23.05.2014 Views

Phenomenological studies of top-pair production at NLO

Phenomenological studies of top-pair production at NLO

Phenomenological studies of top-pair production at NLO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Phenomenological</strong> <strong>studies</strong> <strong>of</strong><br />

<strong>top</strong>-<strong>pair</strong> <strong>production</strong> <strong>at</strong> <strong>NLO</strong><br />

Malgorz<strong>at</strong>a Worek<br />

Wuppertal University<br />

XXXV Intern<strong>at</strong>ional Conference <strong>of</strong> Theoretical Physics, Ustron’11<br />

12-18 September 20011, Ustron, Poland 1


Outline<br />

General motiv<strong>at</strong>ion for <strong>NLO</strong> QCD calcul<strong>at</strong>ions<br />

HELAC-<strong>NLO</strong> in a nutshell<br />

ttbb, ttjj, Htt, WWbb<br />

Applic<strong>at</strong>ions: WWbb & ttjj @ TeV<strong>at</strong>ron and LHC<br />

Summary & Outlook<br />

2


HELAC-<strong>NLO</strong> Group<br />

G. Bevilacqua (RWTH Aachen)<br />

M. Czakon (RWTH Aachen)<br />

M.V. Garzelli (Debrecen Uni.)<br />

A. van Hameren (INP Krakow)<br />

I. Malamos (Nijmegen Uni.)<br />

C. G. Papadopoulos (INP Athens)<br />

R. Pittau (Granada Uni.)<br />

M. Worek (Wuppertal Uni.)<br />

<br />

<br />

<br />

<br />

<br />

<br />

Contributors:<br />

A. Kanaki<br />

A. Cafarella<br />

P. Draggiotis (Valencia Uni.)<br />

G. Ossola (New York Uni.)<br />

3


Introduction<br />

8-10 partons in the final st<strong>at</strong>e @ LO, well separ<strong>at</strong>ed to avoid divergences<br />

Standard Model and beyond tools @ tree level (just few examples)<br />

ALPGEN, AMEGIC++/SHERPA, CARLOMAT, COMIX/SHERPA,<br />

COMPHEP, HELAC-PHEGAS, MADGRAPH/MADEVENT,<br />

O'MEGA/WHIZARD, ...<br />

General purpose Monte Carlo programs (parton shower, hadroniz<strong>at</strong>ion,<br />

multiple interactions, hadrons decays, etc.)<br />

HERWIG, HERWIG++, PYTHIA 6.4, PYTHIA 8.1, SHERPA, ...<br />

High sensitivity to unphysical input scales<br />

Higher order calcul<strong>at</strong>ions are needed to improve accuracy <strong>of</strong> prediction<br />

4


Motiv<strong>at</strong>ion for <strong>NLO</strong><br />

Stabilizing the scale in the QCD input parameters:<br />

Strong coupling constant and PDFs<br />

More reliable theoretical error rel<strong>at</strong>ed to the scale dependence<br />

Normaliz<strong>at</strong>ion and shape <strong>of</strong> distributions first known <strong>at</strong> <strong>NLO</strong><br />

Many scale processes: V+ jets, ttH, tt + jets, bb + jets, njets ...<br />

How do we know which scale to choose ?<br />

Improved description <strong>of</strong> jets<br />

Jets: LO <strong>NLO</strong> Parton Hadron<br />

Shower<br />

Level<br />

5


Structure <strong>of</strong> <strong>NLO</strong><br />

Calcul<strong>at</strong>ions<br />

<br />

σ <strong>NLO</strong> =<br />

<br />

=<br />

m<br />

m<br />

<br />

dσ B +<br />

<br />

dσ B +<br />

m+1<br />

m+1<br />

<br />

dσ R −<br />

m+1<br />

<br />

dσ A +<br />

<br />

dσ R − dσ D <br />

+<br />

m<br />

m+1<br />

<br />

dσ A +<br />

m<br />

dσ V<br />

<br />

dσ V + dσ I + dσ KP<br />

C<strong>at</strong>ani-Seymour subtraction scheme<br />

At <strong>NLO</strong>: dσ R with m+1 partons and dσ V with m partons in the final<br />

Separ<strong>at</strong>ely divergent although their sum is finite<br />

dσ A is a proper approxim<strong>at</strong>ion <strong>of</strong> dσ R<br />

i. same singular behavior point-by-point<br />

ii. integrable over extra parton degrees <strong>of</strong> freedom<br />

Individual contributions finite. MC integr<strong>at</strong>ion can be performed !


