23.05.2014 Views

Lectures on flavor superfluidity & superconductivity

Lectures on flavor superfluidity & superconductivity

Lectures on flavor superfluidity & superconductivity

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Flavor Superc<strong>on</strong>ductivity/<br />

Superfluidity<br />

Fifth Aegean Summer School, Adamas, Milos, September 2009<br />

q<br />

¯q<br />

AdS/CFT<br />

[arXiv: 0810.2316]<br />

[arXiv: 0903.1864]<br />

by Matthias Kaminski (IFT-UAM/CSIC Madrid)<br />

in collaborati<strong>on</strong> with M.Amm<strong>on</strong>, J.Erdmenger, P.Kerner (MPI Munich)


Outline<br />

I. Invitati<strong>on</strong>: Superc<strong>on</strong>ductivity & Holography<br />

II. Review: Holographic C<strong>on</strong>cepts<br />

III. Details: Flavored Plasma (D3/D7)<br />

IV. Results: Flavor Superc<strong>on</strong>ducting Phase (D3/D7)<br />

V. Discussi<strong>on</strong><br />

Remarks <strong>on</strong> references:<br />

All references are hyperlinked in this document.<br />

Publicati<strong>on</strong>s quoted here are chosen because they review or explain certain<br />

aspects in a (pedagogical) way which is accessible to the unexperienced reader.<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page<br />

2


I. Invitati<strong>on</strong>: C<strong>on</strong>venti<strong>on</strong>al Superc<strong>on</strong>ductors<br />

Examples<br />

Color superc<strong>on</strong>ducting phase at high densities<br />

[Alford, Rajagopal, Wilczek ‘97]<br />

Higgs mechanism: Superc<strong>on</strong>ductivity of vacuum<br />

Weak coupling c<strong>on</strong>cepts<br />

charged c<strong>on</strong>densate of Cooper-pairs<br />

(gauge) symmetry: electromagnetic U(1) em<br />

local symmetry sp<strong>on</strong>taneously broken<br />

Goldst<strong>on</strong>e bos<strong>on</strong>s eaten<br />

[see lectures by Horowitz]<br />

[e.g.Weinberg]<br />

(phot<strong>on</strong>s in SC become massive Meissner effect)<br />

Theory: BCS (Bardeen-Cooper-Schrieffer) well established<br />

Superfluidity: global symmetry sp<strong>on</strong>taneously broken,<br />

Goldst<strong>on</strong>e bos<strong>on</strong>s survive (become hydro modes)<br />

weakly gauge boundary theory<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 3


I. Invitati<strong>on</strong>: Unc<strong>on</strong>venti<strong>on</strong>al Superc<strong>on</strong>ductors<br />

[see talk by Panagopoulos]<br />

Typical signatures<br />

magnetic field expulsi<strong>on</strong> (c)<br />

energy gap (peak at edge)<br />

pseudo gap<br />

underdoped: str<strong>on</strong>g coupl.<br />

T c<br />

Figure: Tunneling spectra measured in<br />

high temperature<br />

superc<strong>on</strong>ductor Bi 2 Sr 2 CaCu 2 O 8+δ .<br />

[Renner et al., Phys. Rev. Lett. 80,<br />

149 - 152 (1998)]<br />

Theory? Pairing mechanism? Meissner effect?<br />

[see lectures by Sadchdev]<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 4


I. Invitati<strong>on</strong>: Unc<strong>on</strong>venti<strong>on</strong>al Superc<strong>on</strong>ductors<br />

[see talk by Panagopoulos]<br />

Holographic result<br />

Typical signatures<br />

Energy gap<br />

Re σ<br />

4πw<br />

sigma4Piw<br />

magnetic field expulsi<strong>on</strong> (c)<br />

1.4<br />

energy gap (peak at edge)<br />

1.2<br />

pseudo gap<br />

1.0<br />

underdoped: str<strong>on</strong>g coupl.<br />

0.8<br />

0.6<br />

0.4<br />

Preview<br />

Figure: Tunneling spectra measured in<br />

0.2<br />

high temperature<br />

superc<strong>on</strong>ductor Bi 2 Sr 2 CaCu 2 O 8+δ .<br />

0.0<br />

0 5 10 15 20 w<br />

[Renner et al., Phys. Rev. Lett. 80,<br />

149 - 152 (1998)]<br />

w<br />

T c<br />

Theory? Pairing mechanism? Meissner effect?<br />

[see lectures by Sadchdev]<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 4


I. Invitati<strong>on</strong>: Building a Holographic SC<br />

Field Theory<br />

Gravity<br />

[Gubser, Pufu 0805.2960]<br />

What do we need?<br />

AdS-boundary<br />

c<strong>on</strong>densate<br />

curvature<br />

electromag.<br />

charged c<strong>on</strong>densate (vev)<br />

no source<br />

c<strong>on</strong>densate of charge carriers<br />

finite temperature<br />

horiz<strong>on</strong><br />

gravity<br />

introduce normalizble mode<br />

no n<strong>on</strong>-normalizable mode<br />

c<strong>on</strong>densate hovers over horiz<strong>on</strong><br />

black hole<br />

Is this stable?<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 5


I. Invitati<strong>on</strong>: Get some intuiti<strong>on</strong><br />

Field Theory<br />

Gravity<br />

L ∼ D ν φD ν φ ∼ (M q 2 − µ isospin 2 )φ 2<br />

5<br />

4<br />

VΦ<br />

3<br />

2<br />

1<br />

0<br />

-2 -1 0 1 2<br />

Φ<br />

charged particles c<strong>on</strong>dense at<br />

large enough chemical potential<br />

µ isopin ∼ M q<br />

strings (D3-D7) give FT charges<br />

cannot put infinitely many<br />

sec<strong>on</strong>d brane is important<br />

Why do we need a n<strong>on</strong>-Abelian structure?<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 6


