3. Lectures of Superconductivity given at Palai - Physics - Indian ...

3. Lectures of Superconductivity given at Palai - Physics - Indian ... 3. Lectures of Superconductivity given at Palai - Physics - Indian ...

physics.iisc.ernet.in
from physics.iisc.ernet.in More from this publisher
23.05.2014 Views

Superconductivity A nine-hour journey Vijay B. Shenoy (shenoy@physics.iisc.ernet.in) Indian Institute of Science, Bangalore St. Thomas College, Palai, March 11, 2011 1 / 41

<strong>Superconductivity</strong><br />

A nine-hour journey<br />

Vijay B. Shenoy<br />

(shenoy@physics.iisc.ernet.in)<br />

<strong>Indian</strong> Institute <strong>of</strong> Science, Bangalore<br />

St. Thomas College, <strong>Palai</strong>, March 11, 2011<br />

1 / 41


Acknowledgement<br />

2 / 41


Acknowledgement<br />

Collabor<strong>at</strong>ors: Sandeep P<strong>at</strong>hak, Somn<strong>at</strong>h Bhowmick, Jayanth<br />

Vyasanakere, Yogeshwar Sarasw<strong>at</strong>, Sudeep Ghosh, Amal Medhi,<br />

Shizhong Zhang<br />

2 / 41


Acknowledgement<br />

Collabor<strong>at</strong>ors: Sandeep P<strong>at</strong>hak, Somn<strong>at</strong>h Bhowmick, Jayanth<br />

Vyasanakere, Yogeshwar Sarasw<strong>at</strong>, Sudeep Ghosh, Amal Medhi,<br />

Shizhong Zhang<br />

Thanks to: H. R. Krishnamurthy (IISc), T. V. Ramakrishnan<br />

(BHU/IISc), M. Randeria (OSU), N. Trivedi (OSU), G. Baskaran<br />

(IMSc), R. Shankar (IMSc), T.-L. Ho (OSU)<br />

2 / 41


Acknowledgement<br />

Collabor<strong>at</strong>ors: Sandeep P<strong>at</strong>hak, Somn<strong>at</strong>h Bhowmick, Jayanth<br />

Vyasanakere, Yogeshwar Sarasw<strong>at</strong>, Sudeep Ghosh, Amal Medhi,<br />

Shizhong Zhang<br />

Thanks to: H. R. Krishnamurthy (IISc), T. V. Ramakrishnan<br />

(BHU/IISc), M. Randeria (OSU), N. Trivedi (OSU), G. Baskaran<br />

(IMSc), R. Shankar (IMSc), T.-L. Ho (OSU)<br />

Funding: Department <strong>of</strong> Science and Technology, Department <strong>of</strong><br />

Atomic Energy<br />

2 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

3 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

Superconducting st<strong>at</strong>e has zero resistance...can distribute power<br />

without losses<br />

3 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

Superconducting st<strong>at</strong>e has zero resistance...can distribute power<br />

without losses<br />

“Unfortun<strong>at</strong>ely” superconductivity is a low-temper<strong>at</strong>ure<br />

phenomenon...need room-temper<strong>at</strong>ure superconductors<br />

3 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

Superconducting st<strong>at</strong>e has zero resistance...can distribute power<br />

without losses<br />

“Unfortun<strong>at</strong>ely” superconductivity is a low-temper<strong>at</strong>ure<br />

phenomenon...need room-temper<strong>at</strong>ure superconductors<br />

...<br />

3 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

Superconducting st<strong>at</strong>e has zero resistance...can distribute power<br />

without losses<br />

“Unfortun<strong>at</strong>ely” superconductivity is a low-temper<strong>at</strong>ure<br />

phenomenon...need room-temper<strong>at</strong>ure superconductors<br />

...<br />

<strong>Superconductivity</strong> – taught us lots <strong>of</strong> “new physics”<br />

3 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

Superconducting st<strong>at</strong>e has zero resistance...can distribute power<br />

without losses<br />

“Unfortun<strong>at</strong>ely” superconductivity is a low-temper<strong>at</strong>ure<br />

phenomenon...need room-temper<strong>at</strong>ure superconductors<br />

...<br />

<strong>Superconductivity</strong> – taught us lots <strong>of</strong> “new physics”<br />

Ideas applicable from condensed m<strong>at</strong>ter physics, astrophysics, high<br />

energy physics etc.<br />

3 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

Superconducting st<strong>at</strong>e has zero resistance...can distribute power<br />

without losses<br />

“Unfortun<strong>at</strong>ely” superconductivity is a low-temper<strong>at</strong>ure<br />

phenomenon...need room-temper<strong>at</strong>ure superconductors<br />

...<br />

<strong>Superconductivity</strong> – taught us lots <strong>of</strong> “new physics”<br />

Ideas applicable from condensed m<strong>at</strong>ter physics, astrophysics, high<br />

energy physics etc.<br />

...<br />

3 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

Superconducting st<strong>at</strong>e has zero resistance...can distribute power<br />

without losses<br />

“Unfortun<strong>at</strong>ely” superconductivity is a low-temper<strong>at</strong>ure<br />

phenomenon...need room-temper<strong>at</strong>ure superconductors<br />

...<br />

<strong>Superconductivity</strong> – taught us lots <strong>of</strong> “new physics”<br />

Ideas applicable from condensed m<strong>at</strong>ter physics, astrophysics, high<br />

energy physics etc.<br />

...<br />

Above all...<br />

3 / 41


Motiv<strong>at</strong>ion: Why Bother?<br />

Superconducting st<strong>at</strong>e has zero resistance...can distribute power<br />

without losses<br />

“Unfortun<strong>at</strong>ely” superconductivity is a low-temper<strong>at</strong>ure<br />

phenomenon...need room-temper<strong>at</strong>ure superconductors<br />

...<br />

<strong>Superconductivity</strong> – taught us lots <strong>of</strong> “new physics”<br />

Ideas applicable from condensed m<strong>at</strong>ter physics, astrophysics, high<br />

energy physics etc.<br />

...<br />

Above all...it is superinteresting!<br />

3 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

4 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

Goal: To prepare ourselves to know when to be surprised<br />

4 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

Goal: To prepare ourselves to know when to be surprised<br />

Six lectures will be organized as:<br />

4 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

Goal: To prepare ourselves to know when to be surprised<br />

Six lectures will be organized as:<br />

◮ Review <strong>of</strong> metal physics<br />

4 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

Goal: To prepare ourselves to know when to be surprised<br />

Six lectures will be organized as:<br />

◮ Review <strong>of</strong> metal physics<br />

◮ Superconducting phenomenon<br />

4 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

Goal: To prepare ourselves to know when to be surprised<br />

Six lectures will be organized as:<br />

◮ Review <strong>of</strong> metal physics<br />

◮ Superconducting phenomenon<br />

◮ Phenomenological approaches<br />

4 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

Goal: To prepare ourselves to know when to be surprised<br />

Six lectures will be organized as:<br />

◮ Review <strong>of</strong> metal physics<br />

◮ Superconducting phenomenon<br />

◮ Phenomenological approaches<br />

◮ Microscopic theory<br />

4 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

Goal: To prepare ourselves to know when to be surprised<br />

Six lectures will be organized as:<br />

◮ Review <strong>of</strong> metal physics<br />

◮ Superconducting phenomenon<br />

◮ Phenomenological approaches<br />

◮ Microscopic theory<br />

◮ Superconducting effects<br />

4 / 41


Overall Plan <strong>of</strong> the <strong>Lectures</strong><br />

Goal: To prepare ourselves to know when to be surprised<br />

Six lectures will be organized as:<br />

◮ Review <strong>of</strong> metal physics<br />

◮ Superconducting phenomenon<br />

◮ Phenomenological approaches<br />

◮ Microscopic theory<br />

◮ Superconducting effects<br />

◮ Current problems – from Curp<strong>at</strong>es to Cold Atoms<br />

4 / 41


Prerequisites<br />

5 / 41


Prerequisites<br />

Must:<br />

5 / 41


Prerequisites<br />

Must:<br />

◮ Understanding <strong>of</strong> classical mechanics and electrodynamics<br />

5 / 41


Prerequisites<br />

Must:<br />

◮ Understanding <strong>of</strong> classical mechanics and electrodynamics<br />

◮ Working knowledge <strong>of</strong> quantum mechanics (<strong>at</strong> the level <strong>of</strong> Griffiths)<br />

5 / 41


Prerequisites<br />

Must:<br />

◮ Understanding <strong>of</strong> classical mechanics and electrodynamics<br />

◮ Working knowledge <strong>of</strong> quantum mechanics (<strong>at</strong> the level <strong>of</strong> Griffiths)<br />

◮ St<strong>at</strong>istical mechanics and thermodynamics (<strong>at</strong> the level <strong>of</strong> Kittel and<br />

Kromer)<br />

5 / 41


Prerequisites<br />

Must:<br />

◮ Understanding <strong>of</strong> classical mechanics and electrodynamics<br />

◮ Working knowledge <strong>of</strong> quantum mechanics (<strong>at</strong> the level <strong>of</strong> Griffiths)<br />

◮ St<strong>at</strong>istical mechanics and thermodynamics (<strong>at</strong> the level <strong>of</strong> Kittel and<br />

Kromer)<br />

Desirable:<br />

5 / 41


Prerequisites<br />

Must:<br />

◮ Understanding <strong>of</strong> classical mechanics and electrodynamics<br />

◮ Working knowledge <strong>of</strong> quantum mechanics (<strong>at</strong> the level <strong>of</strong> Griffiths)<br />

