23.05.2014 Views

E = mc^2, High energy and intensity opens windows on the world

E = mc^2, High energy and intensity opens windows on the world

E = mc^2, High energy and intensity opens windows on the world

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

E = mc 2<br />

Opening Windows <strong>on</strong> <strong>the</strong> World<br />

Young-Kee Kim<br />

Fermilab <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> University of Chicago<br />

Physics Department Colloquium<br />

University of Virginia<br />

September 4, 2009


What is <strong>the</strong> <strong>world</strong> made of?<br />

What holds <strong>the</strong> <strong>world</strong> toge<strong>the</strong>r?<br />

Where did we come from?<br />

<strong>the</strong> smallest things in <strong>the</strong> <strong>world</strong><br />

interacti<strong>on</strong>s (forces) between <strong>the</strong>m<br />

<strong>the</strong> Universe’s past, present, <str<strong>on</strong>g>and</str<strong>on</strong>g> future<br />

Particle Physics: physics where<br />

small <str<strong>on</strong>g>and</str<strong>on</strong>g> big things meet,<br />

inner <str<strong>on</strong>g>and</str<strong>on</strong>g> outer space meet


Accelerators are<br />

powerful tools<br />

for Particle Physics!<br />

Tevatr<strong>on</strong>, Fermilab, Chicago, USA<br />

2 TeV prot<strong>on</strong>-antiprot<strong>on</strong> collider<br />

Operating since 1985<br />

Neutrino beams<br />

KEKb, KEK, Tsukuba, Japan<br />

10 GeV e - e + collider<br />

Operating since 1999<br />

LHC, CERN, Geneva, Switzerl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

714 TeV prot<strong>on</strong>-prot<strong>on</strong> collider<br />

Expect to start operati<strong>on</strong>s late 2009


Accelerators are Powerful Microscopes.<br />

They make high <str<strong>on</strong>g>energy</str<strong>on</strong>g> particle beams<br />

that allow us to see small things.<br />

λ = h p<br />

seen by<br />

low <str<strong>on</strong>g>energy</str<strong>on</strong>g> beam<br />

(poorer resoluti<strong>on</strong>)<br />

seen by<br />

high <str<strong>on</strong>g>energy</str<strong>on</strong>g> beam<br />

(better resoluti<strong>on</strong>)


Accelerators are also Time Machines<br />

because <strong>the</strong>y make particles last seen<br />

in <strong>the</strong> earliest moments of <strong>the</strong> universe.<br />

particle beam<br />

anti-particle<br />

target


Accelerators are also Time Machines<br />

because <strong>the</strong>y make particles last seen<br />

in <strong>the</strong> earliest moments of <strong>the</strong> universe.<br />

particle beam<br />

anti-particle<br />

target<br />

ka<strong>on</strong><br />

neutrino<br />

mu<strong>on</strong>


Accelerators are also Time Machines<br />

because <strong>the</strong>y make particles last seen<br />

in <strong>the</strong> earliest moments of <strong>the</strong> universe.<br />

particle beam<br />

<str<strong>on</strong>g>energy</str<strong>on</strong>g><br />

Energy<br />

anti-particle beam<br />

<str<strong>on</strong>g>energy</str<strong>on</strong>g><br />

Particle <str<strong>on</strong>g>and</str<strong>on</strong>g> anti-particle annihilate.<br />

E = mc 2


Accelerators are also Time Machines<br />

because <strong>the</strong>y make particles last seen<br />

in <strong>the</strong> earliest moments of <strong>the</strong> universe.<br />

E = Mc 2<br />

particle beam<br />

<str<strong>on</strong>g>intensity</str<strong>on</strong>g><br />

M<br />

m ν<br />

M N


Many generati<strong>on</strong>s of Accelerators created<br />

with higher <str<strong>on</strong>g>and</str<strong>on</strong>g> higher <str<strong>on</strong>g>energy</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>intensity</str<strong>on</strong>g> beams<br />

