23.05.2014 Views

L5_Astrodynamics-2 - Swedish Institute of Space Physics - Uppsala

L5_Astrodynamics-2 - Swedish Institute of Space Physics - Uppsala

L5_Astrodynamics-2 - Swedish Institute of Space Physics - Uppsala

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Compass-2<br />

Microsatellite Technology<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

Jan Bergman, January 28, 2010<br />

Adapted after Christian Hånberg’s lecture 2008<br />

E-mail: jb@irfu.se<br />

Tel. +46(0)18-4715916<br />

Room: Å84116<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong><br />

<strong>Physics</strong>, <strong>Uppsala</strong>, Sweden<br />

http://www.irfu.se


Part 1<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> Part 2<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Repetition Classical Orbital Elements<br />

• Orbit Maneuvering ch. 6.3<br />

Coplanar Orbit transfers<br />

Orbit Plane Changes<br />

Orbit Rendezvous<br />

• Launch Windows ch. 6.4<br />

• Orbit Maintenance ch. 6.5<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Classical orbital elements<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Shape<br />

a: Semi-major axis<br />

e: Eccentricity<br />

• Orientation <strong>of</strong> orbital plane<br />

i: Inclination (vertical tilt)<br />

• i < 90 prograde or direct<br />

• i > 90 retrograde<br />

Ω: Right ascension <strong>of</strong> the<br />

ascending node<br />

• Line <strong>of</strong> node - equator crossings<br />

• Orientation <strong>of</strong> the ellipse<br />

<br />

ω: Argument <strong>of</strong> perigee<br />

• Angle between ascending node<br />

and semi-major axis<br />

• Where (in time)<br />

<br />

v: True anomaly<br />

• Angle between satellite and<br />

perigee in the orbit plane<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Orbit Maneuvering<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• A some point in most satellites life, one or more<br />

<strong>of</strong> the orbital elements have to be changed.<br />

This can be due to<br />

• orbit corrections,<br />

• transfer the satellite between different orbits,<br />

• rendezvous or intercept with another satellite.<br />

• To change the satellites orbit, we have to<br />

change the satellites velocity vector.<br />

<br />

∆v = v NEED - v CURRENT<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Orbit maneuvering<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Any maneuver<br />

changing the orbit<br />

<strong>of</strong> the satellite<br />

must occur at a<br />

point where the<br />

old orbit intersects<br />

the new.<br />

• If the two orbits<br />

don’t intersect we<br />

must use a<br />

transfer orbit,<br />

intersecting both<br />

orbits.<br />

1. Initial orbit<br />

2. Transfer orbit<br />

3. Final orbit<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


The Vis-viva equation<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Total energy = kinetic + potential energy<br />

• Orbiting body:<br />

• Total energy = half the potential energy at<br />

the average distance (semi-major axis)<br />

1 2 μm<br />

μm<br />

E = mv − =−<br />

2 r 2a<br />

• Solving for v yields the Vis-viva equation<br />

2 1<br />

v = μ ⎛<br />

⎜ −<br />

⎞<br />

⎟<br />

⎝r<br />

a⎠<br />

• Vis-viva – “it’s alive” (Newton)<br />

• Shows that orbit speed is inversely<br />

proportional to the square root <strong>of</strong> the radius<br />

• Applications<br />

• Delta-v calculations, Escape, transfers, etc.<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Coplanar Orbit Transfers<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Three main types <strong>of</strong> coplanar orbit transfers:<br />