◮ St<strong>at</strong>istical mechanics and thermodynamics (<strong>at</strong> the level <strong>of</strong> Kittel and<br />

Kromer)<br />

Desirable:<br />

◮ Solid st<strong>at</strong>e physics (<strong>at</strong> the level <strong>of</strong> Kittel)<br />

5 / 41


Prerequisites<br />

Must:<br />

◮ Understanding <strong>of</strong> classical mechanics and electrodynamics<br />

◮ Working knowledge <strong>of</strong> quantum mechanics (<strong>at</strong> the level <strong>of</strong> Griffiths)<br />

◮ St<strong>at</strong>istical mechanics and thermodynamics (<strong>at</strong> the level <strong>of</strong> Kittel and<br />

Kromer)<br />

Desirable:<br />

◮ Solid st<strong>at</strong>e physics (<strong>at</strong> the level <strong>of</strong> Kittel)<br />

◮ Ideas <strong>of</strong> Phase Tansitions (<strong>at</strong> the level <strong>of</strong> Yeomans)<br />

5 / 41


Prerequisites<br />

Must:<br />

◮ Understanding <strong>of</strong> classical mechanics and electrodynamics<br />

◮ Working knowledge <strong>of</strong> quantum mechanics (<strong>at</strong> the level <strong>of</strong> Griffiths)<br />

◮ St<strong>at</strong>istical mechanics and thermodynamics (<strong>at</strong> the level <strong>of</strong> Kittel and<br />

Kromer)<br />

Desirable:<br />

◮ Solid st<strong>at</strong>e physics (<strong>at</strong> the level <strong>of</strong> Kittel)<br />

◮ Ideas <strong>of</strong> Phase Tansitions (<strong>at</strong> the level <strong>of</strong> Yeomans)<br />

◮ Ideas <strong>of</strong> “Second quantiz<strong>at</strong>ion” (<strong>at</strong> the level <strong>of</strong> Ziman)<br />

5 / 41


References<br />

6 / 41


References<br />

Ramakrishnan, T. V. and Rao, C. N. R., <strong>Superconductivity</strong> Today –<br />

an excellent elementary introduction to superconductivity<br />

6 / 41


References<br />

Ramakrishnan, T. V. and Rao, C. N. R., <strong>Superconductivity</strong> Today –<br />

an excellent elementary introduction to superconductivity<br />

Ibach, H. and Lüth, H., Solid St<strong>at</strong>e <strong>Physics</strong> – contains a very nice<br />

discussion <strong>of</strong> superconductivity (and many other solid st<strong>at</strong>e physics<br />

topics)<br />

6 / 41


References<br />

Ramakrishnan, T. V. and Rao, C. N. R., <strong>Superconductivity</strong> Today –<br />

an excellent elementary introduction to superconductivity<br />

Ibach, H. and Lüth, H., Solid St<strong>at</strong>e <strong>Physics</strong> – contains a very nice<br />

discussion <strong>of</strong> superconductivity (and many other solid st<strong>at</strong>e physics<br />

topics)<br />

Tilley and Tilley, <strong>Superconductivity</strong> and Superfluidity – a very nice<br />

approach with a unified view <strong>of</strong> superfluidity <strong>of</strong> 4 He and<br />

superconductivity <strong>of</strong> metals<br />

6 / 41


References<br />

Ramakrishnan, T. V. and Rao, C. N. R., <strong>Superconductivity</strong> Today –<br />

an excellent elementary introduction to superconductivity<br />

Ibach, H. and Lüth, H., Solid St<strong>at</strong>e <strong>Physics</strong> – contains a very nice<br />

discussion <strong>of</strong> superconductivity (and many other solid st<strong>at</strong>e physics<br />

topics)<br />

Tilley and Tilley, <strong>Superconductivity</strong> and Superfluidity – a very nice<br />

approach with a unified view <strong>of</strong> superfluidity <strong>of</strong> 4 He and<br />

superconductivity <strong>of</strong> metals<br />

Tinkham, M., <strong>Superconductivity</strong> – Standard text book, very nice in<br />

parts<br />

6 / 41


References<br />

Ramakrishnan, T. V. and Rao, C. N. R., <strong>Superconductivity</strong> Today –<br />

an excellent elementary introduction to superconductivity<br />

Ibach, H. and Lüth, H., Solid St<strong>at</strong>e <strong>Physics</strong> – contains a very nice<br />

discussion <strong>of</strong> superconductivity (and many other solid st<strong>at</strong>e physics<br />

topics)<br />

Tilley and Tilley, <strong>Superconductivity</strong> and Superfluidity – a very nice<br />

approach with a unified view <strong>of</strong> superfluidity <strong>of</strong> 4 He and<br />

superconductivity <strong>of</strong> metals<br />

Tinkham, M., <strong>Superconductivity</strong> – Standard text book, very nice in<br />

parts<br />

de Gennes, P., <strong>Superconductivity</strong> <strong>of</strong> Metals and Alloys – My favourite<br />

6 / 41


References<br />

Ramakrishnan, T. V. and Rao, C. N. R., <strong>Superconductivity</strong> Today –<br />

an excellent elementary introduction to superconductivity<br />

Ibach, H. and Lüth, H., Solid St<strong>at</strong>e <strong>Physics</strong> – contains a very nice<br />

discussion <strong>of</strong> superconductivity (and many other solid st<strong>at</strong>e physics<br />

topics)<br />

Tilley and Tilley, <strong>Superconductivity</strong> and Superfluidity – a very nice<br />

approach with a unified view <strong>of</strong> superfluidity <strong>of</strong> 4 He and<br />

superconductivity <strong>of</strong> metals<br />

Tinkham, M., <strong>Superconductivity</strong> – Standard text book, very nice in<br />

parts<br />

de Gennes, P., <strong>Superconductivity</strong> <strong>of</strong> Metals and Alloys – My favourite<br />

Leggett, A. J., Quantum Liquids – A very original and wonderfully<br />

clear exposition from a Nobel laure<strong>at</strong>e –a must read!<br />

6 / 41


References<br />

Ramakrishnan, T. V. and Rao, C. N. R., <strong>Superconductivity</strong> Today –<br />

an excellent elementary introduction to superconductivity<br />

Ibach, H. and Lüth, H., Solid St<strong>at</strong>e <strong>Physics</strong> – contains a very nice<br />

discussion <strong>of</strong> superconductivity (and many other solid st<strong>at</strong>e physics<br />

topics)<br />

Tilley and Tilley, <strong>Superconductivity</strong> and Superfluidity – a very nice<br />

approach with a unified view <strong>of</strong> superfluidity <strong>of</strong> 4 He and<br />

superconductivity <strong>of</strong> metals<br />

Tinkham, M., <strong>Superconductivity</strong> – Standard text book, very nice in<br />

parts<br />

de Gennes, P., <strong>Superconductivity</strong> <strong>of</strong> Metals and Alloys – My favourite<br />

Leggett, A. J., Quantum Liquids – A very original and wonderfully<br />

clear exposition from a Nobel laure<strong>at</strong>e –a must read!<br />

Parks, R. D. (Editor), <strong>Superconductivity</strong> – Wonderful collection <strong>of</strong><br />

chapters by the well known authors<br />

6 / 41


References<br />

Ramakrishnan, T. V. and Rao, C. N. R., <strong>Superconductivity</strong> Today –<br />

an excellent elementary introduction to superconductivity<br />

Ibach, H. and Lüth, H., Solid St<strong>at</strong>e <strong>Physics</strong> – contains a very nice<br />

discussion <strong>of</strong> superconductivity (and many other solid st<strong>at</strong>e physics<br />

topics)<br />

Tilley and Tilley, <strong>Superconductivity</strong> and Superfluidity – a very nice<br />

approach with a unified view <strong>of</strong> superfluidity <strong>of</strong> 4 He and<br />

superconductivity <strong>of</strong> metals<br />

Tinkham, M., <strong>Superconductivity</strong> – Standard text book, very nice in<br />

parts<br />

de Gennes, P., <strong>Superconductivity</strong> <strong>of</strong> Metals and Alloys – My favourite<br />

Leggett, A. J., Quantum Liquids – A very original and wonderfully<br />

clear exposition from a Nobel laure<strong>at</strong>e –a must read!<br />

Parks, R. D. (Editor), <strong>Superconductivity</strong> – Wonderful collection <strong>of</strong><br />

chapters by the well known authors<br />

Bennemann, K. H. and Ketterson, J. B. (Editors), <strong>Superconductivity</strong><br />

– Modern version <strong>of</strong> Parks<br />

6 / 41


Wh<strong>at</strong> Participants Should Expect to Gain<br />

7 / 41


Wh<strong>at</strong> Participants Should Expect to Gain<br />

A review <strong>of</strong> the theory <strong>of</strong> metals<br />

7 / 41


Wh<strong>at</strong> Participants Should Expect to Gain<br />

A review <strong>of</strong> the theory <strong>of</strong> metals<br />

An understanding <strong>of</strong> the phenomenology <strong>of</strong> superconductivity in<br />

metals...and why is it surprising<br />

7 / 41


Wh<strong>at</strong> Participants Should Expect to Gain<br />

A review <strong>of</strong> the theory <strong>of</strong> metals<br />

An understanding <strong>of</strong> the phenomenology <strong>of</strong> superconductivity in<br />

metals...and why is it surprising<br />

Construction <strong>of</strong> phenomenological theories based on phenomena<br />