1929 Today (Fermilab)<br />

~2000 Scientists<br />

Fermilab experiments using accelerators<br />

> 2 publicati<strong>on</strong>s every week<br />

~2 Ph.D.s every week<br />

Ernest Lawrence<br />

(1901 - 1958)<br />

Tevatr<strong>on</strong>: x10 4 bigger, x10 6 higher <str<strong>on</strong>g>energy</str<strong>on</strong>g><br />

Intense neutrino beams


With advances in accelerators, we discovered many surprises.<br />

Intensity<br />

Energy<br />

The field of Particle Physics has been<br />

tremendously successful in creating <str<strong>on</strong>g>and</str<strong>on</strong>g> establishing<br />

“St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Model of Particle Physics” answering<br />

”what <strong>the</strong> universe is made of” <str<strong>on</strong>g>and</str<strong>on</strong>g> “how it works”


Scientific Drivers<br />

• Present <strong>the</strong>ory (St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Model)<br />

is a remarkable intellectual<br />

c<strong>on</strong>structi<strong>on</strong><br />

• Every particle experiment ever<br />

d<strong>on</strong>e (except neutrino expt.s) fits<br />

in <strong>the</strong> framework<br />

Quarks<br />

H<br />

Force<br />

Carriers<br />

• But huge questi<strong>on</strong>s remain<br />

unanswered.<br />

• New physics is required to answer<br />

– e.g. Supersymmetric extensi<strong>on</strong> of SM,<br />

extra dimensi<strong>on</strong>s, ….<br />

Lept<strong>on</strong>s<br />

H (Higgs) yet to be discovered<br />

Pier Odd<strong>on</strong>e, DOE SC<br />

Planning, April 29, 2009


What is <strong>the</strong> universe made of?<br />

~90 years ago ~60 years ago ~40 years ago Present<br />

atom<br />

electr<strong>on</strong> 10 -19 m ~ 1 TeV<br />

nucleus<br />

1<br />

100,000 of human hair prot<strong>on</strong><br />

neutr<strong>on</strong><br />

prot<strong>on</strong><br />

neutr<strong>on</strong><br />

up quark<br />

down quark<br />

up quark<br />

down quark<br />

Ru<strong>the</strong>rford<br />

1<br />

10,000<br />

1<br />

10<br />

1<br />

100,000


Everything is made of electr<strong>on</strong>s, up quarks <str<strong>on</strong>g>and</str<strong>on</strong>g> down quarks.<br />

Are <strong>the</strong>y <strong>the</strong> smallest things?


(prot<strong>on</strong> mass = = ~1GeV/c 2 )<br />

top quark<br />

τ<br />

ḅ<br />

c c .ν µ<br />

.<br />

ν τ<br />

Z<br />

W<br />

glu<strong>on</strong>s<br />

Why so many elementary particles?<br />

Why 3 families?<br />

Where does mass come from? Higgs?<br />

Origin of neutrino mass?<br />

Would charged lept<strong>on</strong>s oscillate?<br />

Did <strong>the</strong>y all come from ONE?


What holds <strong>the</strong> <strong>world</strong> toge<strong>the</strong>r?<br />

Beginnings of Unificati<strong>on</strong><br />

Gravitati<strong>on</strong>al Force Electromagnetic Force<br />

Issac Newt<strong>on</strong><br />

(1642 - 1727)<br />

James Clerk Maxwell<br />

(1831 - 1879)


Unificati<strong>on</strong> of Gravity <str<strong>on</strong>g>and</str<strong>on</strong>g> Electromagnetism?<br />

Einstein tried to unify<br />

electromagnetism <str<strong>on</strong>g>and</str<strong>on</strong>g> gravity<br />

but he failed.


adioactive decays<br />

Enrico Fermi<br />

(1901 - 1954)<br />

holding prot<strong>on</strong>, nucleus<br />

1 fm = 10 -15 m<br />

glu<strong>on</strong>s


Dream of Unificati<strong>on</strong> c<strong>on</strong>tinues!<br />

We believe that <strong>the</strong>re is an underlying simplicity<br />

behind vast phenomena in nature.<br />

Do all <strong>the</strong> forces become <strong>on</strong>e?<br />

At high <str<strong>on</strong>g>energy</str<strong>on</strong>g>, do forces start to behave <strong>the</strong> same<br />

as if <strong>the</strong>re is just <strong>on</strong>e force, not several forces?<br />

Extra hidden dimensi<strong>on</strong>s in space?


