23.05.2014 Views

Topological Phases in One Dimension

Topological Phases in One Dimension

Topological Phases in One Dimension

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Topological</strong> <strong>Phases</strong> <strong>in</strong> <strong>One</strong> <strong>Dimension</strong><br />

Lukasz Fidkowski and Alexei Kitaev<br />

arXiv:1008.4138


<strong>Topological</strong> phases <strong>in</strong> 2 dimensions:<br />

- Integer quantum Hall effect<br />

- quantized σ xy<br />

- robust chiral edge modes<br />

- Fractional quantum Hall effect<br />

- fractionally charged quasi-particles<br />

- robust chiral edge modes<br />

- Quantum sp<strong>in</strong> Hall, topological <strong>in</strong>sulators, etc.<br />

- free electrons, sp<strong>in</strong>-orbit coupl<strong>in</strong>g


The Majorana Wire<br />

- sp<strong>in</strong>-less p-wave superconductor<br />

- tight-b<strong>in</strong>d<strong>in</strong>g model:<br />

j =<br />

1 2 3 4 5 6<br />

(µ a † j a j + t(a j a † j+1 + a j+1a † j ) + ∆(a ja j+1 + a † j a† j+1 ) )<br />

H = ∑ j<br />

chemical<br />

potential<br />

hopp<strong>in</strong>g<br />

pair<strong>in</strong>g


Gapped Hamiltonians:<br />

“trivial” phase<br />

“topological” phase:<br />

protected Majorana<br />

edge modes<br />

phase transition


Re-write <strong>in</strong> terms of Majorana modes:<br />

〈a j , a † j 〉 〈c 2j−1, c 2j 〉<br />

c 2j−1 = −i(a j + a † j )<br />

c 2j = a j + a † j<br />

{a 1 , . . . , a N , a † 1 , . . . , a† N } {c 1 , . . . , c 2N }<br />

N fermion creation /<br />

annihilation operators<br />

2N Hermitian Majorana<br />

operators


- our Hamiltonian can then be written as a quadratic<br />

form <strong>in</strong> the Majoranas:<br />

2N∑<br />

H =<br />

A mn c m c n<br />

m,n=1<br />

- graphical representation:<br />

Hilbert Space:<br />

j =<br />

1 2 3<br />

c 1 c 2 c 3 c 4 c 5 c 6


Hamiltonian:<br />

c 1 c 2 c 3 c 4 c 5 c 6<br />

= i 2 (c 1c 2 + c 3 c 4 + c 5 c 6 )<br />

= a † 1 a 1 + a † 2 a 2 + a † 3 a 3 decoupled


trivial phase:<br />

c 1 c 2 c 3 c 4 c 5 c 6<br />

topological phase:<br />

c 1 c 2 c 3 c 4 c 5 c 6<br />

dangl<strong>in</strong>g Majorana modes<br />

a = 1 2 (c 1 + ic 6 )<br />

double ground state degeneracy<br />

a † = 1 2 (c 1 − ic 6 )


Recap:<br />

It<strong>in</strong>erant sp<strong>in</strong>-less fermions <strong>in</strong> one dimension have two<br />

phases. The non-trivial “topological” one is characterized<br />

by hav<strong>in</strong>g Majorana edge modes at its endpo<strong>in</strong>ts.<br />

What is left:<br />

1) <strong>in</strong>teractions?<br />

2) symmetries?<br />

either generic (like time reversal or particle-hole) or<br />

some arbitrary symmetry group G (like SU(2) <strong>in</strong> sp<strong>in</strong><br />

cha<strong>in</strong>s)


Majorana cha<strong>in</strong> with time reversal symmetry<br />

- sp<strong>in</strong>-less fermions as before, with<br />

T :<br />

a j → a j<br />

a † j → a† j<br />

T : c k → (−1) k c k<br />

- non-<strong>in</strong>teract<strong>in</strong>g (i.e. quadratic fermion) analysis gives<br />

<strong>in</strong>f<strong>in</strong>itely many phases, characterized by an <strong>in</strong>teger n∈ Z<br />

1 2 3 4 5 6 7 8


we showed that with <strong>in</strong>teractions,<br />

down to<br />

Z 8<br />

n → n mod 8<br />

Z<br />

is broken<br />

showed this by turn<strong>in</strong>g on quartic <strong>in</strong>teractions and<br />

f<strong>in</strong>d<strong>in</strong>g an explicit path <strong>in</strong> <strong>in</strong>teract<strong>in</strong>g Hamiltonian<br />

space which connects n and n+8.<br />

But how to handle <strong>in</strong>teractions <strong>in</strong> general?


Matrix Product States:<br />

- Bosonic sp<strong>in</strong> cha<strong>in</strong>s with local local sp<strong>in</strong>s s<br />

Ψ(s 1 , . . . , s N ) = Tr(A s1 . . . A sN )<br />

s i ∈ {−s/2, −s/2 + 1, . . . , s/2}<br />

A si<br />

: D × D matrices<br />

(can be generalized to fermionic systems via Jordan-Wigner<br />

transform)<br />

- Ground states of gapped Hamiltonians can be<br />

approximated arbitrarily well by MPS with small D<br />

(Hast<strong>in</strong>gs 2006)


Tensor network contraction picture:<br />

Closed MPS:<br />

Open MPS:<br />

s 1<br />

s 2<br />

s 3 s 4<br />

s 5<br />

s 9<br />

α<br />

α β β γ<br />

s 8<br />

s 1 s 2 s 3 s 4 s 5<br />

α β β γ γ<br />

s 7<br />

s 6<br />

α, β, γ ∈ {1, . . . , D}


Virtual degrees of freedom edge modes<br />

Theorem: If G is a symmetry of the orig<strong>in</strong>al states, then G has a<br />

projective action on the virtual degrees of freedom.<br />

(projective means that group relations are obeyed only up to<br />

phases, which one might not be able to gauge away)<br />

Thus, if G is a symmetry of the Hamiltonian, then there is a<br />

projective action of G on the edge modes.<br />

Generally, there is a discrete set of classes of projective<br />

representations of G, and these classes correspond to different<br />

phases. In fact, they enumerate all gapped phases of<br />

Hamiltonians with that symmetry group.


Example: AKLT Hamiltonian for sp<strong>in</strong>-1 Heisenberg model<br />

G = SO(3), but edge states <strong>in</strong> the non-trivial (Haldane) phase are<br />

half-<strong>in</strong>teger sp<strong>in</strong>s. These are representations of SU(2), and only<br />

projective representations of SO(3).<br />

Example: Majorana cha<strong>in</strong> with time reversal symmetry<br />

G = where P = (-1)^F<br />

If n mod 8 is the previously discussed topological <strong>in</strong>dex then:<br />

- n mod 2: P bosonic vs. fermionic<br />

- n mod 4: T commut<strong>in</strong>g/anti-commut<strong>in</strong>g with P<br />

- n mod 8: T^2 = +1 or T^2 = -1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!