7 / 41


Wh<strong>at</strong> Participants Should Expect to Gain<br />

A review <strong>of</strong> the theory <strong>of</strong> metals<br />

An understanding <strong>of</strong> the phenomenology <strong>of</strong> superconductivity in<br />

metals...and why is it surprising<br />

Construction <strong>of</strong> phenomenological theories based on phenomena<br />

Ideas <strong>of</strong> broken symmetry and phase transition<br />

7 / 41


Wh<strong>at</strong> Participants Should Expect to Gain<br />

A review <strong>of</strong> the theory <strong>of</strong> metals<br />

An understanding <strong>of</strong> the phenomenology <strong>of</strong> superconductivity in<br />

metals...and why is it surprising<br />

Construction <strong>of</strong> phenomenological theories based on phenomena<br />

Ideas <strong>of</strong> broken symmetry and phase transition<br />

Ideas <strong>of</strong> mean field theory (both “quantum” and “st<strong>at</strong>istical”)<br />

7 / 41


Wh<strong>at</strong> Participants Should Expect to Gain<br />

A review <strong>of</strong> the theory <strong>of</strong> metals<br />

An understanding <strong>of</strong> the phenomenology <strong>of</strong> superconductivity in<br />

metals...and why is it surprising<br />

Construction <strong>of</strong> phenomenological theories based on phenomena<br />

Ideas <strong>of</strong> broken symmetry and phase transition<br />

Ideas <strong>of</strong> mean field theory (both “quantum” and “st<strong>at</strong>istical”)<br />

Ideas <strong>of</strong> macroscopic quantum phenomenon<br />

7 / 41


Wh<strong>at</strong> Participants Should Expect to Gain<br />

A review <strong>of</strong> the theory <strong>of</strong> metals<br />

An understanding <strong>of</strong> the phenomenology <strong>of</strong> superconductivity in<br />

metals...and why is it surprising<br />

Construction <strong>of</strong> phenomenological theories based on phenomena<br />

Ideas <strong>of</strong> broken symmetry and phase transition<br />

Ideas <strong>of</strong> mean field theory (both “quantum” and “st<strong>at</strong>istical”)<br />

Ideas <strong>of</strong> macroscopic quantum phenomenon<br />

A glimpse <strong>of</strong> some open problems...in particular why the cupr<strong>at</strong>es are<br />

fascin<strong>at</strong>ing<br />

7 / 41


How it all Started!<br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

8 / 41


How it all Started!<br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

8 / 41


How it all Started!<br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

(Wikipedia)<br />

8 / 41


How it all Started!<br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

(Wikipedia)<br />

Discovered (1911) th<strong>at</strong> the resistance <strong>of</strong> mercury drops to “zero”<br />

below 4.2K!<br />

8 / 41


How it all Started!<br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

(Wikipedia)<br />

Discovered (1911) th<strong>at</strong> the resistance <strong>of</strong> mercury drops to “zero”<br />

below 4.2K!<br />

Aptly called superconductivity Not sure: By whom?<br />

8 / 41


<strong>Superconductivity</strong> “everywhere”<br />

Most elemental metals yield to the charms <strong>of</strong> superconductivity...<br />

9 / 41


<strong>Superconductivity</strong> “everywhere”<br />

Most elemental metals yield to the charms <strong>of</strong> superconductivity...<br />

(From somewhere on the web!)<br />

9 / 41


<strong>Superconductivity</strong> “everywhere”<br />

Most elemental metals yield to the charms <strong>of</strong> superconductivity...<br />

(From somewhere on the web!)<br />

...perhaps under duress!<br />

9 / 41


<strong>Superconductivity</strong> Period Table<br />

Periodic Table <strong>of</strong> <strong>Superconductivity</strong><br />

Some elements have to be pressurised!<br />

(dedic<strong>at</strong>ed to the memory <strong>of</strong> Bernd M<strong>at</strong>thias)<br />

30 elements superconduct <strong>at</strong> ambient pressure, 23 more superconduct <strong>at</strong> high pressure.<br />

(From somewhere on the web!)<br />

10 / 41


<strong>Superconductivity</strong> Period Table<br />

Periodic Table <strong>of</strong> <strong>Superconductivity</strong><br />

Some elements have to be pressurised!<br />

(dedic<strong>at</strong>ed to the memory <strong>of</strong> Bernd M<strong>at</strong>thias)<br />

30 elements superconduct <strong>at</strong> ambient pressure, 23 more superconduct <strong>at</strong> high pressure.<br />

(From somewhere on the web!)<br />

10 / 41


<strong>Superconductivity</strong> in Metals and Alloys<br />

Some <strong>of</strong> the “best” conventional superconductors are<br />

alloys/intermetallics<br />

11 / 41


Fig. 1.<strong>3.</strong> Histor<br />

first 70 years f<br />

tivity in 1911.<br />

interest in the<br />

<strong>Superconductivity</strong> in Metals and Alloys<br />

Some <strong>of</strong> the “best” conventional superconductors are<br />

alloys/intermetallics<br />

Fig. 1.2<br />

(blue)<br />

superc<br />

tion m<br />

Other<br />

marke<br />

tempe<br />

(Benemmann and Ketterson)<br />

11 / 41


Fig. 1.<strong>3.</strong> Histor<br />

first 70 years f<br />

tivity in 1911.<br />

interest in the<br />

<strong>Superconductivity</strong> in Metals and Alloys<br />

Some <strong>of</strong> the “best” conventional superconductors are<br />

alloys/intermetallics<br />

Fig. 1.2<br />

(blue)<br />

superc<br />

tion m<br />

Other<br />

marke<br />

tempe<br />

(Benemmann and Ketterson)<br />

Key observ<strong>at</strong>ion: Almost all metallic elements and alloys become<br />

superconducting Question: Can an insul<strong>at</strong>or become a superconductor?<br />

11 / 41


Fig. 1.<strong>3.</strong> Histor<br />

first 70 years f<br />

tivity in 1911.<br />

interest in the<br />

<strong>Superconductivity</strong> in Metals and Alloys<br />

Some <strong>of</strong> the “best” conventional superconductors are<br />

alloys/intermetallics<br />

Fig. 1.2<br />

(blue)<br />

superc<br />

tion m<br />

Other<br />

marke<br />

tempe<br />

(Benemmann and Ketterson)<br />

Key observ<strong>at</strong>ion: Almost all metallic elements and alloys become<br />

superconducting Question: Can an insul<strong>at</strong>or become a superconductor?<br />

Need to understand wh<strong>at</strong> a metal is!<br />

11 / 41


Wh<strong>at</strong> is a Metal? – Survey <strong>of</strong> Metallic Properties<br />

12 / 41


Wh<strong>at</strong> is a Metal? – Survey <strong>of</strong> Metallic Properties<br />

Thermodynamic properties<br />

12 / 41


Wh<strong>at</strong> is a Metal? – Survey <strong>of</strong> Metallic Properties<br />

Thermodynamic properties<br />

Magnetic properties<br />

12 / 41


Wh<strong>at</strong> is a Metal? – Survey <strong>of</strong> Metallic Properties<br />

Thermodynamic properties<br />

Magnetic properties<br />

Transport properties<br />

12 / 41


Metals – Thermodynamic Properties<br />

13 / 41


Metals – Thermodynamic 6.4 Properties The Specific He<strong>at</strong> Capacity <strong>of</strong> Electrons in Me<br />

Fig. 6.8. Plot <strong>of</strong> c v /T (Ibach againstand T 2 Lüth) for copper. The experimental points (*<br />

from two separ<strong>at</strong>e measurements [6.3]<br />

Table 6.2. Comparison <strong>of</strong> experimentally determined values <strong>of</strong> the coe cien<br />

nic specific he<strong>at</strong> with values calcul<strong>at</strong>ed using the free-electron-gas model. At<br />

13 / 41<br />

3 3


Metals – Thermodynamic 6.4 Properties The Specific He<strong>at</strong> Capacity <strong>of</strong> Electrons in Me<br />

Fig. 6.8. Plot <strong>of</strong> c v /T (Ibach againstand T 2 Lüth) for copper. The experimental points (*<br />

from two separ<strong>at</strong>e measurements [6.3]<br />

Low temper<strong>at</strong>ure specific he<strong>at</strong> goes as<br />

Table 6.2. ComparisonC <strong>of</strong> V<br />

metal experimentally = βT 3 + γT determined values <strong>of</strong> the coe cien<br />

nic specific he<strong>at</strong> with values calcul<strong>at</strong>ed using the free-electron-gas model. At<br />

13 / 41<br />

3 3


Metals – Magnetic Properties<br />

14 / 41


Metals – Magnetic Properties<br />

Focus on “non-magnetic” metals<br />

14 / 41


Metals – Magnetic Properties<br />

Focus on “non-magnetic” metals<br />

14 / 41


Metals – Magnetic Properties<br />

Focus on “non-magnetic” metals<br />

Magnetic susceptibility is essentially independent <strong>of</strong> temper<strong>at</strong>ure!<br />