Particle Physics & Cosmology Questi<strong>on</strong>s from<br />

Astrophysical Observati<strong>on</strong>s


Everything is made of electr<strong>on</strong>s, up quarks <str<strong>on</strong>g>and</str<strong>on</strong>g> down quarks.<br />

Everything that we can see<br />

Galaxies are held toge<strong>the</strong>r by mass<br />

far bigger (x5) than all stars combined.<br />

Dark Matter - What is it?


Where did we come from?<br />

How did we get here?<br />

Where are we going?<br />

Underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing our Universe!


Create particles & antiparticles that<br />

existed ~0.001 ns after Big Bang:<br />

Tevatr<strong>on</strong>, LHC, ….<br />

Accelerators<br />

Inflati<strong>on</strong><br />

Big<br />

Bang<br />

particles<br />

anti-particles<br />

Where did all antimatter go?<br />

particles


Not <strong>on</strong>ly is <strong>the</strong> Universe exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing, it is<br />

Accelerating!!<br />

Where does <str<strong>on</strong>g>energy</str<strong>on</strong>g> come from?<br />

Dark Energy


What is <strong>the</strong> <strong>world</strong> made of?<br />

What holds <strong>the</strong> <strong>world</strong> toge<strong>the</strong>r?<br />

Where did we come from?<br />

Primitive Thinker


1. What is <strong>the</strong> origin of mass for fundamental particles?<br />

2. Why are <strong>the</strong>re so many kinds of particles?<br />

3. Do all <strong>the</strong> forces become <strong>on</strong>e?<br />

4. Are <strong>the</strong>re extra dimensi<strong>on</strong>s of space?<br />

5. What are neutrinos telling us?<br />

6. What happened to <strong>the</strong> antimatter?<br />

7. What is dark matter?<br />

8. How can we solve <strong>the</strong> mystery of dark <str<strong>on</strong>g>energy</str<strong>on</strong>g>?<br />

9. How did <strong>the</strong> universe come to be?<br />

10. Are <strong>the</strong>re undiscovered principles of nature:<br />

new symmetries, new physical laws?<br />

Evolved Thinker


X<br />

E<br />

Tevatr<strong>on</strong>, LHC<br />

ILC, CLIC, Mu<strong>on</strong> Collider<br />

E = m X c 2<br />

ν µ<br />

m ν<br />

ν µ<br />

ν e<br />

M N<br />

X<br />

Young-Kee Kim Fermilab Strategic Plan Slide 26


Particle Physics in <strong>the</strong> World<br />

Fermilab<br />

CERN<br />

KEK


A herd of American bis<strong>on</strong>, symbolizing Fermillab’s presence <strong>on</strong> <strong>the</strong><br />

fr<strong>on</strong>tiers of particle physics <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>necti<strong>on</strong> to its prairie origins.<br />

6,800-acre park-like site<br />

Wils<strong>on</strong> Hall


2008 Nobel Prize in Physics<br />

Nambu (Univ. of Chicago)<br />

Kobayashi (KEK) – Maskawa (Kyoto Univ.)<br />

for “Mechanism of Symmetry Breaking”<br />

Wils<strong>on</strong><br />

Hall<br />

“Broken Symmetry”


The Energy Fr<strong>on</strong>tier: “Tevatr<strong>on</strong>”<br />

The Intensity Fr<strong>on</strong>tier: Neutrino Beams<br />

Neutrinos<br />

CDF<br />

Tevatr<strong>on</strong>:<br />

operati<strong>on</strong>s through 2011<br />


Origin of Mass:<br />

There might be something (new particle?!) in <strong>the</strong> universe<br />

Electr<strong>on</strong><br />

that gives mass to particles<br />

Nothing in <strong>the</strong> universe Something in <strong>the</strong> universe<br />