I. Invitati<strong>on</strong>: Get some intuiti<strong>on</strong><br />

Field Theory<br />

Gravity<br />

L ∼ D ν φD ν φ ∼ (M q 2 − µ isospin 2 )φ 2<br />

1<br />

VΦ<br />

0.5<br />

0<br />

-0.5<br />

-2 -1 0 1 2<br />

Φ<br />

charged particles c<strong>on</strong>dense at<br />

large enough chemical potential<br />

µ isopin ∼ M q<br />

strings (D3-D7) give FT charges<br />

cannot put infinitely many<br />

sec<strong>on</strong>d brane is important<br />

Why do we need a n<strong>on</strong>-Abelian structure?<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 6


I. Invitati<strong>on</strong>: Why so complicated?<br />

Bottom-up<br />

Top-down<br />

String Theory<br />

?<br />

Phenomenological<br />

Gravity Dual of SC<br />

Phenomenological<br />

requirements,<br />

SC Field Theory<br />

[Gubser, Pufu 0805.2960]<br />

[Hartnoll, Herzog, Horowitz 0803.3295]<br />

study effects in clean setup<br />

seperate effects<br />

[see lectures by Horowitz]<br />

String Theory<br />

Geometric c<strong>on</strong>structi<strong>on</strong><br />

(e.g. Dp/Dq-branes)<br />

Holographic Dual of SC<br />

string theory derived<br />

identificati<strong>on</strong> of FT degrees o.f.<br />

‘dirty’<br />

many effects at <strong>on</strong>ce<br />

Pairing mechanism!<br />

[0810.2316]<br />

[0903.1864]<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 7


Navigator<br />

✓ Invitati<strong>on</strong>: Superc<strong>on</strong>ductivity & Holography<br />

II. Review: Holographic C<strong>on</strong>cepts<br />

also reviewed in [M.K. 0808.1114]<br />

III. Details: Flavored Plasma (D3/D7)<br />

IV. Results: Flavor Superc<strong>on</strong>ducting Phase (D3/D7)<br />

V. Discussi<strong>on</strong><br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page<br />

8


II. Review: Boundary Asymptotics<br />

n<strong>on</strong>-normalizable<br />

(source)<br />

normalizable<br />

(vev)<br />

A = A (0) + A(2)<br />

ρ 2 + . . .<br />

(ρ → ∞)<br />

ρ<br />

AdS<br />

QFT<br />

ρ bdy<br />

[see lectures by Argyres]<br />

Dicti<strong>on</strong>ary<br />

QFT FEATURE<br />

(energy scale)<br />

GEOMETRY<br />

(radial coord. )<br />

ρ<br />

operator J µ field A µ (gauge)<br />

vev A (2) (charge)<br />

source A (0) (chem. pot.)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page<br />

9


II. Review: Correlators & Spectral Functi<strong>on</strong>s<br />

˜J µ<br />

J µ A µ<br />

δ 2<br />

w<br />

Gauge Theory<br />

Problem (str<strong>on</strong>g):<br />

Find retarded twopoint<br />

functi<strong>on</strong> of<br />

<strong>flavor</strong> current<br />

in YM-plasma.<br />

Gravity problem<br />

(weak):<br />

Find soluti<strong>on</strong> for<br />

equati<strong>on</strong> of moti<strong>on</strong><br />

of vector field<br />

in SUGRA.<br />

ret<br />

δA bdy δA bdy<br />

S Sugra<br />

Recipe:<br />

S Sugra ∼<br />

∫<br />

∂ ρ A ∂ ρ A<br />

S <strong>on</strong>-shell ∼<br />

∫<br />

A ∂ ρ A<br />

G ret ∼ lim<br />

ρ→∞<br />

A<br />

A<br />

∂ ρ A<br />

A<br />

Thermal spectral functi<strong>on</strong>:<br />

[S<strong>on</strong>,Starinets hep-th/0205051]<br />

R(ω, q) = −2 ImG ret (ω, q)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page<br />

10


II. Review: Quasinormal modes<br />

ω n ∈ C<br />

Special frequencies:<br />

;<br />

(quasinormal)<br />

e −iωr = e −iRe{ω}r e Im{ω}r<br />

Example:<br />

G ret = N f N c T 2<br />

lim |Ã(ω n)| 2 = 0<br />

ρ→ρ bdy<br />

8<br />

[Berti et al. 0905.2975]<br />

( )<br />

lim ρ 3 ∂ρÃ(ρ)<br />

ρ→ρ bdy Ã(ρ)<br />

R = −2 Im G ret<br />

R<br />

ω 2<br />

ω 1<br />

ω 0<br />

Gravity:<br />

quasinormal<br />

frequencies<br />

Gauge theory:<br />

poles of correlator<br />

(energy, damping, stability<br />

of mes<strong>on</strong>ic excitati<strong>on</strong>s)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 11


