23.05.2014 Views

LOIS and new radio and radar methods - Swedish Institute of Space ...

LOIS and new radio and radar methods - Swedish Institute of Space ...

LOIS and new radio and radar methods - Swedish Institute of Space ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>LOIS</strong> <strong>and</strong> <strong>new</strong> <strong>radio</strong> <strong>and</strong> <strong>radar</strong> <strong>methods</strong><br />

Bo Thidé<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> Physics, IRF, Uppsala, Sweden<br />

<strong>LOIS</strong> <strong>Space</strong> Centre, Växjö, Sweden<br />

<strong>and</strong> the <strong>LOIS</strong> Photon Orbital Angular Momentum collaboration<br />

J. Bergman, S. Mohammadi, H. Then, T. Carozzi, L. Daldorff, R. Karlsson,<br />

T. Mendonca <strong>and</strong> W. Baan<br />

Physics in<br />

<strong>Space</strong><br />

Programme<br />

Seminar<br />

IDE, University <strong>of</strong> Halmstad<br />

5 Sep, 2008<br />

LOFAR<br />

Outrigger in<br />

Sc<strong>and</strong>inavia


Where it all started: Cosmic hydrogen radiates<br />

narrow b<strong>and</strong> <strong>radio</strong> signals at 1420.4 MHz<br />

The 21 cm λ H hyperfine splitting line<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

2


Conventional <strong>radio</strong> diagnostics. Can we do better?<br />

The Westerbork array <strong>of</strong> 14 dishes, each 25 m in diameter sees nearby<br />

objects emitting 1420.4 MHz (21 cm λ H hyperfine splitting) lines<br />

M31 (Andromeda, Local group)<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

3


Answer: New generation digital <strong>radio</strong> telescopes<br />

LOFAR<br />

Low Frequency Array (10–240<br />

MHz). Test station at Exloo<br />

operational 2004, full scale<br />

deployment <strong>of</strong> 25 000 antennas in<br />

progress.<br />

<strong>LOIS</strong><br />

LOFAR In Sc<strong>and</strong>inavia. Test<br />

station near Växjö operational<br />

2004, fast fibre network,<br />

supercomputer 2005. Second test<br />

station near Ronneby, 2008. Fullscale<br />

station in Poznan, Pol<strong>and</strong>, in<br />

the 2009-2011 timeframe.<br />

SKA<br />

Square Kilometre Array. Australia<br />

or South Africa, ~2020. Very<br />

sensitive (5 000 000 antennas!).<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

4


3D polarimetry utilising that E(t,x) is a polar vector<br />

<strong>and</strong> B(t,x) an axial vector (pseudovector)<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

5


<strong>LOIS</strong>: Arrays <strong>of</strong> tripole antennas to sample the<br />

entire EM field vectors both in time <strong>and</strong> space<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

6


Three orthogonal loop antennas probe the 3D magnetic<br />

field pseudovectors<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

7


<strong>LOIS</strong> resources<br />

Supercomputer cluster (two SUR grants<br />

from IBM) <strong>and</strong> part <strong>of</strong> the <strong>LOIS</strong> Test<br />

Station outside Växjö, SE.<br />

Lars Daldorff, Axel Guthmann <strong>and</strong> the IBM system<br />

B.T. <strong>and</strong> Willem Baan<br />

at the <strong>LOIS</strong> Test Station.<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

8


Next <strong>LOIS</strong> station under construction in Ronneby<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

9


Next <strong>LOIS</strong> station control centre at BTH in Ronneby<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

10


Europe’s first electromagnetically <strong>and</strong> acoustically<br />

quiet chamber at the Ångström Laboratory, Uppsala<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

11


Lorentz’s microscopic Maxwell equations<br />

for the EM field (1903)<br />

Symmetric under inhomogeneous Lorentz transformations. The<br />

concomitant Lie group is the 10-dimensional Poincaré group P(10).<br />

According to Noether’s theorem there therefore exist 10 conserved<br />

EM quantities. In fact there are 23 exact, plus an as yet unknown<br />

number <strong>of</strong> approximate, conservation laws.<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