Higgs Particles:<br />

x<br />

x<br />

mass<br />

Z,W Bos<strong>on</strong><br />

Top Quark<br />

x x<br />

x<br />

x<br />

x xx x x<br />

x<br />

x<br />

Mass<br />

∞<br />

coupling strength to Higgs


Tevatr<strong>on</strong>: Improve Higgs Mass Pred. via Quantum Correcti<strong>on</strong>s<br />

1 GeV = 1 GeV / c 2 ~ prot<strong>on</strong> mass<br />

W (GeV)<br />

M W<br />

80.5<br />

80.4<br />

M top : Tevatr<strong>on</strong><br />

M W : Tevatr<strong>on</strong> + LEP2<br />

W<br />

top<br />

bottom<br />

80.3<br />

W<br />

Higgs<br />

150 175 200<br />

M top (GeV)<br />

M W <str<strong>on</strong>g>and</str<strong>on</strong>g> M top measurements favor light Higgs < ~180 GeV<br />

LEP2 direct searches – excluded Higgs < 114 GeV at 95% CL<br />

Favored Higgs mass range (114 – 180 GeV) is great for <strong>the</strong> Tevatr<strong>on</strong>!


σ<br />

mb -<br />

µb -<br />

nb -<br />

pb -<br />

fb -<br />

Physics at <strong>the</strong> Tevatr<strong>on</strong><br />

Observed so far<br />

-<br />

-<br />

Total Inelastic<br />

jets (qq, qg, gg)<br />

-<br />

bb<br />

-<br />

W<br />

Z<br />

tt -<br />

WZ, Single Top, ZZ<br />

Higgs<br />

WH,ZH<br />

Light SUSY, ….<br />

100 120 140 160 180 200<br />

Higgs Mass [GeV/c 2 ]<br />

-


Tevatr<strong>on</strong>: Improve Higgs Mass Pred. via Quantum Correcti<strong>on</strong>s<br />

LHC: Designed to discover Higgs with M higgs = 100 ~ 800 GeV<br />

W (GeV)<br />

M W<br />

80.5<br />

80.4<br />

80.3<br />

M top : Tevatr<strong>on</strong><br />

M W : Tevatr<strong>on</strong> + LEP2<br />

# of events / 0.5 GeV<br />

130 GeV Higgs<br />

150 175 200<br />

M top (GeV)<br />

M γγ [GeV]


Tevatr<strong>on</strong>: Improve Higgs Mass Pred. via Quantum Correcti<strong>on</strong>s<br />

LHC: Designed to discover Higgs with M higgs = 100 ~ 800 GeV<br />

W (GeV)<br />

M W<br />

80.5<br />

80.4<br />

80.3<br />

M top : Tevatr<strong>on</strong><br />

M W : Tevatr<strong>on</strong> + LEP2<br />

5σ Discovery Luminosity (fb<br />

-1 )<br />

favored<br />

hard<br />

easy<br />

LHC<br />

(CMS)<br />

hard<br />

150 175 200<br />

M top (GeV)<br />

M Higgs [GeV]<br />

Tevatr<strong>on</strong>: favors < ~180 GeV, excludes 160-170 GeV, c<strong>on</strong>tinues to improve<br />

Will Tevatr<strong>on</strong>’s Higgs predicti<strong>on</strong> agree with what LHC sees?


Fermilab <str<strong>on</strong>g>and</str<strong>on</strong>g> LHC<br />

From CERN<br />

US CMS Host Lab; <strong>the</strong> <strong>on</strong>ly US CMS Lab<br />

CMS Tier-1 Computing Center<br />

LHC Physics Center<br />

Support US CMS Community<br />

To Fermilab<br />

IPMU Seminar, Young-<br />

Kee Kim, August 19,<br />

2009<br />

Remote Operati<strong>on</strong> Center:<br />

Detector Commissi<strong>on</strong>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> M<strong>on</strong>itoring<br />

Accelerator M<strong>on</strong>itoring<br />

CERN Night = FNAL Day<br />

To make being at Fermilab as productive as being at CERN.<br />

Requires critical mass (~100 Fermilab + University Scientists at Fermilab).


