23.05.2014 Views

Non-equilibrium QFT Applied to Electroweak Baryogenesis

Non-equilibrium QFT Applied to Electroweak Baryogenesis

Non-equilibrium QFT Applied to Electroweak Baryogenesis

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Non</strong>-Equilibrium Quantum Field Theory<br />

<strong>Applied</strong> <strong>to</strong> <strong>Electroweak</strong> <strong>Baryogenesis</strong><br />

Chris<strong>to</strong>pher Lee<br />

Institute for Nuclear Theory,<br />

University of Washing<strong>to</strong>n<br />

With<br />

Vincenzo Cirigliano<br />

Michael Ramsey-Musolf<br />

and Sean Tulin<br />

California Institute of Technology


Outline<br />

Closed Time-Path Formalism<br />

Quantum Transport Equations<br />

Solution for Baryon Asymmetry


Goal<br />

Derive transport equations for particle<br />

densities:<br />

Thermal expectation values of currents:<br />

where<br />

Bosons<br />

Fermions


<strong>Non</strong><strong>equilibrium</strong> <strong>QFT</strong><br />

Consider a matrix element:<br />

In <strong>equilibrium</strong> T=0<br />

field theory:<br />

<strong>Non</strong>-adiabaticity<br />

Degeneracy


<strong>Non</strong><strong>equilibrium</strong> <strong>QFT</strong><br />

Consider a matrix element:<br />

“path-ordering”<br />

+<br />

–<br />

x 0


Green’s s Functions<br />

<br />

Four possible Green’s functions on con<strong>to</strong>ur:<br />

x 0


Schwinger-Dyson Equations<br />

Apply <strong>to</strong> both sides:


Quantum Transport Equations<br />

<br />

Subtract resulting equations, take “


Examples of Self-Energies<br />

<br />

Fermion and scalar interactions with Higgs vevs, Higgs<br />

particles, and Higgsinos<br />

CP<br />

CP<br />

CP<br />

(In progress!)


Example: The Squark Source<br />

Riot<strong>to</strong><br />

CP-violating contribution <strong>to</strong> source:<br />

“Decoherence”<br />

ε d<br />

Resonant enhancement<br />

when<br />

“Plasma”<br />

ε p


Example: The Squark Source<br />

CP-conserving contribution <strong>to</strong> source:<br />

Cirigliano,<br />

CL,<br />

Ramsey-<br />

Musolf<br />

Keep chemical potential <strong>to</strong> first order in<br />

ε µ<br />

ε p<br />

Resonant enhancement<br />

when


Solving the Diffusion Equations<br />

<br />

Coupled transport equations for particle densities:<br />

e.g.<br />

In progress:<br />

cf. Huet,<br />

Nelson<br />

(semiclassical)<br />

• CTP calculation of Γ Y<br />

• Including all relevant<br />

linear combs. of densities<br />

• Numerical solution of<br />

coupled equations


Solution for Baryon Density<br />

Insert solution for<br />

in<strong>to</strong> equation for<br />

Baryon density left over inside bubble of broken<br />

EW phase:<br />

(constant)<br />

Resonant enhancements of relaxation terms mitigate<br />

but do not cancel out those of CP-violating sources


The Future of <strong>Baryogenesis</strong><br />

More complete, consistent calculation of BAU<br />

with non-<strong>equilibrium</strong> <strong>QFT</strong><br />

Experimental searches for EDMs, new particles<br />

? ?<br />

Where will<br />

the bands<br />

move?<br />

?<br />

CMB BBN<br />

?<br />

d e<br />

BAU<br />

d e<br />

d n<br />

BAU<br />

d Hg<br />

d Hg<br />

d n

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!