23.05.2014 Views

Complex numbers 3

Complex numbers 3

Complex numbers 3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

de Moivre’s theorem and trigonometric identities<br />

z n = (re ıθ ) n = r n e inθ = r n (cos nθ + isin nθ)<br />

For r=1<br />

(e ıθ ) n = (cosθ + ısinθ) n = cos nθ + ısin nθ.<br />

De Moivre<br />

e.g. n=2 :<br />

cos 2 cos sin<br />

2 2<br />

θ = θ − θ<br />

sin 2θ = 2cosθ sinθ


Uses of de Moivre and complex exponentials<br />

Ex. 1 Find (1+ ı) 8<br />

. Taking powers is much simpler in polar form so we write<br />

. Hence<br />

ıπ /4<br />

(1+ ı) = (2) e<br />

.<br />

(1+ ı) 8 = ( (2) e ıπ /4 ) 8 = 16e 2πı = 16


Uses of de Moivre and complex exponentials<br />

Ex. 2<br />

Solving differential equations<br />

The solution to d 2 z<br />

d 2<br />

θ<br />

z = Ce iθ<br />

z = x + i y<br />

+ z = 0 is simply given by<br />

where C = A + ıB is a complex constant.<br />

y = Im(z) = Im(( A + ıB)(cosθ + ısinθ))<br />

= Asinθ + Bcosθ<br />

c.f.<br />

d 2 y<br />

d 2<br />

θ<br />

+ y ≡ Im( d 2 z<br />

+ z) = 0, v = Acosθ<br />

+ Bsinθ<br />

dθ 2


Uses of de Moivre and complex exponentials<br />

Ex. 3 Summing series<br />

e.g. Show<br />

∞<br />

∑<br />

n=<br />

0<br />

r<br />

n<br />

(1 r)sin<br />

sin(2n<br />

+ θ<br />

1) θ = +<br />

,<br />

2<br />

1 − 2r<br />

cos 2θ<br />

+ r<br />

0 < r < 1<br />

∞<br />

∑ r n sin(2n + 1)θ = Im∑ r n (e ı(2n+1)θ ) = Im(e ıθ<br />

∑ (re 2ıθ ) n )<br />

n=0<br />

n<br />

= Im(e ıθ 1<br />

1− re 2ıθ )<br />

e ıθ (1− re −2ıθ )<br />

= Im(<br />

(1− re 2ıθ )(1− re −2ıθ ) )<br />

sinθ + r sinθ<br />

=<br />

1− 2r cos2θ + r 2<br />

n


Curves in the complex plane<br />

Ex 1<br />

| z |=<br />

1<br />

iθ<br />

z re r<br />

= ⇒ =<br />

1, any<br />

θ<br />

or<br />

(a) 2 + (b) 2 = 1,<br />

z = a + ib<br />

Circle centre (0,0), radius 1<br />

| z − z |= 1 0<br />

Circle centre z 0 , radius 1<br />

( a − a ) + ( b − b ) = 1<br />

2 2<br />

0 0


Curves in the complex plane<br />

Ex 2<br />

| z −ı<br />

z +ı |= 1<br />

| z − i | = | z + i |<br />

Distance from (0,1) = distance from (0,-1)<br />

Real axis<br />

or (a) + ( b − 1) = (a) + ( b + 1)<br />

2 2 2 2<br />

z = a + ib<br />

b<br />

=<br />

0, a arbitrary


Curves in the complex plane<br />

Ex 3<br />

arg( )<br />

z π<br />

z+ 1<br />

=<br />

4<br />

i.e. arg(z) − arg(z + 1) = π 4<br />

Take tan of both sides :<br />

tan( A − B) =<br />

tan A − tan B<br />

1+ tan Atan B<br />

b<br />

a<br />

−<br />

b<br />

1 + .<br />

a<br />

b<br />

a+<br />

1<br />

b<br />

a+<br />

1<br />

b( a + 1) − ba<br />

= 1 =<br />

2<br />

a( a + 1) + b<br />

b = a( a + 1) + b<br />

2<br />

z = a + ib<br />

( a + ) + ( b − ) =<br />

1 2 1 2 1<br />

2 2 2<br />

…but BEWARE…not all of circle satisfies equation…


arg( )<br />

z π<br />

z+ 1<br />

=<br />

4<br />

z<br />

z + 1 =<br />

z<br />

z + 1 . z * +1<br />

z * + 1 = z(z* + 1)<br />

z + 1 2<br />

=<br />

(a + ib)(a + 1− ib)<br />

z + 1 2<br />

= a(a + 1) + b2 + ib<br />

z + 1 2<br />

⇒<br />

⎛<br />

b > 0 since arg<br />

⎝<br />

⎜<br />

z ⎞<br />

z + 1⎠<br />

⎟ positive<br />

(a + 1 2 )2 + (b − 1 2 )2 = 1 2 , b > 0<br />

( b < 0 solution introduced by tangent ambiguity)


Alternative solution<br />

arg( )<br />

z π<br />

z 1 4<br />

+<br />

= i.e. arg(z) − arg(z + 1) = π 4<br />

Solution : portion of circle through (0,0) and (-1,0)<br />

Circle centre (-1/2,1/2) and radius 1/ 2


The lower portion of the circle is given by :<br />

arg(<br />

+<br />

) = −<br />

z 3π<br />

z 1 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!