If we discover a “Higgs-like” particle,<br />

is it al<strong>on</strong>e resp<strong>on</strong>sible for giving mass to W, Z, fermi<strong>on</strong>s?<br />

Experimenters must precisely measure<br />

<strong>the</strong> properties of <strong>the</strong> Higgs particle<br />

without invoking <strong>the</strong>oretical assumpti<strong>on</strong>s.


Hadr<strong>on</strong> Collider (Tevatr<strong>on</strong> / LHC):<br />

prot<strong>on</strong><br />

anti-prot<strong>on</strong> / prot<strong>on</strong><br />

Lept<strong>on</strong> Collider (ILC, CLIC, Mu<strong>on</strong> Collider):<br />

e - e +<br />

µ - µ +


Lept<strong>on</strong> colliders bey<strong>on</strong>d LHC<br />

< 1 TeV<br />

ILC (e + e - ) Enough<br />

By far <strong>the</strong> easiest!<br />

LHC (pp) Results<br />

or<br />

CLIC (e + e - )<br />

> 1 TeV<br />

ILC not Enough<br />

or<br />

Mu<strong>on</strong> collider (µ + µ - )


pp<br />

−<br />

2 TeV<br />

Tevatr<strong>on</strong><br />

e + e -<br />

~1 TeV<br />

e + e -<br />

3 TeV<br />

µ + µ - 4 TeV<br />

pp 14 TeV<br />

IPMU Seminar, Young-<br />

Kee Kim, August 19,<br />

2009<br />

41


The Higgs is Different!<br />

All <strong>the</strong> matter particles are spin-1/2 fermi<strong>on</strong>s.<br />

All <strong>the</strong> force carriers are spin-1 bos<strong>on</strong>s.<br />

Higgs particles are spin-0 bos<strong>on</strong>s.<br />

The Higgs is nei<strong>the</strong>r matter nor force;<br />

The Higgs is just different.<br />

This would be <strong>the</strong> first fundamental scalar ever discovered.<br />

The Higgs field is thought to fill <strong>the</strong> entire universe.<br />

Dark Energy – Scalar Field<br />

Could give a h<str<strong>on</strong>g>and</str<strong>on</strong>g>le <strong>on</strong> dark <str<strong>on</strong>g>energy</str<strong>on</strong>g>(scalar field)?<br />

If discovered, <strong>the</strong> Higgs is a very powerful probe of new physics.


Probing Dark Energy<br />

1. SDSS (Sloan Digital Sky Survey)<br />

– 2.5 m telescope in New Mexico<br />

– Power spectrum of galaxies c<strong>on</strong>strain dark<br />

<str<strong>on</strong>g>energy</str<strong>on</strong>g> density parameter<br />

– Ranks as <strong>the</strong> facility with <strong>the</strong> highest impact<br />

in astr<strong>on</strong>omy for <strong>the</strong> 3 rd year in a row.<br />

2. DES (Dark Energy Survey)<br />

– 4 m telescope in Chile (C<strong>on</strong>structi<strong>on</strong>)<br />

– Operati<strong>on</strong>: 2011 – 2016<br />

3. JDEM (Joint Dark Energy Missi<strong>on</strong>)<br />

– Space telescope (Proposed)<br />

– Fermilab’s goal: run Science Ops. Center.<br />

SDSS<br />

Producing Physics<br />

DES<br />

Under C<strong>on</strong>structi<strong>on</strong><br />

JDEM<br />

Proposed


Interplay: Energy Fr<strong>on</strong>tier Intensity Fr<strong>on</strong>tier<br />

LHC discovers str<strong>on</strong>gly coupled SUSY<br />

˜ q<br />

dark matter<br />

c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate<br />

χ~<br />

0 1<br />

˜ g<br />

Missing E T<br />

χ~<br />

0 1<br />

A host of new particles: fit roughly some masses,<br />

make assumpti<strong>on</strong> <strong>on</strong> couplings


Interplay: Energy Fr<strong>on</strong>tier Intensity Fr<strong>on</strong>tier<br />

~ χ 0<br />

E<br />

The Intensity Fr<strong>on</strong>tier can probe new physics at a scale >> TeV.<br />

Mu<strong>on</strong> to electr<strong>on</strong> c<strong>on</strong>versi<strong>on</strong>: µN eN<br />

Neutrinos change from <strong>on</strong>e kind to ano<strong>the</strong>r.<br />

Do charged lept<strong>on</strong>s do, too?