Structure <strong>of</strong> <strong>NLO</strong><br />

Calcul<strong>at</strong>ions<br />

<br />

σ <strong>NLO</strong> =<br />

<br />

=<br />

m<br />

m<br />

<br />

dσ B +<br />

<br />

dσ B +<br />

m+1<br />

m+1<br />

<br />

dσ R −<br />

m+1<br />

<br />

dσ A +<br />

<br />

dσ R − dσ D <br />

+<br />

m<br />

m+1<br />

<br />

dσ A +<br />

m<br />

dσ V<br />

<br />

dσ V + dσ I + dσ KP<br />

Three main building blocks are needed<br />

Evalu<strong>at</strong>ion <strong>of</strong> one-loop amplitude - HELAC-1LOOP<br />

Determin<strong>at</strong>ion <strong>of</strong> coefficients via reduction method<br />

Reduction <strong>at</strong> integrand level - OPP method - CUTTOOLS<br />

Evalu<strong>at</strong>ion <strong>of</strong> scalar functions - ONELOOP<br />

Ossola, Papadopoulos, Pittau ‘07, ’08<br />

Draggiotis, Garzelli, Papadopoulos, Pittau ’09<br />

Garzelli, Malamos, Pittau ’09<br />

van Hameren, Papadopoulos, Pittau ’09<br />

van Hameren, ’10<br />

7


Structure <strong>of</strong> <strong>NLO</strong><br />

Calcul<strong>at</strong>ions<br />

<br />

σ <strong>NLO</strong> =<br />

<br />

=<br />

m<br />

m<br />

<br />

dσ B +<br />

<br />

dσ B +<br />

m+1<br />

m+1<br />

<br />

dσ R −<br />

m+1<br />

<br />

dσ A +<br />

<br />

dσ R − dσ D <br />

+<br />

m<br />

m+1<br />

<br />

dσ A +<br />

m<br />

dσ V<br />

<br />

dσ V + dσ I + dσ KP<br />

HELAC-DIPOLES - complete, public and autom<strong>at</strong>ic C<strong>at</strong>ani-Seymour dipoles<br />

Extended for arbitrary polariz<strong>at</strong>ions<br />

Monte Carlo over polariz<strong>at</strong>ion st<strong>at</strong>es <strong>of</strong> external particles<br />

Monte Carlo over color<br />

Phase space restriction on the dipoles phase space<br />

Less dipole subtraction terms per event<br />

Increased numerical stability<br />

Reduced missed binning problem<br />

Czakon, Papadopoulos, Worek '09<br />

8


One-loop amplitude<br />

and r<strong>at</strong>ional part<br />

Reduction <strong>of</strong> tensor integrals<br />

OPP coefficients and r<strong>at</strong>ional part<br />

HELAC-1LOOP<br />

CUTTOOLS<br />

pp → t¯tjj<br />

HELAC-<strong>NLO</strong><br />

HELAC-<br />

DIPOLES<br />

ONELOOP<br />

C<strong>at</strong>ani-Seymour dipole subtraction<br />

for massless and massive cases<br />

Scalar integrals<br />

9


Top Quark<br />

Produced in hadron-hadron collisions through strong interactions<br />

Decays without forming hadrons through the single mode tW b<br />

Distinguished by its large mass, close to EW symmetry breaking scale<br />

Unique property raises questions:<br />

Is the <strong>top</strong> quark mass gener<strong>at</strong>ed by the Higgs mechanism ?<br />