14 / 41


tribution R ph (T)!1/r ph to the resistivity <strong>of</strong> metals:<br />

Metals – DC Electrical H=T …<br />

Transport<br />

x 5 dx<br />

R ph …T† ˆA…T=H† 5<br />

At low temper<strong>at</strong>ures, this varies as T<br />

Electrical resistivity <strong>of</strong> metals<br />

5 .<br />

0<br />

…e x 1†…1 e x †<br />

…9:62†<br />

260 9 Motion <strong>of</strong> Electrons and Transport Phenomen<br />

(Ibach and Lüth)<br />

Fig. 9.7. R<br />

<strong>of</strong> coppersitions.<br />

(A<br />

Fig. 9.6. Electrical resistance <strong>of</strong> sodium compared to the value <strong>at</strong> 290 K as a function <strong>of</strong><br />

temper<strong>at</strong>ure. The d<strong>at</strong>a points (*, *, `) were measured for three different samples with<br />

differing defect concentr<strong>at</strong>ions. (After [9.3])<br />

According to (9.59) we can write the resistivit<br />

as the sum <strong>of</strong> a temper<strong>at</strong>ure-independent residual<br />

fects) and a part due to phonon sc<strong>at</strong>tering R ph (T)<br />

ture <strong>at</strong> high temper<strong>at</strong>ure:<br />

R ˆ R ph …T†‡R def :<br />

This behavior, which was first identified experim<br />

thiesen's Rule. Note th<strong>at</strong> (9.63) is valid only appro<br />

Figure 9.6 shows the experimentally measured 15 / 41


tribution R ph (T)!1/r ph to the resistivity <strong>of</strong> metals:<br />

Metals – DC Electrical H=T …<br />

Transport<br />

x 5 dx<br />

R ph …T† ˆA…T=H† 5<br />

At low temper<strong>at</strong>ures, this varies as T<br />

Electrical resistivity <strong>of</strong> metals<br />

5 .<br />

0<br />

…e x 1†…1 e x †<br />

…9:62†<br />

260 9 Motion <strong>of</strong> Electrons and Transport Phenomen<br />

(Ibach and Lüth)<br />

Fig. 9.7. R<br />

<strong>of</strong> coppersitions.<br />

(A<br />

Fig. 9.6. Electrical resistance <strong>of</strong> sodium compared to the value <strong>at</strong> 290 K as a function <strong>of</strong><br />

temper<strong>at</strong>ure. The d<strong>at</strong>a points (*, *, `) were measured for three different samples with<br />

differing defect concentr<strong>at</strong>ions. (After [9.3])<br />

According to (9.59) we can write the resistivit<br />

as the sum <strong>of</strong> a temper<strong>at</strong>ure-independent residual<br />

fects) and a part due to phonon sc<strong>at</strong>tering R ph (T)<br />

ture <strong>at</strong> high temper<strong>at</strong>ure:<br />

R ˆ R ph …T†‡R def :<br />

This behavior, which was first identified experim<br />

thiesen's Rule. Note th<strong>at</strong> (9.63) is valid only appro<br />

Figure 9.6 shows the experimentally measured 15 / 41<br />

Resistivity regimes


tribution R ph (T)!1/r ph to the resistivity <strong>of</strong> metals:<br />

Metals – DC Electrical H=T …<br />

Transport<br />

x 5 dx<br />

R ph …T† ˆA…T=H† 5<br />

At low temper<strong>at</strong>ures, this varies as T<br />

Electrical resistivity <strong>of</strong> metals<br />

5 .<br />

0<br />

…e x 1†…1 e x †<br />

…9:62†<br />

260 9 Motion <strong>of</strong> Electrons and Transport Phenomen<br />

(Ibach and Lüth)<br />

Fig. 9.7. R<br />

<strong>of</strong> coppersitions.<br />

(A<br />

Fig. 9.6. Electrical resistance <strong>of</strong> sodium compared to the value <strong>at</strong> 290 K as a function <strong>of</strong><br />

temper<strong>at</strong>ure. The d<strong>at</strong>a points (*, *, `) were measured for three different samples with<br />

differing defect concentr<strong>at</strong>ions. (After [9.3])<br />

According to (9.59) we can write the resistivit<br />

as the sum <strong>of</strong> a temper<strong>at</strong>ure-independent residual<br />

ρ = ρ 0 + A 1 T 2 “Low Temper<strong>at</strong>ure”<br />

fects) and a part due to phonon sc<strong>at</strong>tering R ph (T)<br />

ture <strong>at</strong> high temper<strong>at</strong>ure:<br />

ρ = ρ 0 + A 2 T 5 “Intermedi<strong>at</strong>e Temper<strong>at</strong>ure”<br />

R ˆ R ph …T†‡R def :<br />

ρ = ρ<br />

This behavior, which was first identified experim<br />

0 + A 3 T “High Temper<strong>at</strong>ure”<br />

thiesen's Rule. Note th<strong>at</strong> (9.63) is valid only appro<br />

Figure 9.6 shows the experimentally measured<br />

Resistivity regimes


tribution R ph (T)!1/r ph to the resistivity <strong>of</strong> metals:<br />

Metals – DC Electrical H=T …<br />

Transport<br />

x 5 dx<br />

R ph …T† ˆA…T=H† 5<br />

At low temper<strong>at</strong>ures, this varies as T<br />

Electrical resistivity <strong>of</strong> metals<br />

5 .<br />

0<br />

…e x 1†…1 e x †<br />

…9:62†<br />

260 9 Motion <strong>of</strong> Electrons and Transport Phenomen<br />

(Ibach and Lüth)<br />

Fig. 9.7. R<br />

<strong>of</strong> coppersitions.<br />

(A<br />

Fig. 9.6. Electrical resistance <strong>of</strong> sodium compared to the value <strong>at</strong> 290 K as a function <strong>of</strong><br />

temper<strong>at</strong>ure. The d<strong>at</strong>a points (*, *, `) were measured for three different samples with<br />

differing defect concentr<strong>at</strong>ions. (After [9.3])<br />

According to (9.59) we can write the resistivit<br />

as the sum <strong>of</strong> a temper<strong>at</strong>ure-independent residual<br />

ρ = ρ 0 + A 1 T 2 “Low Temper<strong>at</strong>ure”<br />

fects) and a part due to phonon sc<strong>at</strong>tering R ph (T)<br />

ture <strong>at</strong> high temper<strong>at</strong>ure:<br />

R ˆ R ph …T†‡R def :<br />

ρ = ρ<br />

This behavior, which was first identified experim<br />

0 + A 3 T “High Temper<strong>at</strong>ure”<br />

thiesen's Rule. Note th<strong>at</strong> (9.63) is valid only appro<br />

Figure 9.6 shows the experimentally measured<br />

Resistivity regimes


tribution R ph (T)!1/r ph to the resistivity <strong>of</strong> metals:<br />

Metals – DC Electrical H=T …<br />

Transport<br />

x 5 dx<br />

R ph …T† ˆA…T=H† 5<br />

At low temper<strong>at</strong>ures, this varies as T<br />

Electrical resistivity <strong>of</strong> metals<br />

5 .<br />

0<br />

…e x 1†…1 e x †<br />

…9:62†<br />

260 9 Motion <strong>of</strong> Electrons and Transport Phenomen<br />

(Ibach and Lüth)<br />

Fig. 9.7. R<br />

<strong>of</strong> coppersitions.<br />

(A<br />

Fig. 9.6. Electrical resistance <strong>of</strong> sodium compared to the value <strong>at</strong> 290 K as a function <strong>of</strong><br />

temper<strong>at</strong>ure. The d<strong>at</strong>a points (*, *, `) were measured for three different samples with<br />

differing defect concentr<strong>at</strong>ions. (After [9.3])<br />

According to (9.59) we can write the resistivit<br />

as the sum <strong>of</strong> a temper<strong>at</strong>ure-independent residual<br />

ρ = ρ 0 + A 1 T 2 “Low Temper<strong>at</strong>ure”<br />

fects) and a part due to phonon sc<strong>at</strong>tering R ph (T)<br />

ture <strong>at</strong> high temper<strong>at</strong>ure:<br />

ρ = ρ 0 + A 2 T 5 “Intermedi<strong>at</strong>e Temper<strong>at</strong>ure”<br />

R ˆ R ph …T†‡R def :<br />

ρ = ρ<br />

This behavior, which was first identified experim<br />

0 + A 3 T “High Temper<strong>at</strong>ure”<br />

thiesen's Rule. Note th<strong>at</strong> (9.63) is valid only appro<br />

Figure 9.6 shows the experimentally measured 15 / 41<br />

Resistivity regimes


Metals: AC Conductivity<br />

16 / 41


Metals: AC Conductivity<br />

All metals show a “Drude peak” in their AC conductivity<br />

16 / 41


Metals: AC Conductivity<br />

All metals show a “Drude peak” in their AC conductivity<br />

ΣΩ<br />

Σ 0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

2 4 6 8 10<br />

Τ Ω<br />

(Schem<strong>at</strong>ic)<br />

16 / 41


Metals: AC Conductivity<br />

All metals show a “Drude peak” in their AC conductivity<br />

ΣΩ<br />

Σ 0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

2 4 6 8 10<br />

Τ Ω<br />

(Schem<strong>at</strong>ic)<br />

σ 0 is the DC conductivity, τ is “some” time scale<br />

16 / 41


Metals: There’s More!<br />

Widemann-Franz Law<br />

17 / 41


Metals: There’s More!<br />

Widemann-Franz Law – R<strong>at</strong>io <strong>of</strong> thermal conductivity and DC<br />

electrical conductivity is proportional to temper<strong>at</strong>ure<br />

9.7 The Wiede<br />

Table 9.1. Experimentally L =<br />

κ derived values <strong>of</strong> the Lorentz<br />

σ 0 T<br />

number <strong>at</strong> 0°C, L =k E /rT, deduced from published<br />

L is INDEPENDENT d<strong>at</strong>a for electrical <strong>of</strong> the metal!! and thermal conductivity<br />