12


Conserved quantities in a closed electromechanical<br />

system (matter + EM fields) [Boyer, 2005] (1)<br />

Homogeneity in time => conservation <strong>of</strong> system energy<br />

(no EMF, no radiation; cf. Poynting’s theorem):<br />

Homogeneity in space => conservation <strong>of</strong> system linear<br />

momentum (gives, e.g., rise to EM Doppler shift):<br />

Foundation <strong>of</strong> conventional ‘linear momentum’ radiation.<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

13


Conserved quantities in a closed electromechanical<br />

system (matter + EM fields) [Boyer, 2005] (2)<br />

Invariance under proper Lorentz transformations =><br />

conservation <strong>of</strong> system centre <strong>of</strong> energy:<br />

Isotropy in space => conservation <strong>of</strong> system angular<br />

momentum:<br />

Foundations <strong>of</strong> ‘angular momentum’ <strong>radio</strong>.<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

14


Total EM field angular momentum<br />

For radiation beams, the EM field angular momentum J EM<br />

can be separated into two parts [van Enk & Nienhuis, 1992]:<br />

The first part is the EM orbital angular momentum (OAM)<br />

L EM , <strong>and</strong> the second part is the EM spin angular momentum<br />

(SAM) S EM , a.k.a. wave polarisation.<br />

NB: In general, both EM linear momentum p EM , <strong>and</strong> EM<br />

angular momentum J EM = L EM + S EM are radiated all the way<br />

out to the far zone!<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

15


St<strong>and</strong>ard textbooks show that EM<br />

angular momentum is radiated<br />

all the way out to infinity<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

16


Difference between polarisation (spin angular momentum,<br />

SAM) <strong>and</strong> orbital angular momentum (OAM)<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

17


EM beam with circular polarisation S but<br />

no orbital angular momentum (OAM) L<br />

Phase fronts (loci <strong>of</strong> constant phase)<br />

Optics (LG)<br />

Radio<br />

M. J. Padgett, J. Leach et al., U. Glasgow, UK; Royal Society<br />

Sjöholm <strong>and</strong> Palmer, 2007<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

18


EM beams on the same frequency but with<br />

different OAM do not interfere with each other!<br />

M. J. Padgett, J. Leach et al., U. Glasgow, UK; Royal Society<br />

l=+1<br />

l=+3<br />

l= -4<br />

Spiraling Poynting vectors!<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

19


Micromechanical action <strong>of</strong> SAM <strong>and</strong> OAM<br />

Particles <strong>of</strong> sizes 1–3 μm irradiated by SAM/OAM laser beams<br />

Spin angular momentum s = 1 Orbital angular momentum l = 8<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

20


Pack EM beams with much more data by<br />

utilising topological degrees <strong>of</strong> freedom<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

21


Comment on the use <strong>of</strong> POAM<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

22


OAM now coming to the fore in astrophysics<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

23


Very readable paper on POAM in astrophysics<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

24


New ideas – New audiences<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

25


Imparting OAM onto an EM beam (laser, mm wave)<br />

with the help <strong>of</strong> a hologram<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

26


Imparting OAM onto an EM beam (laser, mm wave)<br />

with the help <strong>of</strong> a spiral plate<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

27


Observations at 94 GHz <strong>of</strong> angular momentum<br />

induced rotational (azimuthal) Doppler shift<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

28


Exotic types <strong>of</strong> Poynting flux radiation patterns<br />

<strong>and</strong> corresponding instantaneous E field vectors<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

29


Field vector sensing means total configurability<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

30


Further theoretical studies <strong>and</strong> computer experiments<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

31


Further theoretical studies <strong>and</strong> computer experiments<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

32


A rich set <strong>of</strong> EM conservation laws<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