Does it play more fundamental role ?<br />

Are there new particles lighter than the <strong>top</strong> quark ?<br />

Does the <strong>top</strong> quark decay into them ?<br />

Could non-SM physics manifest itself in non-standard couplings <strong>of</strong> <strong>top</strong><br />

quark which show up as anomalies in <strong>top</strong> quark <strong>production</strong> and decays?<br />

Top quark physics tries to answer all these questions<br />

Properties <strong>of</strong> the <strong>top</strong> quark have already been examined <strong>at</strong> the Tev<strong>at</strong>ron<br />

LHC is a <strong>top</strong> factory, producing about 8 million tt <strong>pair</strong>s per<br />

experiment per year <strong>at</strong> low luminosity (10 fb 1 /year)<br />

10


Top Pair Production<br />

Complete <strong>of</strong>f-shell effects @ <strong>NLO</strong><br />

Double-, single- and non-resonant<br />

<strong>top</strong> contributions <strong>of</strong> the order O( s3 4 )<br />

Complex-mass scheme for unstable <strong>top</strong><br />

W gauge bosons are tre<strong>at</strong>ed <strong>of</strong>f-shell<br />

pp(p¯p) → e + ν e µ − ν µ b¯b + X<br />

Sum over helicities and color via MC<br />

LO + V obtained by reweighting <strong>of</strong> tree<br />

level unweighted events<br />

Dipole channels for subtracted real part<br />

Check <strong>of</strong> Ward identity for virtual part<br />

Cancell<strong>at</strong>ion <strong>of</strong> divergences<br />

max independence test for real part<br />

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ’11<br />

11


Top Pair Production<br />

TeV<strong>at</strong>ron<br />

LO & <strong>NLO</strong> scale dependence<br />

σ LO = 34.922 +40%<br />

−26% fb<br />

σ <strong>NLO</strong> = 35.727 −4%<br />

−8% fb<br />

K = 1.023<br />

LHC<br />

σ LO = 550.538 +37%<br />

−25% fb<br />

σ <strong>NLO</strong> = 808.665 +4%<br />

−9% fb<br />

K = 1.47<br />

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ’11<br />

12


Top Pair Production<br />

TeV<strong>at</strong>ron<br />

Differential cross section<br />

Fixed scale m t<br />

Not rescale LO shapes<br />

Distortions 15% - 80%<br />

For angular distributions<br />

corrections 5% - 10%<br />

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ’11<br />

13


Top Pair Production<br />

LHC<br />

Differential cross section<br />

Fixed scale m t<br />

Corrections 50% - 60 %<br />

Rel<strong>at</strong>ively constant<br />

H T distorted up to 80%<br />

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ’11<br />

14


TeV<strong>at</strong>ron<br />

Top Pair Production<br />

A t FB =0.051<br />

A b FB =0.033<br />

A +<br />

FB =0.034<br />

<strong>top</strong> quarks are emitted in the<br />

direction <strong>of</strong> incoming protons<br />

<br />

A t y>0<br />

FB =<br />

N t(y) − y0 N t(y)+ y


Top Pair + 2 Jets<br />

Important background for Higgs searches @ Tev<strong>at</strong>ron and @ LHC<br />

H WW ∗ produced via weak boson fusion<br />

For m H ~ 130 GeV, i.e. when BR(H WW ∗ ) is large enough<br />

Higgs boson mass peak cannot be directly reconstructed<br />

Background processes can not be measured from the side bands<br />

H bb produced via associ<strong>at</strong>ed <strong>production</strong> with a tt <strong>pair</strong><br />