II. Review: D3/D7-Brane Setup (1)<br />

Flavor Probe Branes (D7)<br />

0123<br />

4567<br />

89<br />

N D3<br />

c<strong>on</strong>venti<strong>on</strong>al<br />

open/closed string duality<br />

SYM<br />

3!3<br />

AdS 5<br />

distinct approaches:<br />

[lectures by Kiritsis]<br />

[talk by Cotr<strong>on</strong>e]<br />

N probe D7<br />

f<br />

quarks<br />

3!7<br />

flavour open/open<br />

string duality<br />

Dirac-Born-Infeld (DBI) acti<strong>on</strong><br />

S DBI = −T 7<br />

∫<br />

d 8 σ<br />

R 4<br />

7!7<br />

AdS 5<br />

brane<br />

[Karch, Katz hep-th/0205236]<br />

Review: [Erdmenger et al. 0711.4467]<br />

(√− det(P [G + B] µν + (2πα ′ ) 2 )F µν<br />

)<br />

B ≡ 0<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 12


II. Review: D3/D7-Brane Setup (2)<br />

N c<br />

D3-branes<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


II. Review: D3/D7-Brane Setup (2)<br />

N f<br />

D7-branes<br />

N c<br />

D3-branes<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


II. Review: D3/D7-Brane Setup (2)<br />

N f<br />

D7-branes<br />

N c<br />

D3-branes<br />

(black)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


II. Review: D3/D7-Brane Setup (2)<br />

N f<br />

D7-branes<br />

N c<br />

D3-branes<br />

(black)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


II. Review: D3/D7-Brane Setup (2)<br />

 ν<br />

⊂ U(N f )<br />

N f<br />

D7-branes<br />

N c<br />

D3-branes<br />

(black)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


II. Review: D3/D7-Brane Setup (2)<br />

 ν<br />

⊂ U(N f )<br />

ρ<br />

N f<br />

D7-branes<br />

L(ρ)<br />

0 1 2 3 4 5 6 7 8 9<br />

D3 x x x x<br />

D7 x x x x x x x x<br />

8,9<br />

N c<br />

D3-branes<br />

(black)<br />

4,5,6,7<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


II. Review: D3/D7-Brane Setup (2)<br />

 ν<br />

⊂ U(N f )<br />

ρ<br />

N f<br />

D7-branes<br />

L(ρ)<br />

0 1 2 3 4 5 6 7 8 9<br />

D3 x x x x<br />

D7 x x x x x x x x<br />

8,9<br />

N c<br />

D3-branes<br />

(black)<br />

4,5,6,7<br />

Chemical potential:  µ = δ µ0 A 0 + õ<br />

[Kobayashi et al. hep-th/0611099]<br />

[Mateos et al. 0709.1225]<br />

(cf. therm. FT)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


II. Review: D3/D7-Brane Setup (2)<br />

 ν<br />

⊂ U(N f )<br />

ρ<br />

N f<br />

D7-branes<br />

L(ρ)<br />

0 1 2 3 4 5 6 7 8 9<br />

D3 x x x x<br />

D7 x x x x x x x x<br />

8,9<br />

N c<br />

D3-branes<br />

(black)<br />

4,5,6,7<br />

Chemical potential:  µ = δ µ0 A 0 + õ<br />

[Kobayashi et al. hep-th/0611099]<br />

[Mateos et al. 0709.1225]<br />

(cf. therm. FT)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


II. Review: D3/D7-Brane Setup (2)<br />

Mes<strong>on</strong>s<br />

 ν<br />

⊂ U(N f )<br />

ρ<br />

N f<br />

D7-branes<br />

L(ρ)<br />

0 1 2 3 4 5 6 7 8 9<br />

D3 x x x x<br />

D7 x x x x x x x x<br />

8,9<br />

N c<br />

D3-branes<br />

(black)<br />

4,5,6,7<br />

Chemical potential:  µ = δ µ0 A 0 + õ<br />

[Kobayashi et al. hep-th/0611099]<br />

[Mateos et al. 0709.1225]<br />

(cf. therm. FT)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 13


Navigator<br />

✓ Invitati<strong>on</strong>: Superc<strong>on</strong>ductivity & Holography<br />

✓ Review: Holographic C<strong>on</strong>cepts<br />

III. Details: Flavored Plasma (D3/D7)<br />

IV. Results: Flavor Superc<strong>on</strong>ducting Phase (D3/D7)<br />

V. Discussi<strong>on</strong><br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page<br />

14


III. Abelian Chemical Potential: Background<br />

AdS black hole metric<br />

pullback<br />

Induced metric <strong>on</strong> D7-brane<br />

[Myers et al. hep-th/0611099]<br />

f(ϱ) = 1 − ϱ H 4<br />

DBI acti<strong>on</strong><br />

4<br />

ϱ H ˜f(ϱ)<br />

ϱ = 1 + ϱ 2 = r 2 + √ r 4 − r<br />

4<br />

4 , χ = cos(θ)<br />

H<br />

ϱ 4 , ,<br />

0.0002<br />

p0<br />

0.00015<br />

0.0001<br />

0.00005<br />

0<br />

0 10 20 30 40 50<br />

ρ<br />

Can be rewritten as<br />

c<strong>on</strong>stant of moti<strong>on</strong> . ˜d<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 15


III. Abelian Chemical Potential: Fluctuati<strong>on</strong>s<br />

∫ ∣∣∣<br />

DBI acti<strong>on</strong>: S D7 = d x√ 8 det{[g + F ] + ˜F } ∣ F µν = ∂ [µ A ν]<br />