Metal L(10 ±8 WX/K 2 )<br />

Na 2.10<br />

Ag 2.31<br />

Au 2.35<br />

Cu 2.23<br />

Pb 2.47<br />

Pt 2.51<br />

(Ibach and Lüth)<br />

17 / 41


Metals: There’s More!<br />

Widemann-Franz Law – R<strong>at</strong>io <strong>of</strong> thermal conductivity and DC<br />

electrical conductivity is proportional to temper<strong>at</strong>ure<br />

9.7 The Wiede<br />

Table 9.1. Experimentally L =<br />

κ derived values <strong>of</strong> the Lorentz<br />

σ 0 T<br />

number <strong>at</strong> 0°C, L =k E /rT, deduced from published<br />

L is INDEPENDENT d<strong>at</strong>a for electrical <strong>of</strong> the metal!! and thermal conductivity<br />

Metal L(10 ±8 WX/K 2 )<br />

Na 2.10<br />

Ag 2.31<br />

Au 2.35<br />

Cu 2.23<br />

Pb 2.47<br />

Pt 2.51<br />

...getting intriguing!<br />

(Ibach and Lüth)<br />

17 / 41


Metals: There’s EVEN More!<br />

Universal resistivity!<br />

9.6 Thermoelectric Effects<br />

Fig. 9.8. The universal cur<br />

the reduced resistance (R/<br />

a function <strong>of</strong> reduced te<br />

plotted for a number <strong>of</strong> di<br />

ture (T/H, where H is the<br />

temper<strong>at</strong>ure). D<strong>at</strong>a poin<br />

metals<br />

(Ibach and Lüth)<br />

9.6 Thermoelectric E€ects<br />

18 / 41


Metals: There’s EVEN More!<br />

Universal resistivity!<br />

9.6 Thermoelectric Effects<br />

Why?<br />

(Ibach and Lüth)<br />

9.6 Thermoelectric E€ects<br />

Fig. 9.8. The universal cur<br />

the reduced resistance (R/<br />

a function <strong>of</strong> reduced te<br />

plotted for a number <strong>of</strong> di<br />

ture (T/H, where H is the<br />

temper<strong>at</strong>ure). D<strong>at</strong>a poin<br />

metals<br />

18 / 41


Wh<strong>at</strong> is a Metal?<br />

A st<strong>at</strong>e <strong>of</strong> m<strong>at</strong>ter with “Universal” properties in<br />

19 / 41


Wh<strong>at</strong> is a Metal?<br />

A st<strong>at</strong>e <strong>of</strong> m<strong>at</strong>ter with “Universal” properties in<br />

Thermodynamics<br />

19 / 41


Wh<strong>at</strong> is a Metal?<br />

A st<strong>at</strong>e <strong>of</strong> m<strong>at</strong>ter with “Universal” properties in<br />

Thermodynamics<br />

Magnetism<br />

19 / 41


Wh<strong>at</strong> is a Metal?<br />

A st<strong>at</strong>e <strong>of</strong> m<strong>at</strong>ter with “Universal” properties in<br />

Thermodynamics<br />

Magnetism<br />

Transport<br />

19 / 41


Wh<strong>at</strong> is a Metal?<br />

A st<strong>at</strong>e <strong>of</strong> m<strong>at</strong>ter with “Universal” properties in<br />

Thermodynamics<br />

Magnetism<br />

Transport<br />

Wh<strong>at</strong> is the simplest theory th<strong>at</strong> describes this?<br />

19 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

Magnetism <strong>of</strong> metals<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

Magnetism <strong>of</strong> metals<br />

...<br />

This gets the T <strong>of</strong> the specific he<strong>at</strong>...but it is really T + T 3 !<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

Magnetism <strong>of</strong> metals<br />

...<br />

This gets the T <strong>of</strong> the specific he<strong>at</strong>...but it is really T + T 3 !<br />

...<br />

We need to include phonons<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

Magnetism <strong>of</strong> metals<br />

...<br />

This gets the T <strong>of</strong> the specific he<strong>at</strong>...but it is really T + T 3 !<br />

...<br />

We need to include phonons<br />

Back to st<strong>at</strong>-mech notes<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

Magnetism <strong>of</strong> metals<br />

...<br />

This gets the T <strong>of</strong> the specific he<strong>at</strong>...but it is really T + T 3 !<br />

...<br />

We need to include phonons<br />

Back to st<strong>at</strong>-mech notes<br />

Notes <strong>of</strong> transport <strong>of</strong> metals<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

Magnetism <strong>of</strong> metals<br />

...<br />

This gets the T <strong>of</strong> the specific he<strong>at</strong>...but it is really T + T 3 !<br />

...<br />

We need to include phonons<br />

Back to st<strong>at</strong>-mech notes<br />

Notes <strong>of</strong> transport <strong>of</strong> metals<br />

...<br />

A gas <strong>of</strong> non interacting electrons and a gas <strong>of</strong> non interacting<br />

phonons which mutually interact provides the simplest picture <strong>of</strong><br />

metals!<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

Magnetism <strong>of</strong> metals<br />

...<br />

This gets the T <strong>of</strong> the specific he<strong>at</strong>...but it is really T + T 3 !<br />

...<br />

We need to include phonons<br />

Back to st<strong>at</strong>-mech notes<br />

Notes <strong>of</strong> transport <strong>of</strong> metals<br />

...<br />

A gas <strong>of</strong> non interacting electrons and a gas <strong>of</strong> non interacting<br />

phonons which mutually interact provides the simplest picture <strong>of</strong><br />

metals!<br />

Question: Wh<strong>at</strong> about Coulomb interaction?<br />

20 / 41


Metals<br />

Notes on simple model <strong>of</strong> metals<br />

Notes on s<strong>at</strong>-mech <strong>of</strong> metals<br />

Magnetism <strong>of</strong> metals<br />

...<br />

This gets the T <strong>of</strong> the specific he<strong>at</strong>...but it is really T + T 3 !<br />

...<br />

We need to include phonons<br />

Back to st<strong>at</strong>-mech notes<br />

Notes <strong>of</strong> transport <strong>of</strong> metals<br />

...<br />

A gas <strong>of</strong> non interacting electrons and a gas <strong>of</strong> non interacting<br />

phonons which mutually interact provides the simplest picture <strong>of</strong><br />

metals!<br />

Question: Wh<strong>at</strong> about Coulomb interaction?<br />

Question: Are there phenomenon th<strong>at</strong> this model cannot explain?<br />

20 / 41


On to <strong>Superconductivity</strong><br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

21 / 41


On to <strong>Superconductivity</strong><br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

21 / 41


On to <strong>Superconductivity</strong><br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

(Wikipedia)<br />

21 / 41


On to <strong>Superconductivity</strong><br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

(Wikipedia)<br />

Discovered (1911) th<strong>at</strong> the resistance <strong>of</strong> mercury drops to “zero”<br />

below 4.2K!<br />

21 / 41


On to <strong>Superconductivity</strong><br />

Kamerlingh Onnes @ Leiden was obsessed with low temper<strong>at</strong>ures...he<br />

liquified helium!<br />

(Wikipedia)<br />

Discovered (1911) th<strong>at</strong> the resistance <strong>of</strong> mercury drops to “zero”<br />

below 4.2K!<br />

Aptly called superconductivity<br />

21 / 41


<strong>Superconductivity</strong> “everywhere”<br />

Most elemental metals yield to the charms <strong>of</strong> superconductivity...<br />

22 / 41


<strong>Superconductivity</strong> “everywhere”<br />

Most elemental metals yield to the charms <strong>of</strong> superconductivity...<br />

(From somewhere on the web!)<br />

22 / 41


<strong>Superconductivity</strong> “everywhere”<br />

Most elemental metals yield to the charms <strong>of</strong> superconductivity...<br />

(From somewhere on the web!)<br />

...perhaps under duress!<br />

22 / 41


<strong>Superconductivity</strong> Period Table<br />

Periodic Table <strong>of</strong> <strong>Superconductivity</strong><br />

Some elements have to be pressurised!<br />

(dedic<strong>at</strong>ed to the memory <strong>of</strong> Bernd M<strong>at</strong>thias)<br />

30 elements superconduct <strong>at</strong> ambient pressure, 23 more superconduct <strong>at</strong> high pressure.<br />

(From somewhere on the web!)<br />

23 / 41


<strong>Superconductivity</strong> Period Table<br />

Periodic Table <strong>of</strong> <strong>Superconductivity</strong><br />

Some elements have to be pressurised!<br />

(dedic<strong>at</strong>ed to the memory <strong>of</strong> Bernd M<strong>at</strong>thias)<br />

30 elements superconduct <strong>at</strong> ambient pressure, 23 more superconduct <strong>at</strong> high pressure.<br />