Mu2e Experiment: µ to e C<strong>on</strong>versi<strong>on</strong> (µN eN)<br />

IPMU Seminar, Young-Kee<br />

Kim, August 19, 2009


Large effects in ka<strong>on</strong> decay rates<br />

d<br />

d<br />

d<br />

W<br />

s d s quarks<br />

quarks<br />

W<br />

Z<br />

ν<br />

ν<br />

SM: K L π 0 ν ν<br />

lepts<br />

W<br />

d<br />

d<br />

ν<br />

ν<br />

d<br />

squarks<br />

d<br />

d<br />

s d s squarks<br />

c<br />

c<br />

ν<br />

ν<br />

slepts<br />

New Physics: K L π 0 ν ν<br />

c<br />

c<br />

d<br />

d<br />

ν<br />

ν<br />

IPMU Seminar, Young-<br />

Kee Kim, August 19,<br />

2009


Unificati<strong>on</strong><br />

2.3 x 10 -13 GeV<br />

(2.7K)<br />

12x10 9 y<br />

1TeV = 10 3 GeV<br />

(10 16 K)<br />

10 -11 s<br />

10 16 GeV<br />

(10 29 K)<br />

10 -38 s<br />

10 19 GeV<br />

(10 32 K)<br />

10 -41 s<br />

Energy<br />

Temp<br />

Time<br />

We want to believe<br />

that <strong>the</strong>re was just <strong>on</strong>e force after <strong>the</strong> Big Bang.<br />

As <strong>the</strong> universe cooled down,<br />

<strong>the</strong> single force split into <strong>the</strong> four that we know today.


γ<br />

f<br />

HERA:<br />

H1 +<br />

ZEUS<br />

HERA<br />

Str<strong>on</strong>ger force<br />

Q 2 [GeV 2 ]<br />

<str<strong>on</strong>g>High</str<strong>on</strong>g>er <str<strong>on</strong>g>energy</str<strong>on</strong>g> [GeV], Shorter distance


α -1<br />

60<br />

40<br />

20<br />

α 1<br />

-1<br />

α 2<br />

-1<br />

α 3<br />

-1<br />

0<br />

10 4 10 8 10 12 10 16<br />

Q [GeV]<br />

The St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Model fails to unify <strong>the</strong> str<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> electroweak forces.


60<br />

With SUSY<br />

α<br />

-1<br />

1<br />

40<br />

α -1 α<br />

-1<br />

2<br />

But details count!<br />

Precisi<strong>on</strong> measurements 20 are crucial.<br />

α 3<br />

-1<br />

0<br />

10 4 10 8 10 12 10 16<br />

Q [GeV]


Neutrinos:<br />

The enigmatic neutrinos are am<strong>on</strong>g <strong>the</strong> most abundant<br />

of <strong>the</strong> tiny particles that make up our universe.<br />

To underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> universe, must underst<str<strong>on</strong>g>and</str<strong>on</strong>g> neutrinos.<br />

Behavior is so different from o<strong>the</strong>r particles.<br />

Opening a “new” window:<br />

Unificati<strong>on</strong>, Matter-Antimatter Asymmetry<br />

m νM = (m quark ) 2


Under c<strong>on</strong>st.<br />

15kt Liquid Scintillator<br />

Operating<br />

NOvA MINOS<br />

Soudan<br />

Ir<strong>on</strong> Mine<br />

DUSEL<br />

(Homestake Gold Mine)<br />

1300 km<br />

~100 kt<strong>on</strong> Liquid Ar TPC<br />

810 km<br />

735 km<br />

2.5 msec<br />

MiniBooNE<br />

SciBooNE<br />

MINERvA<br />

MicroBooNE<br />

(g-2)<br />

~300 kt<strong>on</strong><br />

Water Cerenkov<br />

matter – antimatter asymmetry in neutrinos<br />

Prot<strong>on</strong> decay<br />

Supernovae neutrinos<br />

Project X


Project X (Proposed)<br />

Nati<strong>on</strong>al Project with Internati<strong>on</strong>al Collaborati<strong>on</strong><br />