Process useful only in the low mass range m H < 135 GeV<br />

Unique access to the <strong>top</strong> and bottom Yukawa couplings<br />

Reconstruction <strong>of</strong> the H bb mass peak difficult<br />

The bb <strong>pair</strong> can be chosen incorrectly<br />

b-tagging efficiency, two b-jets can arise from mistagged light jets<br />

Very precise knowledge <strong>of</strong> QCD backgrounds<br />

ttjj, ttbb, WWjj is necessary !<br />

16


Top Pair + 2 Jets<br />

Partonic subprocesses<br />

Number <strong>of</strong> Feynman diagrams<br />

Number <strong>of</strong> dipoles<br />

As a measure <strong>of</strong> complexity<br />

dσ R − dσ D<br />

dσ V<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

17


Top Pair + 2 Jets<br />

TeV<strong>at</strong>ron<br />

σ LO =0.3584 +94%<br />

−45% pb<br />

σ <strong>NLO</strong> =0.2709 +0.5%<br />

−21% pb<br />

94% 21%<br />

K = 0.76 -24%<br />

Total cross sections<br />

with different jets<br />

separ<strong>at</strong>ion cuts R jj<br />

and the jet resolution<br />

parameters R<br />

K = 0.86 -14%<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

18


TeV<strong>at</strong>ron<br />

Top Pair + 2 Jets<br />

Corrections to p T and m tt<br />

are substantial<br />

Do not simply rescale the<br />

LO shapes<br />

Induce distortions 40%<br />

For H T even 50% 60%<br />

deform<strong>at</strong>ions<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

19


TeV<strong>at</strong>ron<br />

Top Pair + 2 Jets<br />

Angular distributions<br />

Neg<strong>at</strong>ive and moder<strong>at</strong>e<br />

corrections<br />

15% 30%<br />

Rel<strong>at</strong>ively constant<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

20


Top Pair + 2 Jets<br />

A t FB,LO = −0.103 +0.003<br />

−0.004<br />

A t FB,<strong>NLO</strong> = −0.046 +0.005<br />

−0.006<br />

anti-<strong>top</strong> quarks are emitted in the<br />

direction <strong>of</strong> incoming protons<br />

(forward direction by definition)<br />

with a consistent expansion in s<br />

A t FB,<strong>NLO</strong> = −0.058 +0.014<br />

−0.042<br />

unexpanded r<strong>at</strong>io <strong>of</strong> the <strong>NLO</strong> cross sections<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

21


Top Pair + 2 Jets<br />

LHC<br />

σ LO = 13.398 +87%<br />

−43% pb<br />

σ <strong>NLO</strong> =9.82 −15%<br />

−15% pb<br />

87% 15%<br />

K = 0.73 -27%<br />

Total cross sections<br />

with different jets<br />

separ<strong>at</strong>ion cuts R jj<br />

and the jet resolution<br />

parameters R<br />

K = 0.86 -14%<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

22


LHC<br />

Top Pair + 2 Jets<br />

m tt 20% 30% corrections<br />

p T up to 60% distortions<br />

H T even 80% deform<strong>at</strong>ions<br />

Corrections are substantial<br />

and do not simply rescale<br />

LO shapes<br />

Bevilacqua, Czakon, Papadopoulos, Worek ‘10 ’11<br />

23


LHC<br />

Top Pair + 2 Jets<br />

<strong>NLO</strong> QCD corrections<br />

are neg<strong>at</strong>ive and<br />

rel<strong>at</strong>ively constant<br />

Angular distributions<br />

20% 30% corrections<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’1o ‘11<br />

24


Summary & Outlook<br />

Already calcul<strong>at</strong>ed by HELAC-<strong>NLO</strong>: ttbb, ttjj, Htt, WWbb<br />

ttbb, WWbb completed by two groups<br />

Permille level agreement in both cases!<br />

Much wider study for ttjj: vari<strong>at</strong>ion <strong>of</strong> the center <strong>of</strong> mass energy, jet<br />

algorithms, cone size in jet algorithm, transverse momentum cuts<br />

HELAC-<strong>NLO</strong><br />

Complete tool <strong>at</strong> <strong>NLO</strong> built around HELAC‐PHEGAS:<br />

HELAC‐1LOOP, CUTTOOLS, ONELOOP, HELAC‐DIPOLES<br />

Other processes from <strong>NLO</strong> Wishlist under <strong>at</strong>tack<br />

Constant improvements in speed and functionality<br />

Interfaced to PYTHIA and HERWIG showers via POWHEG-BOX: ttj, ttH<br />

Decays <strong>of</strong> massive particles, showering and hadroniz<strong>at</strong>ion<br />

Final results <strong>at</strong> the hadron level<br />

http://helac-phegas.web.cern.ch/helac-phegas/<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!