Equati<strong>on</strong> of moti<strong>on</strong>:<br />

[Myers,Starinets,Thoms<strong>on</strong> 0710.0334]<br />

} {{ }<br />

G<br />

0 = Ã′′ + ∂ ρ[ √ | det G|G 22 G 44 ]<br />

√<br />

| det G|G<br />

22<br />

G 44<br />

,<br />

à ′ − G00<br />

G 44 ϱ H 2 ω 2 Ã<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 16


III. Abelian Chemical Potential: Fluctuati<strong>on</strong>s<br />

∫ ∣∣∣<br />

DBI acti<strong>on</strong>: S D7 = d x√ 8 det{[g + F ] + ˜F } ∣ F µν = ∂ [µ A ν]<br />

Equati<strong>on</strong> of moti<strong>on</strong>:<br />

} {{ }<br />

G<br />

0 = Ã′′ + ∂ ρ[ √ `Curved’ Maxwell | det G|G 22 G 44 ]<br />

√ equati<strong>on</strong>s: Ã ′ − G00<br />

| det G|G<br />

22<br />

G 44 G 44 ϱ H 2 ω 2 Ã<br />

∂ µ F µν = 0<br />

[Myers,Starinets,Thoms<strong>on</strong> 0710.0334]<br />

∂ µ<br />

( √−GG µν G ρσ F νσ<br />

)<br />

= 0<br />

∂ µ<br />

( √−GG µν G ρσ ∂ [ν Ã σ]<br />

)<br />

= 0<br />

,<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 16


III. Abelian Chemical Potential: Fluctuati<strong>on</strong>s<br />

DBI acti<strong>on</strong>:<br />

Equati<strong>on</strong> of moti<strong>on</strong>:<br />

S D7 =<br />

∫<br />

[Myers,Starinets,Thoms<strong>on</strong> 0710.0334]<br />

∣∣∣<br />

d x√ 8 det{[g + F ] + ˜F } ∣<br />

} {{ }<br />

G<br />

0 = Ã′′ + ∂ ρ[ √ | det G|G 22 G 44 ]<br />

√<br />

| det G|G<br />

22<br />

G 44<br />

,<br />

F µν = ∂ [µ A ν]<br />

à ′ − G00<br />

G 44 ϱ H 2 ω 2 Ã<br />

Boundary c<strong>on</strong>diti<strong>on</strong>s:<br />

shooting from<br />

horiz<strong>on</strong><br />

Translati<strong>on</strong> to gauge theory by duality:<br />

Gauge correlator:<br />

[S<strong>on</strong>,Starinets<br />

hep-th/0205051]<br />

à = (ϱ − ϱ H ) −iw [1 + iw 2 (ϱ − ϱ H) + . . . ]<br />

G ret = N f N c T 2<br />

8<br />

AdS/CFT<br />

A µ ↔ J µ<br />

(source)<br />

(<br />

lim ρ 3 ∂ρÃ(ρ)<br />

ρ→ρ bdy Ã(ρ)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 16<br />

)