(From somewhere on the web!)<br />

23 / 41


<strong>Superconductivity</strong> in Metals and Alloys<br />

Some <strong>of</strong> the “best” conventional superconductors are<br />

alloys/intermetallics<br />

24 / 41


Fig. 1.<strong>3.</strong> Histor<br />

first 70 years f<br />

tivity in 1911.<br />

interest in the<br />

<strong>Superconductivity</strong> in Metals and Alloys<br />

Some <strong>of</strong> the “best” conventional superconductors are<br />

alloys/intermetallics<br />

Fig. 1.2<br />

(blue)<br />

superc<br />

tion m<br />

Other<br />

marke<br />

tempe<br />

(Benemmann and Ketterson)<br />

24 / 41


Fig. 1.<strong>3.</strong> Histor<br />

first 70 years f<br />

tivity in 1911.<br />

interest in the<br />

<strong>Superconductivity</strong> in Metals and Alloys<br />

Some <strong>of</strong> the “best” conventional superconductors are<br />

alloys/intermetallics<br />

Fig. 1.2<br />

(blue)<br />

superc<br />

tion m<br />

Other<br />

marke<br />

tempe<br />

(Benemmann and Ketterson)<br />

Key observ<strong>at</strong>ion: Almost all metallic elements and alloys become<br />

superconducting<br />

24 / 41


Fig. 1.<strong>3.</strong> Histor<br />

first 70 years f<br />

tivity in 1911.<br />

interest in the<br />

<strong>Superconductivity</strong> in Metals and Alloys<br />

Some <strong>of</strong> the “best” conventional superconductors are<br />

alloys/intermetallics<br />

Fig. 1.2<br />

(blue)<br />

superc<br />

tion m<br />

Other<br />

marke<br />

tempe<br />

(Benemmann and Ketterson)<br />

Key observ<strong>at</strong>ion: Almost all metallic elements and alloys become<br />

superconducting<br />

Str<strong>at</strong>egy: Explore other properties and describe the st<strong>at</strong>e using the<br />

24 / 41


Meissner Effect<br />

Superconductor does not like to have an electric field inside it (just<br />

like a normal metal)...<br />

25 / 41


Meissner Effect<br />

Superconductor does not like to have an electric field inside it (just<br />

like a normal metal)...<br />

Meissner-Ochsenfeld found th<strong>at</strong> a superconductor also expels all<br />

magnetic field...<br />

25 / 41


Meissner Effect<br />

Superconductor does not like to have an electric field inside it (just<br />

like a normal metal)...<br />

Meissner-Ochsenfeld found th<strong>at</strong> a superconductor also expels all<br />

magnetic field...superconductors h<strong>at</strong>es electromagnetic fields!!<br />

25 / 41


Meissner Effect<br />

Superconductor does not like to have an electric field inside it (just<br />

like a normal metal)...<br />

Meissner-Ochsenfeld found th<strong>at</strong> a superconductor also expels all<br />

magnetic field...superconductors h<strong>at</strong>es electromagnetic fields!!<br />

The magnetic susceptibility χ = M/H = −1 for a superconductor –<br />

perfect diamagnet<br />

25 / 41


Meissner Effect<br />

Superconductor does not like to have an electric field inside it (just<br />

like a normal metal)...<br />

Meissner-Ochsenfeld found th<strong>at</strong> a superconductor also expels all<br />

magnetic field...superconductors h<strong>at</strong>es electromagnetic fields!!<br />

The magnetic susceptibility χ = M/H = −1 for a superconductor –<br />

perfect diamagnet<br />

...<br />

25 / 41


Meissner Effect<br />

Superconductor does not like to have an electric field inside it (just<br />

like a normal metal)...<br />

Meissner-Ochsenfeld found th<strong>at</strong> a superconductor also expels all<br />

magnetic field...superconductors h<strong>at</strong>es electromagnetic fields!!<br />

The magnetic susceptibility χ = M/H = −1 for a superconductor –<br />

perfect diamagnet<br />

...<br />

This leads to spectacular effects...<br />

25 / 41


Meissner Effect<br />

Superconductor does not like to have an electric field inside it (just<br />

like a normal metal)...<br />

Meissner-Ochsenfeld found th<strong>at</strong> a superconductor also expels all<br />

magnetic field...superconductors h<strong>at</strong>es electromagnetic fields!!<br />

The magnetic susceptibility χ = M/H = −1 for a superconductor –<br />

perfect diamagnet<br />

...<br />

This leads to spectacular effects...and technological applic<strong>at</strong>ions!<br />

25 / 41


Penetr<strong>at</strong>ion Depth<br />

The magnetic field can penetr<strong>at</strong>e into the superconductor near the<br />

surfaces...but dies exponentially as we move into the bulk<br />

26 / 41


Penetr<strong>at</strong>ion Depth<br />

The magnetic field can penetr<strong>at</strong>e into the superconductor near the<br />

surfaces...but dies exponentially as we move into the bulk<br />

There is a length scale associ<strong>at</strong>ed with this decay...called the<br />

penetr<strong>at</strong>ion depth<br />

26 / 41


Penetr<strong>at</strong>ion Depth<br />

The magnetic field can penetr<strong>at</strong>e into the superconductor near the<br />

surfaces...but dies exponentially as we move into the bulk<br />

There is a length scale associ<strong>at</strong>ed with this decay...called the<br />

penetr<strong>at</strong>ion depth<br />

Most interestingly, the penetr<strong>at</strong>ion depth is a function temper<strong>at</strong>ure...<br />

26 / 41


Penetr<strong>at</strong>ion Depth<br />

The magnetic field can penetr<strong>at</strong>e into the superconductor near the<br />

surfaces...but dies exponentially as we move into the bulk<br />

There is a length scale associ<strong>at</strong>ed with this decay...called the<br />

penetr<strong>at</strong>ion depth<br />

Most interestingly, the penetr<strong>at</strong>ion depth is a function temper<strong>at</strong>ure...<br />

26 / 41


Penetr<strong>at</strong>ion Depth<br />

The magnetic field can penetr<strong>at</strong>e into the superconductor near the<br />

surfaces...but dies exponentially as we move into the bulk<br />

There is a length scale associ<strong>at</strong>ed with this decay...called the<br />

penetr<strong>at</strong>ion depth<br />

Most interestingly, the penetr<strong>at</strong>ion depth is a function temper<strong>at</strong>ure...<br />

...and diverges <strong>at</strong> T c !<br />

26 / 41


Type I and Type II superconductors<br />

27 / 41


Type I and Type II superconductors<br />

Superconductors do not remain perfect diamagmet for all magnetic<br />

fields...there are two types <strong>of</strong> behaviour<br />

27 / 41


Type I and Type II superconductors<br />

Superconductors do not remain perfect diamagmet for all magnetic<br />

fields...there are two types <strong>of</strong> behaviour<br />

Type I: At a critical magnetic field (H c ) superconductivity is lost and<br />

normal st<strong>at</strong>e is restored...typically found in elemental metals<br />

27 / 41


Type I and Type II superconductors<br />

Superconductors do not remain perfect diamagmet for all magnetic<br />

fields...there are two types <strong>of</strong> behaviour<br />

Type I: At a critical magnetic field (H c ) superconductivity is lost and<br />

normal st<strong>at</strong>e is restored...typically found in elemental metals<br />

M<br />

M c<br />

0.2<br />

0.5 1.0 1.5 2.0<br />

H<br />

H c<br />

0.4<br />

0.6<br />

0.8<br />

1.0<br />

Type I<br />

27 / 41


Type I and Type II superconductors<br />

Superconductors do not remain perfect diamagmet for all magnetic<br />

fields...there are two types <strong>of</strong> behaviour<br />

Type I: At a critical magnetic field (H c ) superconductivity is lost and<br />

normal st<strong>at</strong>e is restored...typically found in elemental metals<br />

M<br />

M c<br />

0.2<br />

0.5 1.0 1.5 2.0<br />

H<br />

H c<br />

M<br />

M c<br />

0.2<br />

1 2 3 4 5<br />

H<br />

H c<br />

0.4<br />

0.4<br />

0.6<br />

0.6<br />

0.8<br />

0.8<br />

1.0<br />

Type I<br />

1.0<br />

Type II<br />

27 / 41


Type I and Type II superconductors<br />

Superconductors do not remain perfect diamagmet for all magnetic<br />

fields...there are two types <strong>of</strong> behaviour<br />

Type I: At a critical magnetic field (H c ) superconductivity is lost and<br />

normal st<strong>at</strong>e is restored...typically found in elemental metals<br />

M<br />

M c<br />

0.2<br />

0.5 1.0 1.5 2.0<br />

H<br />

H c<br />

M<br />

M c<br />

0.2<br />

1 2 3 4 5<br />

H<br />

H c<br />

0.4<br />

0.4<br />

0.6<br />

0.6<br />

0.8<br />

0.8<br />

1.0<br />

Type I<br />

Type II<br />

Type II: There are two characteristic magnetic fields (H c1 and<br />

H c2 < H c1 )...<strong>at</strong> H c1 the magnetic field begins to penetr<strong>at</strong>e the<br />

superconductor (not a perfect diagmagnet) and <strong>at</strong> H c2 normal st<strong>at</strong>e<br />

is restored<br />

H c (Type I) and H c1 ,H c2 are functions <strong>of</strong> temper<strong>at</strong>ure!<br />

1.0<br />

27 / 41


Phase Diagram<br />

28 / 41


Phase Diagram<br />

Type I<br />

28 / 41


Phase Diagram<br />

Type I<br />

(Ramakrishnan and Rao)<br />

28 / 41


Phase Diagram<br />

Type I<br />

Type II<br />

(Ramakrishnan and Rao)<br />

28 / 41


Phase Diagram<br />

Type I<br />

Type II<br />

(Ramakrishnan and Rao)<br />

28 / 41


Thermodynamic Properties<br />

Electronic specific he<strong>at</strong> goes to zero exponentially<br />

29 / 41


Thermodynamic Properties<br />

Electronic 294 specific 10 <strong>Superconductivity</strong> he<strong>at</strong> goes to zero exponentially<br />

part (c ne *T (Ibach forand a normal Lüth) conductor) must be replaced by a component<br />

which, well below the critical temper<strong>at</strong>ure, decreases exponentially<br />

c se exp… A= T† : …10:3†<br />

k<br />

Fig. 10.<strong>3.</strong> Specific he<strong>at</strong> <strong>of</strong> normally conducting<br />

