclear</strong> spin resonance (NMR)


IR spectroscopy<br />

13<br />

C-NMR


N<br />

B<br />

B'<br />

M<br />

S<br />

emitter<br />

coil<br />

receiver<br />

coil M=0<br />

N<br />

B'<br />

M<br />

S<br />

rotating angle is<br />

dependent of<br />

irradiation time and<br />

irradiation power<br />

receiver<br />

coil M>0<br />

N<br />

B'<br />

M<br />

S<br />

emitter<br />

coil<br />

emitter<br />

coil


Line broadening (relaxation)<br />

A. spin-lattice relaxation T 1 :<br />

receiver<br />

static magnetic field<br />

transmitter<br />

B z<br />

receiver<br />

T 1<br />

B y<br />

transmitter<br />

static magnetic field<br />

B z<br />

receiver<br />

B. spin-spin relaxation T 2 :<br />

transmitter<br />

B z<br />

B z<br />

T 2<br />

B z<br />

∆E ∆t ≥ ħ<br />

B y<br />

B y


Molecular<br />

vibration<br />

Dynamic<br />

Process<br />

Chemical<br />

exchange processes<br />

Molecular<br />

Rotation<br />

Macroscopic<br />

transport processes<br />

slow<br />

s ms µs ns ps fs<br />

fast<br />

Spectroscopic<br />

Finding<br />

slow<br />

exchange<br />

Longitudinal<br />

Magnetization exchange<br />

Line wideperturbation<br />

fast<br />

exchange<br />

The NMR time scale<br />

Relaxation<br />

time scale<br />

Spectral<br />

time scale<br />

Larmortime<br />

scale


<strong>Resonance</strong><br />

frequency<br />

ν Α,Ref.<br />

bare nucleus A<br />

nucleus A<br />

with electron density<br />

e<br />

nucleus A<br />

with more electron densitiy<br />

δ<br />

e<br />

chemical<br />

shift<br />

ν Β,Ref.<br />

bare nucleus B nucleus B<br />

with electron density<br />

e<br />

δ<br />

nucleus B<br />

with more electron density<br />

e


Position of the signal (chemical shift)<br />

δ = ν obs - ν ref<br />

ν ref


Factors influencing the chemical shift (ring current)<br />

δ ≈ 7.2 ppm


Spectrum:<br />

ν 0 ν 1 ν 1<br />

β(β)<br />

H<br />

β<br />

β<br />

β(α)<br />

C<br />

O<br />

H<br />

ν 0 ν 1<br />

ν 1<br />

ν 1<br />

α<br />

α<br />

α(β)<br />

α(α)<br />

bare nucleus<br />

chemical<br />

shift<br />

of electronic<br />

environment<br />

chemical<br />

shift<br />

additionally by<br />

spin environment


Fine structure of the signal (indirect scalar spin-spin coupling)


Spectrum:<br />

ν 0<br />

ν 1 ν 2 ν 1 ν 2 ν 1a/b ν 2a/b<br />

β<br />

β(β)<br />

β(α)<br />

β@β<br />

β@α<br />

β(β)<br />

β@β<br />

H<br />

Cl<br />

β<br />

β<br />

β(α)<br />

β@α<br />

C<br />

N<br />

H<br />

ν<br />

ν 2b<br />

ν 2<br />

ν 2 ν<br />

0 ν 1 ν 1b<br />

1 ν 2a<br />

ν 2 ν 1 ν 1a<br />

α<br />

α<br />

α(β)<br />

α(α)<br />

α@β<br />

α@α<br />

bare nucleus<br />

α<br />

chemical<br />

shift<br />

of electronic<br />

environment<br />

α(β)<br />

α(α)<br />

chemical<br />

shift<br />

additionally by<br />

spin environment<br />

α@β<br />

α@α<br />

additionally active<br />

coupling between<br />

spins


Fine structure of the signal (indirect scalar spin-spin coupling)


1<br />

J-coupling M─X:<br />

Factors influencing the coupling constant<br />

•Oxidation number of M: the higher the Ox-number of M the smaller 1 J MX<br />

•trans-Ligand to M─X: the stronger the trans-influence of the trans-Ligand to M─X the smaller 1 J MX<br />

•Hybridisation of X: the larger the s-amount in the bonding orbital the larger 1 J MX<br />

•Coordination number: the larger the coordination number the smaller 1 J MX<br />

•Gyromagnetic constant: The larger γ M<br />

and γ X<br />

the larger 1 J MX<br />

2<br />

J-coupling X─M─Y:<br />

trans-coupling > cis-coupling<br />

p sp 3 sp 2 sp<br />

90° 109° 120° 180°<br />

1 J RhP =140.7 Hz<br />

2 J PP c=19.8 Hz<br />

2 J PP c=57.5 Hz<br />

Ph Ph<br />

P<br />

O<br />

Rh<br />

O<br />

P<br />

Ph<br />

Ph<br />

P<br />

O<br />

1 J RhP =168.4 Hz<br />

2 J PP c=19.8 Hz<br />

2 J PP t=340.9 Hz<br />

2 J-coupling constant increases<br />

1 J RhP =170.4 Hz<br />

2 J PP c=57.5 Hz<br />

2 J PP t=340.9 Hz<br />

3<br />

J-coupling X─A─B─Y:<br />

φ HCOP =60°<br />

3<br />

J HP =0 Hz<br />

X φ<br />

Y<br />

1 J PPt =2627.5 Hz<br />

φ HCOP =25°<br />

3 J HP =8 Hz<br />

3 J XY = A cos (2 φ) + B cos (φ) + C<br />

1 J PPt =4267.2 Hz<br />

Minimum for φ=60°<br />

Maximum for φ between 0-30° bzw. 150-180°


Information content of a 1D NMR spectrum<br />

Line width of the signal:<br />

life time of the spin state<br />

in the specific environment<br />

Intensity of the signal:<br />

amount of nuclei with<br />

specific environment<br />

Fine structure of the signal:<br />

neighboring nuclear spins<br />

Position of the signal:<br />

electronic environment of the nucleus


Fine structure of the signal (decoupling)<br />

F<br />

F<br />

As<br />

F<br />

Me<br />

Me


Fine structure of the signal (indirect scalar spin-spin coupling)


Fine structure of the signal (indirect scalar spin-spin coupling)


Fine structure of the signal (natural abundance)


Line broadening (Chemical exchange)


Hidden Coordination Sites (Jahn-Teller-Effect)<br />

E<br />

D 4h<br />

C 2v<br />

D 3h<br />

L<br />

L<br />

L<br />

L<br />

M<br />

L<br />

-L<br />

L<br />

M<br />

L<br />

M<br />

L<br />

L<br />

L<br />

High T<br />

31<br />

P-NMR<br />

Low T<br />

a<br />

b


line braodening (exchange decoupling)<br />

13<br />

C-NMR<br />

(3)<br />

(2)<br />

(1)<br />

(3): after addition of much CO<br />

(2): after addition of some CO<br />

(1): starting situation (without additional CO)


Solid state NMR spectroscopy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!