III. Abelian Chemical Potential: Spectral F’s<br />

Finite bary<strong>on</strong> density:<br />

[Erdmenger, M.K., Rust 0710.0334]<br />

( , 0) − 0<br />

4<br />

2<br />

0<br />

2<br />

4<br />

˜d = 0.25<br />

χ 0 = 0.1<br />

χ 0 = 0.5<br />

χ 0 = 0.7<br />

χ 0 = 0.8<br />

6<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

[Karch, O’Bann<strong>on</strong> ‘07]<br />

µq/mq<br />

Phase diagram:<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1<br />

˜d = 0<br />

0.2<br />

˜d = 4<br />

0.4<br />

T/ ¯M<br />

0.6<br />

˜d = 0.25<br />

˜d = 0.00315<br />

0.8<br />

1<br />

L(ϱ) = ϱ χ(ϱ)<br />

χ 0 = χ(ρ) ∣ ∣<br />

ρ→ρH<br />

∼ m quark<br />

T<br />

χ = χ( ˜d , ρ)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 17


III. Abelian Chemical Potential: Spectral F’s<br />

Finite bary<strong>on</strong> density:<br />

[Erdmenger, M.K., Rust 0710.0334]<br />

Lower temperature<br />

[Karch, O’Bann<strong>on</strong> ‘07]<br />

µq/mq<br />

Phase diagram:<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1<br />

˜d = 0<br />

0.2<br />

˜d = 4<br />

0.4<br />

T/ ¯M<br />

0.6<br />

˜d = 0.25<br />

˜d = 0.00315<br />

0.8<br />

1<br />

L(ϱ) = ϱ χ(ϱ)<br />

χ 0 = χ(ρ) ∣ ∣<br />

ρ→ρH<br />

∼ m quark<br />

T<br />

χ = χ( ˜d , ρ)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 17


( , 0) − 0<br />

III. Abelian Chemical Potential: Spectral F’s<br />

Finite bary<strong>on</strong> density:<br />

200<br />

150<br />

100<br />

50<br />

0<br />

˜d = 0.25<br />

χ 0 = 0.8<br />

χ 0 = 0.94<br />

χ 0 = 0.962<br />

50<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

( , 0)<br />

140 000<br />

120 000<br />

100 000<br />

80 000<br />

60 000<br />

40 000<br />

20 000<br />

[Erdmenger, M.K., Rust 0710.0334]<br />

˜d = 0.25<br />

χ 0 = 0.999<br />

n = 0 n = 1 n = 2 n = 3<br />

0<br />

0 5 10 15 20 25 30 35<br />

[Karch, O’Bann<strong>on</strong> ‘07]<br />

µq/mq<br />

Phase diagram:<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

1<br />

˜d = 0<br />

0.2<br />

˜d = 4<br />

0.4<br />

T/ ¯M<br />

0.6<br />

˜d = 0.25<br />

˜d = 0.00315<br />

0.8<br />

1<br />

L(ϱ) = ϱ χ(ϱ)<br />

χ 0 = χ(ρ) ∣ ∣<br />

ρ→ρH<br />

∼ m quark<br />

T<br />

χ = χ( ˜d , ρ)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 17


III. Isospin Chemical Potential: Spectral F’s<br />

[Erdmenger, M.K., Rust 0710.0334]<br />

Finite isospin density<br />

What has changed?<br />

− 0<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

XY<br />

E 3 E 3 Y X<br />

n = 0<br />

n = 0 n = 0<br />

XY E 3 E 3 Y X<br />

n = 1 n = 1 n = 1<br />

2 4 6 8 10<br />

Background acti<strong>on</strong> c<strong>on</strong>tains<br />

tr( √ g + F a T a ) ∼ N f × Abelian<br />

Diag<strong>on</strong>alize acti<strong>on</strong> in <strong>flavor</strong><br />

space (X, Y, E)<br />

triplet splitting<br />

analog to Rho-vector mes<strong>on</strong><br />

analytical results & interpretati<strong>on</strong>:<br />

[M.K. 0808.1114]<br />

Fluctuati<strong>on</strong>s in three <strong>flavor</strong><br />

directi<strong>on</strong>s, so two new:<br />

X, Y (orthog<strong>on</strong>al to isospin)<br />

0 = X ′′ + . . . X ′ + . . . (ω − µ)X<br />

0 = Y ′′ + . . . Y ′ + . . . (ω + µ)Y<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 18


III. High isospin densities: Instability!<br />

[Erdmenger, M.K., Kerner, Rust 0807.2663]<br />

New (lowest) mes<strong>on</strong>ic excitati<strong>on</strong>:<br />

New phase:<br />

Stability:<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 19


First summary: QGP Phenomenology<br />

✓ stable mes<strong>on</strong>s survive dec<strong>on</strong>finement<br />

✓ mes<strong>on</strong> mass changes with temperature<br />

✓ vec-mes<strong>on</strong>s are isospin triplets (QCD’s Rho-mes<strong>on</strong>)<br />

✓ new excitati<strong>on</strong>/phase: instability<br />

Lattice QCD: [Umeda et al.’02, ...]<br />

Lattice QCD: [Umeda et al.’02, ...]<br />

2-<strong>flavor</strong> QCD: [Splittorff et al.’03] ; Sakai-Sugimoto: [Ahar<strong>on</strong>y et al.’07]<br />

stabilize the new phase, new ground state<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 20


Navigator<br />

✓ Invitati<strong>on</strong>: Superc<strong>on</strong>ductivity & Holography<br />

✓ Review: Holographic C<strong>on</strong>cepts<br />

✓ Details: Flavored Plasma (D3/D7)<br />

IV. Results: Flavor Superc<strong>on</strong>ducting Phase (D3/D7)<br />

V. Discussi<strong>on</strong><br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page<br />

21


General idea<br />

IV. Flavor Superc<strong>on</strong>ducting Phase<br />

[Erdmenger, M.K., Kerner, Rust 0807.2663]<br />

A 3 0 = µ + d ρ 2 + . . .<br />

superc<strong>on</strong>ducting<br />

???<br />

[Amm<strong>on</strong>, Erdmenger, M.K., Kerner 0810.2316]<br />

A 3 0 = µ + d3 0<br />

ρ 2 + . . .<br />

A 1 3 =<br />

d 1 3<br />

ρ 2 + . . .<br />

sp<strong>on</strong>t. breaks U(1)<br />

[Gubser, Pufu 0805.2960]<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 22


IV. Field Theory Picture<br />

Gravity field A 3 0 = µ + d3 0<br />

ρ 2 + . . .<br />

dual to current<br />

explicitly breaks<br />

U(2) ∼ U(1) B × SU(2) I → U(1) B × U(1) 3<br />

New field<br />

dual to current<br />

A 1 3 =<br />

d 1 3<br />

ρ 2 + . . .<br />

sp<strong>on</strong>taneously breaks<br />

U(1) 3 ↔ U(1) em<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 23


C<br />

Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

d 8 ξStr<br />

( √det √<br />

)<br />

Q det (P ab [E µν + E µi (Q −1 − δ) ij E jν ] + 2πα ′ F ab )<br />

Q i j = δ i j + i2πα ′ [Φ i , Φ k ]E kj , E µν = g µν + B µν<br />

µ, ν = 0, . . . , 9; a, b = 0, . . . , 7; i, j = 8, 9<br />

8,9 rotati<strong>on</strong>: Φ 9 ≡ 0 ⇒ Q i j = δj<br />

i<br />

B ≡ 0<br />

A = A 3 0 dt τ 3 + A 1 3 dz τ 1 and<br />

Choose: Φ 8 || τ 0<br />

( )<br />

⇔<br />

FT: charge eigenstates are also mass eigenstates<br />

⇒ scalars Φ 8 , Φ 9 decouple from vectors A<br />

(set to zero from now <strong>on</strong>, i.e. massless quarks)


Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

d 8 ξ Str{ √ det[g + 2πα ′ F ]}<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g Str 1 + g tt g ρρ (Fρ0 3 )2 (σ 3 ) 2 + g 33 g 44 (Fρ3 1 )2 (σ 1 ) 2 − c 2 g tt g 33 (F03 2 )2 (σ 2 ) 2<br />