(c n ) and superconducting (c s )<br />

aluminium. Below the transition temper<strong>at</strong>ure<br />

T c , the normally conducting<br />

phase is cre<strong>at</strong>ed by applying a weak<br />

magnetic field <strong>of</strong> 300 G. (After [10.3])<br />

Afurther distinctive property <strong>of</strong> a superconductor is its magnetic behavior.<br />

29 / 41


Thermodynamic Properties<br />

Electronic 294 specific 10 <strong>Superconductivity</strong> he<strong>at</strong> goes to zero exponentially<br />

Fig. 10.<strong>3.</strong> Specific he<strong>at</strong> <strong>of</strong> normally conducting<br />

(c n ) and superconducting (c s )<br />

aluminium. Below the transition temper<strong>at</strong>ure<br />

T c , the normally conducting<br />

phase is cre<strong>at</strong>ed by applying a weak<br />

magnetic field <strong>of</strong> 300 G. (After [10.3])<br />

(Ramakrishnan and Rao)<br />

part (c ne *T (Ibach forand a normal Lüth) conductor) must be replaced by a component<br />

which, well below the critical temper<strong>at</strong>ure, decreases exponentially<br />

c se exp… A= T† : …10:3†<br />

k<br />

Afurther distinctive property <strong>of</strong> a superconductor is its magnetic behavior.<br />

29 / 41


Thermodynamic Properties<br />

Electronic 294 specific 10 <strong>Superconductivity</strong> he<strong>at</strong> goes to zero exponentially<br />

Fig. 10.<strong>3.</strong> Specific he<strong>at</strong> <strong>of</strong> normally conducting<br />

(c n ) and superconducting (c s )<br />

aluminium. Below the transition temper<strong>at</strong>ure<br />

T c , the normally conducting<br />

phase is cre<strong>at</strong>ed by applying a weak<br />

magnetic field <strong>of</strong> 300 G. (After [10.3])<br />

(Ramakrishnan and Rao)<br />

part (c ne *T (Ibach forand a normal Lüth) conductor) must be replaced by a component<br />

which, well below the critical temper<strong>at</strong>ure, decreases exponentially<br />

c se exp… A= T† : …10:3†<br />

Jump in the specific he<strong>at</strong> <strong>at</strong> T c – Phase Transition??<br />

k<br />

Afurther distinctive property <strong>of</strong> a superconductor is its magnetic behavior.<br />

29 / 41


Thermodynamic Properties<br />

Electronic 294 specific 10 <strong>Superconductivity</strong> he<strong>at</strong> goes to zero exponentially<br />

Fig. 10.<strong>3.</strong> Specific he<strong>at</strong> <strong>of</strong> normally conducting<br />

(c n ) and superconducting (c s )<br />

aluminium. Below the transition temper<strong>at</strong>ure<br />

T c , the normally conducting<br />

phase is cre<strong>at</strong>ed by applying a weak<br />

magnetic field <strong>of</strong> 300 G. (After [10.3])<br />

(Ramakrishnan and Rao)<br />

part (c ne *T (Ibach forand a normal Lüth) conductor) must be replaced by a component<br />

which, well below the critical temper<strong>at</strong>ure, decreases exponentially<br />

c se exp… A= T† : …10:3†<br />

Jump in the specific he<strong>at</strong> <strong>at</strong> T c – Phase Transition??<br />

k<br />

Afurther distinctive property <strong>of</strong> a superconductor is its magnetic behavior.<br />

29 / 41


Thermal Conductivity<br />

30 / 41


Thermal Conductivity<br />

Thermal conductivity also falls with temper<strong>at</strong>ure (approxim<strong>at</strong>ely<br />

exponentially)<br />

30 / 41


Thermal Conductivity<br />

Thermal conductivity also falls with temper<strong>at</strong>ure (approxim<strong>at</strong>ely<br />

exponentially)<br />

else Cs ~~~~~~~~~~~~~~~~~~~~~<br />

? ? ? ? ? >~~~~~~~~~~~~~~~~~~~~~~~~T<br />

X f4iz<br />

C) 0<br />

tC~<br />

0 1 =0C<br />

7t X ,0 arC<br />

g o4o o<br />

o o c o<br />

iw<br />

3<br />

/0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c<br />

0 Ct V<br />

C)4<br />

,X, o :) eD0<br />

0~~~~~~~~4<br />

546 P. M. Rowell<br />

30 / 41


Thermal Conductivity<br />

Thermal conductivity also falls with temper<strong>at</strong>ure (approxim<strong>at</strong>ely<br />

exponentially)<br />

else Cs ~~~~~~~~~~~~~~~~~~~~~<br />

? ? ? ? ? >~~~~~~~~~~~~~~~~~~~~~~~~T<br />

X f4iz<br />

C) 0<br />

tC~<br />

0 1 =0C<br />

7t X ,0 arC<br />

g o4o o<br />

o o c o<br />

iw<br />

3<br />

Superconductors are poor thermal conductors!!...Widemann-Franz<br />

goes for a six!!<br />

/0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c<br />

0 Ct V<br />

C)4<br />

,X, o :) eD0<br />

0~~~~~~~~4<br />

546 P. M. Rowell<br />

30 / 41


Optical Properties<br />

31 / 41


Optical Properties<br />

Doesn’t look like a metal...<br />

31 / 41


Optical Properties<br />

Doesn’t look like a metal...<br />

E k ˆ…n 2 k ‡ D2 † 1=2 (10.58) obeys Fermi st<strong>at</strong>istics with the Fermi dis<br />

f (E k ,T) (Sect. 6.3). In the equ<strong>at</strong>ion determining D (10.61) this fact<br />

into account by including the non-occup<strong>at</strong>ion <strong>of</strong> the correspond<br />

st<strong>at</strong>es. In place <strong>of</strong> (10.61) one thus has<br />

(Ibach and Lüth)<br />

Fig. 10.15. Infrared<br />

<strong>of</strong> various m<strong>at</strong>eria<br />

mined from the inte<br />

multiply reflected<br />

radi<strong>at</strong>ion. The inte<br />

and I N refer respecti<br />

superconducting an<br />

st<strong>at</strong>es <strong>of</strong> the m<strong>at</strong>e<br />

curves thus represent<br />

ence between the in<br />

flectivity <strong>of</strong> the sup<br />

ing and normally c<br />

st<strong>at</strong>es. (After [10.11])<br />

31 / 41


Optical Properties<br />

Doesn’t look like a metal...<br />

E k ˆ…n 2 k ‡ D2 † 1=2 (10.58) obeys Fermi st<strong>at</strong>istics with the Fermi dis<br />

f (E k ,T) (Sect. 6.3). In the equ<strong>at</strong>ion determining D (10.61) this fact<br />

into account by including the non-occup<strong>at</strong>ion <strong>of</strong> the correspond<br />

st<strong>at</strong>es. In place <strong>of</strong> (10.61) one thus has<br />

(Ibach and Lüth)<br />

...looks more like a semiconductor! Has a GAP!!<br />

Fig. 10.15. Infrared<br />

<strong>of</strong> various m<strong>at</strong>eria<br />

mined from the inte<br />

multiply reflected<br />

radi<strong>at</strong>ion. The inte<br />

and I N refer respecti<br />

superconducting an<br />

st<strong>at</strong>es <strong>of</strong> the m<strong>at</strong>e<br />

curves thus represent<br />

ence between the in<br />

flectivity <strong>of</strong> the sup<br />

ing and normally c<br />

st<strong>at</strong>es. (After [10.11])<br />

31 / 41


Optical Properties<br />

Doesn’t look like a metal...<br />

E k ˆ…n 2 k ‡ D2 † 1=2 (10.58) obeys Fermi st<strong>at</strong>istics with the Fermi dis<br />

f (E k ,T) (Sect. 6.3). In the equ<strong>at</strong>ion determining D (10.61) this fact<br />

into account by including the non-occup<strong>at</strong>ion <strong>of</strong> the correspond<br />

st<strong>at</strong>es. In place <strong>of</strong> (10.61) one thus has<br />

(Ibach and Lüth)<br />

...looks more like a semiconductor! Has a GAP!!<br />

Superconductor HAS A GAP!!!!<br />

Fig. 10.15. Infrared<br />

<strong>of</strong> various m<strong>at</strong>eria<br />

mined from the inte<br />

multiply reflected<br />

radi<strong>at</strong>ion. The inte<br />

and I N refer respecti<br />

superconducting an<br />

st<strong>at</strong>es <strong>of</strong> the m<strong>at</strong>e<br />

curves thus represent<br />

ence between the in<br />

flectivity <strong>of</strong> the sup<br />

ing and normally c<br />

st<strong>at</strong>es. (After [10.11])<br />

31 / 41


0 F<br />

Temper<strong>at</strong>ure Dependence <strong>of</strong> Gap<br />

Gap is temper<strong>at</strong>ure dependent<br />

0<br />

2 T c<br />

Anumerical tre<strong>at</strong>ment <strong>of</strong> the integral (10.78) yields<br />

1 ˆ V 0 Z…E 0 F † ln 1:14hx D<br />

or …10:79 a<br />

T c<br />

kT c ˆ 1:14hx D e 1=V0Z…E0 F † :<br />

k<br />

k<br />

…10:79 b<br />

(Ibach and Lüth)<br />

Fig. 10.16. Temper<strong>at</strong>ure dependence <strong>of</strong> the gap energy D(T) rel<strong>at</strong>ive to the value D(0)<br />