• Fantastic machine at <str<strong>on</strong>g>intensity</str<strong>on</strong>g> fr<strong>on</strong>tier for ν, µ, ka<strong>on</strong> beams<br />

• Would develop technologies to positi<strong>on</strong> US to host a global<br />

facility at <strong>the</strong> <str<strong>on</strong>g>energy</str<strong>on</strong>g> fr<strong>on</strong>tier (ILC <str<strong>on</strong>g>and</str<strong>on</strong>g> mu<strong>on</strong> collider)


Unifying gravity to <strong>the</strong> o<strong>the</strong>r 3 forces<br />

With SUSY<br />

extra hidden dimensi<strong>on</strong>s in space bey<strong>on</strong>d <strong>the</strong> 3 we sense daily.<br />

Too small to observe?<br />

Some models predict large extra dimensi<strong>on</strong>s:<br />

large enough to observe up to multi TeV scale.<br />

LHC may discover extra dimensi<strong>on</strong>s.<br />

A lept<strong>on</strong> collider can identify size, shape, # of extra dimensi<strong>on</strong>s.


Dark Matter<br />

Underground experiments may detect Dark Matter c<str<strong>on</strong>g>and</str<strong>on</strong>g>idates.<br />

WIMP (~200 km/s, ~100 GeV)<br />

~10 keV<br />

nuclear recoil<br />

Cosmic Fr<strong>on</strong>tier<br />

IPMU Seminar, Young-<br />

Kee Kim, August 19,<br />

2009<br />

56


Dark Matter Searches – Underground Detectors<br />

Soudan<br />

Homestake<br />

0.5~1 t<strong>on</strong><br />

Technology:<br />

CDMS<br />

COUPP<br />

LAr TPC<br />

1300 km<br />

735 km<br />

CDMS<br />

Low temp. Ge / Si crystals<br />

World’s<br />

Best Limits<br />

COUPP<br />

Room temp. CF 3 I Bubble Chamber<br />

2 kg / 1 liter<br />

4 kg


Dark Matter<br />

Underground experiments may detect Dark Matter c<str<strong>on</strong>g>and</str<strong>on</strong>g>idates.<br />

WIMP (~200 km/s, ~100 GeV)<br />

Energy Fr<strong>on</strong>tier<br />

∼χ 0<br />

~10 keV<br />

nuclear recoil<br />

Cosmic Fr<strong>on</strong>tier<br />

Ε<br />

Intensity Fr<strong>on</strong>tier<br />

Accelerators can produce dark matter in <strong>the</strong> laboratory <str<strong>on</strong>g>and</str<strong>on</strong>g> underst<str<strong>on</strong>g>and</str<strong>on</strong>g> exactly what it is.<br />

IPMU Seminar, Young-<br />

Kee Kim, August 19,<br />

2009<br />

58


Particles Tell Stories!<br />

The discovery of a new particle is often <strong>the</strong> opening<br />

chapter revealing unexpected features of our universe.<br />

Particles are<br />

messengers telling a profound story<br />

about nature <str<strong>on</strong>g>and</str<strong>on</strong>g> laws of nature in microscopic <strong>world</strong>.<br />

The role of physicists is<br />

to find <strong>the</strong> particles <str<strong>on</strong>g>and</str<strong>on</strong>g> to listen to <strong>the</strong>ir stories.


Discovering a new particle is Exciting!<br />

Top quark event<br />

recorded early 90’s<br />

We have been listening to <strong>the</strong> story that top quarks are telling us:<br />

The top mass told us about <strong>the</strong> Higgs mass.<br />

Story is c<strong>on</strong>sistent with our underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing of <strong>the</strong> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard model<br />

We keep searching for a story we have not heard before.