F = dA + [A, A]<br />

(e.g. [Myers et al. hep-th/0611099])


Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

d 8 ξ Str{ √ det[g + 2πα ′ F ]}<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g Str 1 + g tt g ρρ (Fρ0 3 )2 (σ 3 ) 2 + g 33 g 44 (Fρ3 1 )2 (σ 1 ) 2 − c 2 g tt g 33 (F03 2 )2 (σ 2 ) 2<br />

F = dA + [A, A]<br />

= ∂ ρ A 3 0 τ 3 dρ ∧ dt + ∂ ρ A 1 3 τ 1 dρ ∧ dz + iɛ 231 A 3 0A 1 3 dt ∧ dz<br />

(e.g. [Myers et al. hep-th/0611099])


Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

d 8 ξ Str{ √ det[g + 2πα ′ F ]}<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g Str 1 + g tt g ρρ (Fρ0 3 )2 (σ 3 ) 2 + g 33 g 44 (Fρ3 1 )2 (σ 1 ) 2 − c 2 g tt g 33 (F03 2 )2 (σ 2 ) 2<br />

Problem 1: How to evaluate the symmetrized trace of the square<br />

root exactly?<br />

F = dA + [A, A]<br />

= ∂ ρ A 3 0 τ 3 dρ ∧ dt + ∂ ρ A 1 3 τ 1 dρ ∧ dz + iɛ 231 A 3 0A 1 3 dt ∧ dz<br />

Problem 2: N<strong>on</strong>-Abelian DBI-acti<strong>on</strong> <strong>on</strong>ly known to fourth order<br />

in .<br />

α ′<br />

(e.g. [Myers et al. hep-th/0611099])


Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

d 8 ξ Str{ √ det[g + 2πα ′ F ]}<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g Str 1 + g tt g ρρ (Fρ0 3 )2 (σ 3 ) 2 + g 33 g 44 (Fρ3 1 )2 (σ 1 ) 2 − c 2 g tt g 33 (F03 2 )2 (σ 2 ) 2<br />

Problem 1: How to evaluate the symmetrized trace of the square<br />

root exactly?<br />

Soluti<strong>on</strong>: Set commutators zero, set<br />

symmetrized trace.<br />

F = dA + [A, A]<br />

(σ i ) 2 = 1<br />

inside<br />

= ∂ ρ A 3 0 τ 3 dρ ∧ dt + ∂ ρ A 1 3 τ 1 dρ ∧ dz + iɛ 231 A 3 0A 1 3 dt ∧ dz<br />

Problem 2: N<strong>on</strong>-Abelian DBI-acti<strong>on</strong> <strong>on</strong>ly known to fourth order<br />

in α ′ .<br />

Soluti<strong>on</strong>: Expand square root to fourth order in α .<br />

′<br />

(e.g. [Myers et al. hep-th/0611099])


Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

d 8 ξ Str{ √ det[g + 2πα ′ F ]}<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g Str 1 + g tt g ρρ (Fρ0 3 )2 (σ 3 ) 2 + g 33 g 44 (Fρ3 1 )2 (σ 1 ) 2 − c 2 g tt g 33 (F03 2 )2 (σ 2 ) 2<br />

F = dA + [A, A]<br />

= ∂ ρ A 3 0 τ 3 dρ ∧ dt + ∂ ρ A 1 3 τ 1 dρ ∧ dz + iɛ 231 A 3 0A 1 3 dt ∧ dz<br />

(e.g. [Myers et al. hep-th/0611099])


Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

d 8 ξ Str{ √ det[g + 2πα ′ F ]}<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g Str 1 + g tt g ρρ (Fρ0 3 )2 (σ 3 ) 2 + g 33 g 44 (Fρ3 1 )2 (σ 1 ) 2 − c 2 g tt g 33 (F03 2 )2 (σ 2 ) 2<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g 1 + g tt g ρρ (∂ ρ A 3 0 )2 + g 33 g 44 (∂ ρ A 1 3 )2 − c 2 g tt g 33 (A 3 0 A1 3 )2<br />

F = dA + [A, A]<br />

= ∂ ρ A 3 0 τ 3 dρ ∧ dt + ∂ ρ A 1 3 τ 1 dρ ∧ dz + iɛ 231 A 3 0A 1 3 dt ∧ dz<br />

(e.g. [Myers et al. hep-th/0611099])


Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

d 8 ξ Str{ √ det[g + 2πα ′ F ]}<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g Str 1 + g tt g ρρ (Fρ0 3 )2 (σ 3 ) 2 + g 33 g 44 (Fρ3 1 )2 (σ 1 ) 2 − c 2 g tt g 33 (F03 2 )2 (σ 2 ) 2<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g 1 + g tt g ρρ (∂ ρ A 3 0 )2 + g 33 g 44 (∂ ρ A 1 3 )2 − c 2 g tt g 33 (A 3 0 A1 3 )2<br />

⇒ equati<strong>on</strong>s of moti<strong>on</strong><br />

F = dA + [A, A]<br />

= ∂ ρ A 3 0 τ 3 dρ ∧ dt + ∂ ρ A 1 3 τ 1 dρ ∧ dz + iɛ 231 A 3 0A 1 3 dt ∧ dz<br />

(e.g. [Myers et al. hep-th/0611099])


Exercise 1: Derive the background EOMs.<br />

S DBI = −T D7<br />

∫<br />

= −T D7 N f<br />

∫<br />

d 8 ξ Str{ √ det[g + 2πα ′ F ]}<br />

d 8 ξ √ √<br />

−g Str 1 + g tt g ρρ (Fρ0 3 )2 (σ 3 ) 2 + g 33 g 44 (Fρ3 1 )2 (σ 1 ) 2 − c 2 g tt g 33 (F03 2 )2 (σ 2 ) 2<br />