T=0 for In, Sn and Pb. Values determined from tunnel experiments (Panel IX) are com<br />

pared with those predicted by BCS theory (dashed). (After [10.12])<br />

32 / 41


0 F<br />

Temper<strong>at</strong>ure Dependence <strong>of</strong> Gap<br />

Gap is temper<strong>at</strong>ure dependent<br />

0<br />

2 T c<br />

Anumerical tre<strong>at</strong>ment <strong>of</strong> the integral (10.78) yields<br />

1 ˆ V 0 Z…E 0 F † ln 1:14hx D<br />

or …10:79 a<br />

T c<br />

kT c ˆ 1:14hx D e 1=V0Z…E0 F † :<br />

k<br />

k<br />

…10:79 b<br />

(Ibach and Lüth)<br />

Fig. 10.16. Temper<strong>at</strong>ure dependence <strong>of</strong> the gap energy D(T) rel<strong>at</strong>ive to the value D(0)<br />

T=0 for In, Sn and Pb. Values determined from tunnel experiments (Panel IX) are com<br />

pared with those predicted by BCS theory (dashed). (After [10.12])<br />

Gap vanishes <strong>at</strong> T c<br />

32 / 41


Critical Current<br />

A superconductor cannot support an arbitrary large current<br />

density...there is a critical current density j c<br />

33 / 41


Critical Current<br />

A superconductor cannot support an arbitrary large current<br />

density...there is a critical current density j c<br />

The critical current is temper<strong>at</strong>ure dependent<br />

33 / 41


MAGNETIC<br />

J c T versus T curve (g–h–i–a) drawn for<br />

Critical Current B app = 0, which also appears in Figs. 2.43<br />

in the previous section and 2.47. Figure 2.46 shows three B c T<br />

l magnetic A superconductor field has the cannot<br />

versus T<br />

support<br />

curves projected<br />

an arbitrary<br />

onto<br />

large<br />

the J tr<br />

current<br />

= 0<br />

dence on<br />

density...there<br />

temper<strong>at</strong>ure <strong>given</strong> plane, while Fig. 2.47 presents three J<br />

is a critical current density j c T<br />

c<br />

d this is plotted in Fig. 2.41. versus T curves projected onto the B app = 0<br />

e curve near The Tcritical c is <strong>given</strong> current by plane. is temper<strong>at</strong>ure Finally, Fig. dependent 2.48 gives projections <strong>of</strong><br />

ay also Phase be written diagram in H-T -I plane<br />

2B c 0<br />

=− (2.71)<br />

T c<br />

I superconductors this r<strong>at</strong>io<br />

−15 and −50 mT/K; for<br />

a value <strong>of</strong> −223mT/K<br />

uperconductor has two criter-critical<br />

field B c1 and an<br />

ld B c2 , where B c1


Flux Quantiz<strong>at</strong>ion<br />

34 / 41


Flux Quantiz<strong>at</strong>ion<br />

The flux through a superconducting ring seems to be quantized<br />

34 / 41


Flux Quantiz<strong>at</strong>ion<br />

The flux through a superconducting ring seems to be quantized<br />

(Daever and Fairbank, 1961)<br />

34 / 41


Flux Quantiz<strong>at</strong>ion<br />

The flux through a superconducting ring seems to be quantized<br />

(Daever and Fairbank, 1961)<br />

Some sort <strong>of</strong> “macroscopic quantum phenomenon”<br />

34 / 41


Isotope Effect<br />

35 / 41


Isotope Effect<br />

The strangest thing...the T c depends on the isotope!!<br />

35 / 41


Fig. 10.17. Isotope eff<br />

The results <strong>of</strong> sever<br />

summarized [10.13]:<br />

Lock, Pippard, Shoen<br />

Reynolds and Lohman<br />

Isotope Effect<br />

The strangest thing...the T c depends on the isotope!!<br />

10.7 Supercurrents and Critical Cur<br />

(Ibach and Lüth)<br />

10.7 Supercurrents and Critical Currents<br />

The main goal <strong>of</strong> a theory <strong>of</strong> superconductivity is <strong>of</strong> course to ex<br />

fundamental properties <strong>of</strong> the superconducting phase: the<br />

35 / 41<br />

disa


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

Vanishing specific he<strong>at</strong><br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

Vanishing specific he<strong>at</strong><br />

Poor thermal conductivity<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

Vanishing specific he<strong>at</strong><br />

Poor thermal conductivity<br />

Gap in excit<strong>at</strong>ions<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

Vanishing specific he<strong>at</strong><br />

Poor thermal conductivity<br />

Gap in excit<strong>at</strong>ions<br />

Critical current<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

Vanishing specific he<strong>at</strong><br />

Poor thermal conductivity<br />

Gap in excit<strong>at</strong>ions<br />

Critical current<br />

Flux quantiz<strong>at</strong>ion<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

Vanishing specific he<strong>at</strong><br />

Poor thermal conductivity<br />

Gap in excit<strong>at</strong>ions<br />

Critical current<br />

Flux quantiz<strong>at</strong>ion<br />

Isotope effect<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

Vanishing specific he<strong>at</strong><br />

Poor thermal conductivity<br />

Gap in excit<strong>at</strong>ions<br />

Critical current<br />

Flux quantiz<strong>at</strong>ion<br />

Isotope effect<br />

...<br />

36 / 41


<strong>Superconductivity</strong> – Summary <strong>of</strong> Observ<strong>at</strong>ions<br />

Zero resistance<br />

Meissner effect (Penetr<strong>at</strong>ion depth)<br />

Type I and II superconductors<br />

Vanishing specific he<strong>at</strong><br />

Poor thermal conductivity<br />

Gap in excit<strong>at</strong>ions<br />

Critical current<br />

Flux quantiz<strong>at</strong>ion<br />

Isotope effect<br />

...<br />

This is wh<strong>at</strong> we need to explain!<br />

36 / 41


Development <strong>of</strong> a Theory<br />

37 / 41


Development <strong>of</strong> a Theory<br />

Phenomenological Approach<br />

37 / 41


Development <strong>of</strong> a Theory<br />

Phenomenological Approach<br />

Microscopic Approach<br />

37 / 41


Superconductor = Perfect Conductor?<br />

38 / 41


Superconductor = Perfect Conductor?<br />

38 / 41


Superconductor = Perfect Conductor?<br />

Given th<strong>at</strong> the superconducting st<strong>at</strong>e has zero resistance, let us<br />

consider a perfect conductor and do the following thought experiment<br />

38 / 41


Superconductor = Perfect Conductor?<br />

Given th<strong>at</strong> the superconducting st<strong>at</strong>e has zero resistance, let us<br />

10.1 Some Fundamental Phenomena Associ<strong>at</strong>ed with <strong>Superconductivity</strong> 295<br />

consider a perfect conductor and do the following thought experiment<br />

Fig. 10.4. Magnetic behavior <strong>of</strong> an ideal conductor (A) and a superconductor (B): (A) Inan<br />

ideal conductor, the final (Ibach st<strong>at</strong>e (d) and or(g) depends Lüth) on whether the sample is first cooled to<br />

below T c before applying the magnetic field B ext, or altern<strong>at</strong>ively, cooled in the presence <strong>of</strong><br />

the field. (a ? b) The sample loses its resistance when cooled in a field-free region. (c) Applic<strong>at</strong>ion<br />

<strong>of</strong> B ext to sample with zero resistance. (d) MagneticfieldB ext switched <strong>of</strong>f. (e?f )<br />

Sample loses its resistance in the magnetic field. (g) MagneticfieldB ext switched <strong>of</strong>f. (B)<br />

For a superconductor, the final st<strong>at</strong>es (d) and(g) are identical, regardless <strong>of</strong> whether B ext is<br />

switched on before or after cooling the sample: (a?b) sample loses its resistance upon<br />

cooling in the absence <strong>of</strong> a magnetic field. (c) Applic<strong>at</strong>ion <strong>of</strong> the field Bext to the supercon-<br />

38 / 41


Superconductor = Perfect Conductor?<br />

Given th<strong>at</strong> the superconducting st<strong>at</strong>e has zero resistance, let us<br />

10.1 Some Fundamental Phenomena Associ<strong>at</strong>ed with <strong>Superconductivity</strong> 295<br />

consider a perfect conductor and do the following thought experiment<br />

Fig. 10.4. Magnetic behavior <strong>of</strong> an ideal conductor (A) and a superconductor (B): (A) Inan<br />

ideal conductor, the final (Ibach st<strong>at</strong>e (d) and or(g) depends Lüth) on whether the sample is first cooled to<br />

below T c before applying the magnetic field B ext, or altern<strong>at</strong>ively, cooled in the presence <strong>of</strong><br />

the field. (a ? b) The sample loses its resistance when cooled in a field-free region. (c) Applic<strong>at</strong>ion<br />

<strong>of</strong> B ext to sample with zero resistance. (d) MagneticfieldB ext switched <strong>of</strong>f. (e?f )<br />

Sample loses its resistance in the magnetic field. (g) MagneticfieldB ext switched <strong>of</strong>f. (B)<br />

For a superconductor, the final st<strong>at</strong>es (d) and(g) are identical, regardless <strong>of</strong> whether B ext is<br />

switched on before or after cooling the sample: (a?b) sample loses its resistance upon<br />

cooling in the absence <strong>of</strong> a magnetic field. (c) Applic<strong>at</strong>ion <strong>of</strong> the field Bext to the supercon-<br />

Superconductor and perfect conductor are very different! “Perfect<br />

conductor” does not lead to a consistent thermodynamic st<strong>at</strong>e!<br />

38 / 41


39 / 41


40 / 41


41 / 41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!