ε<br />

0 2 2 2<br />

( H<br />

+<br />

+ H<br />

−<br />

) = ( E + c B )<br />

1<br />

∗<br />

( H − H ) = Im[ E⋅B<br />

]<br />

1<br />

∗<br />

( K + K ) = Re[ E×<br />

B ]<br />

0<br />

0<br />

ε<br />

0<br />

∗ 2 ∗<br />

( K − K ) = − Im[ E×<br />

E + c B×<br />

B ]<br />

~ ~ ij<br />

i j∗<br />

2 i j∗<br />

( T + T ) = δ u −ε<br />

Re[ E E + c B B ]<br />

+<br />

~ ~ ij 1 i j∗<br />

i j∗<br />

( T − T ) = δ v − Im[ E B − B E ]<br />

+<br />

Re<br />

c<br />

1<br />

Re<br />

2c<br />

1<br />

+<br />

2<br />

2<br />

1<br />

∗<br />

[ j⋅( G + G )] = Re[ j⋅E<br />

]<br />

∗<br />

[ j⋅( G − G )] = Im[ j⋅B<br />

]<br />

RS RS<br />

∗ ∗<br />

( F + F ) = Re[ ρE<br />

+ j×<br />

B ]<br />

2<br />

0<br />

0<br />

= P<br />

1 ∂u<br />

=<br />

c ∂t<br />

1 ∂v<br />

=<br />

c ∂t<br />

= F<br />

Mech<br />

Lorentz<br />

∗<br />

RS RS<br />

⎡<br />

∗ j×<br />

E ⎤<br />

Spin<br />

( F − F ) = Im cρB<br />

− = F<br />

+<br />

+<br />

+<br />

+<br />

−<br />

−<br />

−<br />

−<br />

−<br />

+<br />

+<br />

+<br />

+<br />

Z<br />

Z<br />

−<br />

−<br />

⎢<br />

⎣<br />

Z<br />

c<br />

= v<br />

c<br />

= u<br />

⎥<br />

⎦<br />

Kinetic energy<br />

Spin energy<br />

Linear momentum<br />

= V<br />

= U<br />

Mech<br />

= T<br />

Spin angular momentum<br />

Stress tensor<br />

Spin stress tensor<br />

Electro-mechanical power<br />

Spin-mechanical power<br />

Lorentz force<br />

Spin force (torque)<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

33


<strong>LOIS</strong> has measured the spin angular momenum V<br />

in ionospheric <strong>radio</strong> signals since 2003<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

34


Numerical simulation <strong>of</strong> E for s=1 <strong>and</strong> l=1<br />

Left: Power density <strong>and</strong> E field topology<br />

Right: Spin power density <strong>and</strong> spin angular momentum<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

35


Radio beam topology degrees <strong>of</strong> freedom<br />

Left: Conventional linear momentum (Poynting) flux <strong>and</strong> E<br />

Right: Orbital angular momentum flux<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

36


Challenge: Ionospheric <strong>and</strong> atmospheric turbulence<br />

distort low-frequency <strong>radio</strong> signals from outer space<br />

Vorticity due to nonlinear plasma turbulence distort <strong>radio</strong> signals during their<br />

passage through the ionosphere. Find a way to compensate (‘self-calibrate’) for<br />

this. Data from observations at VLA at 75 MHz.<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

37


Systematic plasma EM turbulence diagnostics<br />

Complements – <strong>and</strong> is supplemented by – <strong>radar</strong>s, satellites, optics etc.<br />

B. Thidé et al., PRL, 1981<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

38


Experimental tests: Ionospheric turbulence on dem<strong>and</strong><br />

HF pump frequency swept continuously up <strong>and</strong> down across 4f<br />

ce<br />

at Sura, Russia<br />

BUM hysteresis<br />

HF excited secondary radiation (SEE) as recorded at the <strong>radio</strong> facility SURA near Nizhniy Novgorod,<br />

Russia, 1999. The HF pump frequency is swept across the ionospheric 4 th electron gyroharmonic.<br />

Pump<br />

<br />

60 kHz <br />

(Click for animation)<br />

5340 kHz 4fce<br />

5540 kHz<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

39


2D polarimetric signatures <strong>of</strong> EM radiation from<br />

parametrically induced ionospheric plasma turbulence<br />

Essentially 2D Stokes parameters<br />

Concomitant symmetry group: SU(2)<br />

Expansion to 3D [SU(3)] straightforward<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