= −T D7 N f<br />

∫<br />

d 8 ξ √ √<br />

−g 1 + g tt g ρρ (∂ ρ A 3 0 )2 + g 33 g 44 (∂ ρ A 1 3 )2 − c 2 g tt g 33 (A 3 0 A1 3 )2<br />

⇒ equati<strong>on</strong>s of moti<strong>on</strong><br />

F = dA + [A, A]<br />

= ∂ ρ A 3 0 τ 3 dρ ∧ dt + ∂ ρ A 1 3 τ 1 dρ ∧ dz + iɛ 231 A 3 0A 1 3 dt ∧ dz<br />

Legendre transformed:<br />

∫<br />

˜S DBI = −N f T D7 d 8 ξ √ −g<br />

[(1 − 2c2 (A 3 0A 1 3) 2<br />

π 2 ρ 4 f 2 )(1 + 8(p3 0) 2<br />

ρ 6 f 3 − 8(p1 3) 2 ] 1<br />

2<br />

ρ 6 ˜ff ) 2<br />

= factor * grand potential<br />

(e.g. [Myers et al. hep-th/0611099])


IV. Thermodynamics<br />

Grand potential:<br />

Omega<br />

0.6 0.8 1.0 1.2 1.4<br />

200<br />

400<br />

T<br />

T<br />

T c<br />

Order parameter:<br />

mdc<br />

50<br />

40<br />

30<br />

20<br />

Critical exp<strong>on</strong>ent<br />

is 1/2.<br />

600<br />

800<br />

Specific heat:<br />

C<br />

400<br />

10<br />

0.70 0<br />

0.75 0.80 0.85 0.90 0.95 1.00 T<br />

SC density:<br />

1.0<br />

ds<br />

T<br />

T c<br />

300<br />

0.8<br />

200<br />

∆C<br />

DC<br />

0.6<br />

0.4<br />

Vanishes<br />

linearly.<br />

100<br />

0.8 1.0 1.2 1.4<br />

T<br />

T<br />

T c<br />

0.2<br />

0.15 0.20 0.5 0.25 0.30 0.351.00<br />

T<br />

T<br />

T c<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page<br />

26


IV. Background field c<strong>on</strong>figurati<strong>on</strong><br />

Gravity fields:<br />

C<strong>on</strong>jugate momenta:<br />

A 3 0<br />

→ µ 3 0<br />

p 3 0<br />

→ d 3 0<br />

ρ<br />

ρ<br />

A 1 3<br />

p 1 3<br />

→ d 1 3<br />

ρ<br />

ρ<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 27


Exercise 2: Derive the fluctuati<strong>on</strong> EOMs.<br />

A = A 3 0 dt τ 3 + A 1 3 dz τ 1 +Ãa mdx m τ a<br />

Linearized fluctuati<strong>on</strong> equati<strong>on</strong> of moti<strong>on</strong>:<br />

à 3 2<br />

à 3 2<br />

à 3 2


IV. Stability<br />

Poles of<br />

X, Y , Ã 3 2<br />

in complex plane:<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 29


IV. C<strong>on</strong>ductivity<br />

C<strong>on</strong>ductivity:<br />

with <strong>flavor</strong>electric current J m A m ∈ U(1)<br />

Re σ<br />

4πw<br />

sigma4Piw<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

σ = J E =<br />

Energy gap<br />

A(2) iA(2)<br />

∼<br />

(0)<br />

∂ t A<br />

ωA (0) = − i ω<br />

[compare: spikes in<br />

Horowitz’ model]<br />

ρ 3 A ′<br />

0.0<br />

0 5 10 15 20 w<br />

2 A = i ω Gret (ω, q = 0)<br />

w<br />

Only the first of these<br />

peaks was seen to<br />

sec<strong>on</strong>d order in F.<br />

[Basu et al. 0810.3970]<br />

Our expansi<strong>on</strong> to<br />

fourth order shows all<br />

peaks at zero quark<br />

mass!<br />

Peaks are higher<br />

order effect in F .<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 30


IV. Higgs mechanism & Meissner effect<br />

Peaks at finite mass:<br />

Finite magnetic field:<br />

b0t⩵1.0 and chi0⩵0.92<br />

R − R0<br />

ImG<br />

600<br />

400<br />

200<br />

0<br />

200<br />

0 5 10 15<br />

w<br />

20 25 30<br />

w<br />

Peaks in c<strong>on</strong>ductivity/<br />

spectral functi<strong>on</strong> approach<br />

SUSY vector mes<strong>on</strong> spectrum<br />

at large quark mass.<br />

Bulk Higgs Mechanism<br />

generates mes<strong>on</strong> mass<br />

H 3 3<br />

d 3 0<br />

B<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

superc<strong>on</strong>ducting<br />

(SC)<br />

normal phase<br />

(NC)<br />

0.15 0.2 0.25 0.3<br />

T<br />

T<br />

d 3 1/3<br />

0<br />

Add background field<br />

comp<strong>on</strong>ent:<br />

H 3 3 = F 3 12 = ∂ 1 A 3 2<br />

Induced currents in<br />

SC phase with H<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 31


IV. String Theory Picture<br />

boundary<br />

ρ<br />

curvature<br />

electromag.<br />

E 3 ρ = F 3 ρ0 = ∂ ρ A 3 0<br />

B 1 ρ3 = F 1 ρ3 = ∂ ρ A 1 3<br />

horiz<strong>on</strong><br />

c<strong>on</strong>densate<br />

gravity<br />

ρ<br />

E 2 3 = F 2 30 = A 1 3A 3 0<br />

bulk charge<br />

(7-7 strings)<br />

E 3 ρ<br />

E 2 3<br />

A 1 3<br />

7-7 strings generate<br />

i.e. they break the U(1)<br />

and are thus dual to<br />

Cooper pairs.<br />

x 3<br />

charged horiz<strong>on</strong> (3-7 strings generate )<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 32<br />