Hohmann Transfer<br />

• The most fuel efficient transfer between<br />

two circular coplanar orbits.<br />

One-Tangent Burn<br />

• The quickest transfer between two<br />

coplanar orbits.<br />

Spiral Transfer<br />

• Using a constant low-thrust burn, which<br />

results in a spiral transfer.<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Hohmann Transfer<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Represents the<br />

most fuel<br />

efficient transfer<br />

between two<br />

circular coplanar<br />

orbits.<br />

• When going<br />

from a smaller to<br />

a larger orbit,<br />

the velocity<br />

change is applied<br />

in the direction<br />

<strong>of</strong> the motion<br />

and vice versa<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Hohmann Transfer Derivation<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Using the Vis-viva<br />

equation it can be<br />

shown that for a<br />

Hohmann transfer<br />

Δ V =<br />

μ ⎛ 2 R ' ⎞<br />

1<br />

R ⎜<br />

−<br />

R R'<br />

⎟<br />

⎝ + ⎠<br />

Δ V ' =<br />

μ ⎛ 2R<br />

⎞<br />

1<br />

R'<br />

⎜<br />

−<br />

R+<br />

R'<br />

⎟<br />

⎝ ⎠<br />

• Home assignment!<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


One-Tangent Burn<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Represents the<br />

quickest transfer<br />

between two<br />

coplanar orbits.<br />

• Tangential burn<br />

anywhere in the<br />

orbit.<br />

• Allows us to<br />

choose transfer<br />

orbit size and<br />

time for transition.<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Spiral transfer<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Using a constant lowthrust<br />

burn, which<br />

results in a spiral<br />

transfer<br />

• This burn can be<br />

achieved with light<br />

ion-engines.<br />

• Uses up more energy<br />

than Hohmanntransfer,<br />

since the<br />

burn is continuous.<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Orbit plane changes<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• To change the orientation <strong>of</strong> the satellite, we<br />

have to add a component to the velocity vector,<br />

perpendicular to the orbital plane<br />

• If the size <strong>of</strong> the orbit is constant, we have a<br />

simple plane change.<br />

• If both the size and orientation <strong>of</strong> the orbit is<br />

changed, we have a combined plane change.<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Orbit Rendezvous<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Intercepting with other objects in space is a<br />

bit more complicated and requires a phasing<br />

orbit.<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Launch Windows<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• The launch window is the time frame in which we can<br />

launch into the desired orbital plane.<br />

• For a launch window to exist, the launch site must pass<br />

through the orbital plane.<br />

• If we put i = inclination and L = latitude<br />

No launch window exists if L > i for direct orbits, or<br />

L > 180 deg - i for retrograde orbits.<br />

• Direct orbits, is when the satellite moves eastward.<br />

• Retrograde orbits, is when it moves westward.<br />

One launch window exists if L = i or L = 180 deg - i<br />

Two launch windows exists if L < i or L < 180 deg - i<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Launch Windows<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Orbit maintenance<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Some satellites require orbital adjustments<br />

to correct perturbed orbital elements.<br />

• Two particular cases are satellites with<br />

repeating ground tracks and<br />

geosynchronous equatorial satellites.<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Repeating Ground Track<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• A satellite has a repeating ground track if<br />

it has exactly an integer number <strong>of</strong><br />

revolutions per integer number <strong>of</strong> days.<br />

P = (m sidereal days) / (k sidereal days)<br />

• m,k = integers,<br />

• P = period<br />

• Perturbations are mainly caused by the<br />

Earth’s oblateness and have to be<br />

corrected to maintain the period.<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Repeating Ground Track<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


Geosynchronous orbits<br />

<strong>L5</strong> – <strong>Astrodynamics</strong> 2<br />

• Fix orbit, with respect to<br />

the Earths surface. i.e.<br />

rotates with the same<br />

speed as the Earth.<br />

• Altitude maintained by the<br />

centripetal force canceling<br />

out the gravitational pull.<br />

• Perturbations mainly<br />

causes by the<br />

nonspherical Earth and<br />

third body pull from the<br />

Sun and the moon.<br />

• Calculations!<br />

<strong>Swedish</strong> <strong>Institute</strong> <strong>of</strong> <strong>Space</strong> <strong>Physics</strong>, <strong>Uppsala</strong>, Sweden | www..irfu.se


End <strong>of</strong> <strong>L5</strong> and <strong>Astrodynamics</strong> 2<br />

Jan Bergman<br />

jb@irfu.se

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!