23.05.2014 Views

Beyond Eliashberg superconductivity in MgB2 - Physics ...

Beyond Eliashberg superconductivity in MgB2 - Physics ...

Beyond Eliashberg superconductivity in MgB2 - Physics ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VOLUME 87, NUMBER 8 PHYSICAL REVIEW LETTERS 20AUGUST 2001<br />

F (meV -1 )<br />

0.6<br />

0.3<br />

F<br />

α 2 F<br />

2<br />

1<br />

α 2 F<br />

with i 12 referr<strong>in</strong>g to the light(heavy)-hole 2D sheets<br />

of the Fermi surface, and i 34 to the p z bond<strong>in</strong>g<br />

(antibond<strong>in</strong>g) sheets. The EPC constant was also decomposed<br />

<strong>in</strong>to contributions from scatter<strong>in</strong>g of an electron<br />

from band i to band j:<br />

l 0 sc X ij<br />

U ij N i N j N X i<br />

l i N i N ,<br />

0<br />

0<br />

0 20 40 60 80 100<br />

ω (meV)<br />

FIG. 1.<br />

Phonon density of states and <strong>Eliashberg</strong> function.<br />

lower frequencies. The isotropic EPC constant, which determ<strong>in</strong>es<br />

T c <strong>in</strong> the dirty limit, l 0 sc 2 R v 21 a 2 Fv dv<br />

is found to be 0.77, <strong>in</strong> reasonable agreement with other<br />

calculations [4,6,7].<br />

The peak <strong>in</strong> a 2 F between 60 and 70 meV arises from<br />

the E 2g phonon modes with q along the G-A l<strong>in</strong>e. This<br />

Raman-active phonon mode, doubly degenerate at G, <strong>in</strong>volves<br />

<strong>in</strong>-plane, hexagon-distort<strong>in</strong>g displacements of the<br />

B atoms. In fact, by symmetry, this is the only mode at<br />

G that has a l<strong>in</strong>ear EPC. Go<strong>in</strong>g away from the G-A l<strong>in</strong>e<br />

the EPC drops sharply when the phonon wave vector q<br />

becomes larger than the diameter of the 2D Fermi surface;<br />

at the same time the frequency <strong>in</strong>creases by roughly<br />

30%. This <strong>in</strong>dicates that the reason why this B-B bondstretch<strong>in</strong>g<br />

mode is not the highest-frequency mode at G<br />

is because of soften<strong>in</strong>g due to EPC. However, this soften<strong>in</strong>g<br />

should weaken <strong>in</strong> the superconduct<strong>in</strong>g state, s<strong>in</strong>ce<br />

some of the screen<strong>in</strong>g electrons form Cooper pairs and are<br />

removed from the Fermi sea [20]. The overall scale of<br />

the relative harden<strong>in</strong>g, Dvv, is set by a specific EPC<br />

constant, l ZZ 2v P 21 ki jg k,k j 2 de ki , where g is the<br />

EPC matrix element. (The Fermi level is set to zero.) In<br />

the BCS limit, Dvv is a known analytical function [21]<br />

of v. We calculate l ZZ 0.6, for the E 2g mode. Tak<strong>in</strong>g<br />

D 5 meV we predict about a 12% harden<strong>in</strong>g of this<br />

mode below T c . This shift should be observable <strong>in</strong> Raman<br />

or neutron experiments.<br />

S<strong>in</strong>ce the 2D FSs are calculated to play an important role<br />

<strong>in</strong> the EPC, we have decomposed the relevant electronic<br />

characteristics <strong>in</strong> terms of the four sheets of the FS. We list<br />

<strong>in</strong> Table I the partial DOS N i P k de ki , and plasma<br />

frequencies<br />

v 2 p,i,aa 8pe2<br />

V<br />

W i 8pe2<br />

V<br />

P<br />

k y 2 ki,ade ki ,<br />

TABLE I. Band decomposition of the electronic density of<br />

states at the Fermi level and <strong>in</strong>-plane and out-of-plane plasma<br />

frequencies. The density of states is <strong>in</strong> units of states Ry 21<br />

sp<strong>in</strong> 21 cell 21 , and the plasma frequency is <strong>in</strong> eV.<br />

Total 1 2 3 4<br />

NE F 4.83 0.66 1.38 1.26 1.52<br />

v p,xx 7.21 2.91 2.95 3.05 5.04<br />

v p,zz 6.87 0.44 0.52 4.62 5.06<br />

U ij N i N j 2 X vqn 21 jgki,k1qjj n 2 de ki de k1qj .<br />

kqn<br />

Here v qn is the frequency of the correspond<strong>in</strong>g phonon,<br />

and lsc 0 is the standard (<strong>Eliashberg</strong>) isotropic coupl<strong>in</strong>g constant.<br />

Allow<strong>in</strong>g for <strong>in</strong>terband anisotropy of the order parameter<br />

(clean limit), the effective coupl<strong>in</strong>g constant for<br />

<strong>superconductivity</strong> lsc<br />

eff is given by the maximum eigenvalue<br />

of the matrix L ij U ij N i , which is always larger<br />

than l 0 sc . Assum<strong>in</strong>g the same <strong>in</strong>teraction parameters U ij<br />

for transport properties, the lowest order variational approximation<br />

for the Boltzmann equation corresponds to<br />

the transport EPC constant ltr 0 P i l i W i W . On the<br />

other hand, allow<strong>in</strong>g variational freedom for the different<br />

sheets of the Fermi surface yields an effective transport<br />

coupl<strong>in</strong>g constant which is always smaller than ltr 0 .<br />

In effect, the different bands provide parallel channels<br />

for conduction, so that when “scatter<strong>in</strong>g-<strong>in</strong>” is neglected,<br />

Wltr eff P i W i l i [13].<br />

The calculated <strong>in</strong>teraction parameters U ij are listed<br />

<strong>in</strong> Table II. Because of similarities between the two<br />

2D sheets, and between the two 3D sheets, we have<br />

simplified the model to allow for two different order<br />

parameters for these two sets of bands. This gives U AA <br />

0.47 Ry, U BB 0.10 Ry, and U AB 0.08 Ry, where<br />

A and B stand for the 2D and 3D bands, respectively.<br />

Then l A 1.19 and l B 0.45, suggest<strong>in</strong>g de Haas–<br />

van Alphen mass renormalizations of 2.2 and 1.5, for<br />

the two sets of bands, and specific-heat renormalization<br />

of 1.77 [22]. The result<strong>in</strong>g anisotropic effective coupl<strong>in</strong>g<br />

constant for <strong>superconductivity</strong> is lsc<br />

eff 1.01. Us<strong>in</strong>g the<br />

Allen-Dynes approximate formula for T c [23], we f<strong>in</strong>d<br />

that to have T c 40 K, a Coulomb pseudopotential of<br />

m 0.13 is needed. This is a more conventional value<br />

than the m 0.04 required when lsc 0 is used. For transport,<br />

<strong>in</strong>terband anisotropy reduces the <strong>in</strong>-plane coupl<strong>in</strong>g<br />

constant l x,y from 0.70 to 0.58, but has essentially no<br />

effect on the out-of-plane l z 0.46 (Table III). This<br />

is because the anisotropic formula accounts for the fact<br />

TABLE II. Band decomposition of the electron-phonon<br />

<strong>in</strong>teraction.<br />

ij 11 12 13 14 22<br />

U ij (Ry) 0.676 0.419 0.064 0.096 0.477<br />

ij 23 24 33 34 44<br />

U ij (Ry) 0.064 0.097 0.113 0.106 0.092<br />

087005-2 087005-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!