A 3 0


IV. Discussi<strong>on</strong><br />

✓ Rich str<strong>on</strong>g coupling phenomenology (QGP)<br />

• Res<strong>on</strong>ances are vector mes<strong>on</strong>s (analogous to rho-mes<strong>on</strong>)<br />

• Vector mes<strong>on</strong>s survive dec<strong>on</strong>finement<br />

✓ Top-down approach: direct identificati<strong>on</strong> of d.o.f.<br />

✓ Energy gap, Meissner effect, Higgs mechanism<br />

✓ Stringy picture of pairing mechanism<br />

Critical exp<strong>on</strong>ents<br />

Speed of sec<strong>on</strong>d, fourth sound (backreact)<br />

Drag <strong>on</strong> D7-D7 strings<br />

Fermi surface?<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 33


APPENDIX: Embeddings<br />

5<br />

2<br />

4<br />

1.5<br />

L<br />

3<br />

2<br />

L<br />

1<br />

1<br />

0.5<br />

0 0<br />

2.5<br />

1<br />

2<br />

r<br />

3<br />

˜d = 0.25<br />

4<br />

5<br />

0<br />

1<br />

2 3 4 5<br />

r<br />

˜d =<br />

10 −4<br />

4<br />

2<br />

2.5<br />

Ã0<br />

1.5<br />

1<br />

0.5<br />

1<br />

2 3 4 5<br />

ρ<br />

Ã0/10 −4<br />

2<br />

1.5<br />

1<br />

0.5<br />

1<br />

2 3 4 5<br />

ρ<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 34


APPENDIX: Parameters<br />

The mass parameter m depending <strong>on</strong> the parameter χ 0 .<br />

m<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

˜d = 0<br />

˜d = 0.002<br />

˜d = 0.1<br />

˜d = 0.25<br />

χ 0 = χ(ρ) ∣ ∣<br />

ρ→ρH<br />

m =<br />

lim ρ χ(ρ) = 2m quark<br />

√<br />

ρ→ρ bdy λT<br />

0.5<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Other relati<strong>on</strong>s:<br />

L(ϱ) = ϱ χ(ϱ)<br />

,<br />

χ 0<br />

ρ =<br />

ϱ<br />

ϱ H<br />

Near-boundary expansi<strong>on</strong>s:<br />

χ(ρ) = m ρ + c<br />

ρ 3 + . . .<br />

A 0 = µ − 1 ˜d<br />

ρ 2 2πα ′ + . . .<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 35


APPENDIX: Fluctuati<strong>on</strong>s<br />

Equati<strong>on</strong> of moti<strong>on</strong> written out:<br />

0 = Ã′′ +∂ ρ ln<br />

(<br />

√<br />

1<br />

8 ˜f 2 fρ 3 (1−χ 2 +ρ 2 χ ′ 2 ) 3/2 × 1 − 2 ˜f(1<br />

)<br />

− χ 2 )(∂ ρ A 0 ) 2<br />

à ′ +8w ˜f 2 1 − χ 2 + ρ 2 χ ′ 2<br />

f 2 (1 − χ 2 + ρ 2 χ ′2 ) f 2 ρ 4 (1 − χ 2 )<br />

Ã<br />

ρ =<br />

ϱ<br />

˜f(ϱ) = 1 + ϱ H 4<br />

ϱ<br />

, , , L(ϱ) = ϱ χ(ϱ) w = ω<br />

H<br />

,<br />

ϱ 4<br />

ϱ 4 f(ϱ) = 1 − ϱ H 4<br />

2πT<br />

The D7-brane embedding<br />

and gauge field comp<strong>on</strong>ent<br />

are given numerically.<br />

χ(ρ)<br />

A 0 (ρ)<br />

A 0 ≡ A t<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page 36


APPENDIX: Extensi<strong>on</strong> of the corresp<strong>on</strong>dence<br />

Original AdS/CFT<br />

corresp<strong>on</strong>dence<br />

Gauge QCD N = 4 SuperYangMills thermal Yang-Mills<br />

Gravity ? Type II Sugra in AdS<br />

Gauge<br />

theory<br />

symmetry<br />

Relati<strong>on</strong>s<br />

Universality<br />

n<strong>on</strong>c<strong>on</strong>f.<br />

n<strong>on</strong>-<br />

SUSY<br />

✓c<br />

✓c<br />

๏c<br />

๏c<br />

g Y M 2 = g s<br />

R 4<br />

AdS Schwarzschild<br />

black hole (D3/D7)<br />

TypeII Sugra in AdS<br />

Schwarzschild b.h.<br />

T<br />

µ B , µ I<br />

(α ′ ) 2 = 4πN cg s ≡ λ<br />

✓c<br />

✓c<br />

horiz<strong>on</strong><br />

A 0 (ρ)<br />

Matthias Kaminski Flavor Superc<strong>on</strong>ductivity/Superfluidity Page<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!