40


First OAM/vorticity <strong>radio</strong> experiment in the<br />

ionospheric plasma (HAARP, Alaska, 27 Feb 2008)<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

41


E field topology degrees <strong>of</strong> freedom: Precession<br />

vs. nutation for circular <strong>and</strong> elliptic polarization<br />

Circular polarization, OAM l=1, Precession<br />

Circular polarization, OAM l=1, Nutation<br />

Elliptic polarization, OAM l=1, Precession<br />

Elliptic polarization, OAM l=1, Nutation<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

42


‘Textbook’ <strong>radar</strong> examples<br />

Half-wave plate, Beth 1936<br />

Perfect reflector,<br />

solar sail<br />

Linear polarizer,<br />

Cararra 1949<br />

ΔP<br />

= 0<br />

ΔV<br />

=<br />

Spin Spin<br />

2V<br />

∝ F ∝ τ<br />

ΔP<br />

= 2P<br />

∝ F<br />

ΔV<br />

= 0<br />

Lorentz<br />

ΔP<br />

= P / 2<br />

ΔV<br />

= V<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

43


OAM spectrum probing – a <strong>new</strong> diagnostic under<br />

development in optics. Implement in <strong>radio</strong>/<strong>radar</strong>!<br />

Recent digital spiral imaging experiments (Torner et al., Opt.<br />

Express, 13, 873–881, 2005; Molina-Terriza et al., J. Eur. Opt.<br />

Soc., Rapid Publ., 2, 07014, 2007) have demonstrated that<br />

probing with OAM gives a wealth <strong>of</strong> <strong>new</strong> information about the<br />

object under study.<br />

The stimulus…<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

44


Spiral (OAM) spectrum imaging results<br />

…<strong>and</strong> its response<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

45


First experimental verification <strong>of</strong> free-space<br />

information transfer using OAM topological encoding<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

46


OAM makes a <strong>new</strong> (spiral) frequency Ω available<br />

Interesting consequences for <strong>radio</strong> communications<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

47


The <strong>radio</strong> frequency spectrum is limited – <strong>and</strong><br />

expensive!<br />

Spiraling Poynting vectors!<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

48


Hyperentagled SAM <strong>and</strong> OAM photon states break the<br />

linear-optics channel capacity threshold<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

49


Recent <strong>LOIS</strong> development for astroparticle physics<br />

• Ultrahigh energy neutrino<br />

detector<br />

• For detection <strong>of</strong> neutrino<br />

induced <strong>radio</strong> pulses in the<br />

Antarctic ice<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

50


Recent <strong>LOIS</strong> development for space physics<br />

<strong>and</strong> space communications<br />

• Radio-on-chip, 33×33 mm 2 , 4 grams<br />

– Bare die components on silicon<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

51


Recent initiatives for space – Go to the Moon<br />

• Radio-on-chip, 33×33 mm 2 , 4 grams<br />

– Bare die components on silicon<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

52


Conclusions<br />

• Using all ‘degrees <strong>of</strong> freedom’ (conserved quantities)<br />

allows full characterization <strong>and</strong> extraction <strong>of</strong> all<br />

information carried by beams <strong>of</strong> EM waves/photons<br />

• Has already provided better diagnostics in laser<br />

physics <strong>and</strong> revolutionised free-space communications<br />

• Can use conventional <strong>radio</strong> techniques to apply these<br />

<strong>new</strong> results to the <strong>radio</strong> domain<br />

• The <strong>radio</strong> domain results hold great promise for <strong>new</strong><br />

fundamental optics <strong>and</strong> improved remote diagnostics<br />

• World’s first OAM <strong>radio</strong> laboratory at Ångström Lab,<br />

Uppsala, is now under construction<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

53


Thank you for your attention<br />

Radio is much more than frequency, amplitude <strong>and</strong> phase!<br />

BoThidé Seminar, IDE, Univerity <strong>of</strong> Halmstad, 5 Sep, 2008<br />

54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!