Discovering “laws of nature”<br />

is even more Exciting!!<br />

Hope in <strong>the</strong> next ~5 years we will discover Higgs<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> listen very carefully to Higgs.<br />

What are neutrinos telling us?<br />

What are mu<strong>on</strong>s telling us?<br />

What are ka<strong>on</strong>s telling us?<br />

This will open <str<strong>on</strong>g>windows</str<strong>on</strong>g> for discovering new laws of nature.<br />

This saga c<strong>on</strong>tinues….<br />

There might be supersymmetric partners, dark matter,<br />

ano<strong>the</strong>r force carrier, large extra dimensi<strong>on</strong>s, ……<br />

for o<strong>the</strong>r new laws of nature.<br />

Whatever is out <strong>the</strong>re,<br />

this is our best opportunity to find it’s story!


END


The Tevatr<strong>on</strong> Predicts Higgs Mass via Quantum Correcti<strong>on</strong>s<br />

W<br />

top<br />

80.5<br />

M top : Tevatr<strong>on</strong><br />

M W : Tevatr<strong>on</strong>+LEP2<br />

bottom<br />

M W (GeV)<br />

80.4<br />

Higgs<br />

W<br />

80.3<br />

Favors Higgs mass range (114 – 180 GeV) at 95% CL.<br />

In this range, Tevatr<strong>on</strong> has good potential.<br />

IPMU Seminar, Young-<br />

Kee Kim, August 19,<br />

2009<br />

150 175 200<br />

M top (GeV)


Higgs at LHC <str<strong>on</strong>g>and</str<strong>on</strong>g> Tevatr<strong>on</strong><br />

5σ Discovery Luminosity (fb<br />

-1 )<br />

favored<br />

easy<br />

hard<br />

LHC (CMS)<br />

hard<br />

# of events / 0.5 GeV<br />

LHC 130 GeV Higgs<br />

M Higgs [GeV]<br />

M γγ [GeV]<br />

160 – 170 GeV<br />

Excluded by Tevatr<strong>on</strong> (3-4 fb -1 )<br />

Low Mass Higgs<br />

(LHC: H γγ, ττ) vs. (Tevatr<strong>on</strong>: H bb)<br />

IPMU Seminar, Young-<br />

Kee Kim, August 19,<br />

2009


ILC can observe Higgs no matter how it decays!<br />

e + e - → Z + Higgs<br />

2 b’s invisible<br />

Unique ability for model-independent tests of<br />

Higgs couplings to o<strong>the</strong>r particles


Tevatr<strong>on</strong> Sensitivity <strong>on</strong> St<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Model Higgs<br />

Sensitivity Projecti<strong>on</strong>: Regi<strong>on</strong> Favored by M top<br />

Tevatr<strong>on</strong><br />

, M W<br />

Tevatr<strong>on</strong>+LEP<br />

, …<br />

Excluded<br />

by<br />

LEP<br />

95%<br />

CL<br />

90%<br />

CL<br />

Excluded<br />

by<br />

M top<br />

Tevatr<strong>on</strong><br />

,<br />

M W<br />

Tevatr<strong>on</strong>+LEP<br />

,<br />

….<br />

Higgs Mass (GeV/c 2 )<br />

_<br />

H bb<br />

Excluded by Tevatr<strong>on</strong> (3-4 fb -1 )<br />

H W + W -<br />

IPMU Seminar, Young-<br />

Kee Kim, August 19,<br />

2009<br />

Update <strong>the</strong> results with 5 fb -1 data so<strong>on</strong>


Interplay: LHC Intensity Fr<strong>on</strong>tier<br />

nothing<br />

Only h<str<strong>on</strong>g>and</str<strong>on</strong>g>le <strong>on</strong> <strong>the</strong><br />

next <str<strong>on</strong>g>energy</str<strong>on</strong>g> scale<br />

LHC<br />

Intensity<br />

Fr<strong>on</strong>tier<br />

Lots<br />

Determine/verify<br />

structure of new<br />

physics. Anything<br />

bey<strong>on</strong>d?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!